26 Search Results for "Meir, Or"


Document
What Killed the Cat? Towards a Logical Formalization of Curiosity (And Suspense, and Surprise) in Narratives

Authors: Florence Dupin de Saint-Cyr, Anne-Gwenn Bosser, Benjamin Callac, and Eric Maisel

Published in: LIPIcs, Volume 318, 31st International Symposium on Temporal Representation and Reasoning (TIME 2024)


Abstract
We provide a unified framework in which the three emotions at the heart of narrative tension (curiosity, suspense and surprise) are formalized. This framework is built on non-monotonic reasoning which allows us to compactly represent the default behavior of the world and to simulate the affective evolution of an agent receiving a story. After formalizing the notions of awareness, curiosity, surprise and suspense, we explore the properties induced by our definitions and study the computational complexity of detecting them. We finally propose means to evaluate these emotions’ intensity for a given agent listening to a story.

Cite as

Florence Dupin de Saint-Cyr, Anne-Gwenn Bosser, Benjamin Callac, and Eric Maisel. What Killed the Cat? Towards a Logical Formalization of Curiosity (And Suspense, and Surprise) in Narratives. In 31st International Symposium on Temporal Representation and Reasoning (TIME 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 318, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dupindesaintcyr_et_al:LIPIcs.TIME.2024.10,
  author =	{Dupin de Saint-Cyr, Florence and Bosser, Anne-Gwenn and Callac, Benjamin and Maisel, Eric},
  title =	{{What Killed the Cat? Towards a Logical Formalization of Curiosity (And Suspense, and Surprise) in Narratives}},
  booktitle =	{31st International Symposium on Temporal Representation and Reasoning (TIME 2024)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-349-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{318},
  editor =	{Sala, Pietro and Sioutis, Michael and Wang, Fusheng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2024.10},
  URN =		{urn:nbn:de:0030-drops-212170},
  doi =		{10.4230/LIPIcs.TIME.2024.10},
  annote =	{Keywords: Knowledge Representation, Narration, Cognition}
}
Document
SoK: Attacks on DAOs

Authors: Rainer Feichtinger, Robin Fritsch, Lioba Heimbach, Yann Vonlanthen, and Roger Wattenhofer

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Decentralized Autonomous Organizations (DAOs) are blockchain-based organizations that facilitate decentralized governance. Today, DAOs not only hold billions of dollars in their treasury but also govern many of the most popular Decentralized Finance (DeFi) protocols. This paper systematically analyses security threats to DAOs, focusing on the types of attacks they face. We study attacks on DAOs that took place in the past, attacks that have been theorized to be possible, and potential attacks that were uncovered and prevented in audits. For each of these (potential) attacks, we describe and categorize the attack vectors utilized into four categories. This reveals that while many attacks on DAOs take advantage of the less tangible and more complex human nature involved in governance, audits tend to focus on code and protocol vulnerabilities. Thus, additionally, the paper examines empirical data on DAO vulnerabilities, outlines risk factors contributing to these attacks, and suggests mitigation strategies to safeguard against such vulnerabilities.

Cite as

Rainer Feichtinger, Robin Fritsch, Lioba Heimbach, Yann Vonlanthen, and Roger Wattenhofer. SoK: Attacks on DAOs. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 28:1-28:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{feichtinger_et_al:LIPIcs.AFT.2024.28,
  author =	{Feichtinger, Rainer and Fritsch, Robin and Heimbach, Lioba and Vonlanthen, Yann and Wattenhofer, Roger},
  title =	{{SoK: Attacks on DAOs}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{28:1--28:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.28},
  URN =		{urn:nbn:de:0030-drops-209640},
  doi =		{10.4230/LIPIcs.AFT.2024.28},
  annote =	{Keywords: blockchain, DAO, governance, security, measurements, voting systems}
}
Document
RANDOM
Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree

Authors: Yotam Dikstein and Irit Dinur

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We give new bounds on the cosystolic expansion constants of several families of high dimensional expanders, and the known coboundary expansion constants of order complexes of homogeneous geometric lattices, including the spherical building of SL_n(𝔽_q). The improvement applies to the high dimensional expanders constructed by Lubotzky, Samuels and Vishne, and by Kaufman and Oppenheim. Our new expansion constants do not depend on the degree of the complex nor on its dimension, nor on the group of coefficients. This implies improved bounds on Gromov’s topological overlap constant, and on Dinur and Meshulam’s cover stability, which may have applications for agreement testing. In comparison, existing bounds decay exponentially with the ambient dimension (for spherical buildings) and in addition decay linearly with the degree (for all known bounded-degree high dimensional expanders). Our results are based on several new techniques: - We develop a new "color-restriction" technique which enables proving dimension-free expansion by restricting a multi-partite complex to small random subsets of its color classes. - We give a new "spectral" proof for Evra and Kaufman’s local-to-global theorem, deriving better bounds and getting rid of the dependence on the degree. This theorem bounds the cosystolic expansion of a complex using coboundary expansion and spectral expansion of the links. - We derive absolute bounds on the coboundary expansion of the spherical building (and any order complex of a homogeneous geometric lattice) by constructing a novel family of very short cones.

Cite as

Yotam Dikstein and Irit Dinur. Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 62:1-62:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dikstein_et_al:LIPIcs.APPROX/RANDOM.2024.62,
  author =	{Dikstein, Yotam and Dinur, Irit},
  title =	{{Coboundary and Cosystolic Expansion Without Dependence on Dimension or Degree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{62:1--62:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.62},
  URN =		{urn:nbn:de:0030-drops-210556},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.62},
  annote =	{Keywords: High Dimensional Expanders, HDX, Spectral Expansion, Coboundary Expansion, Cocycle Expansion, Cosystolic Expansion}
}
Document
Bidding Games with Charging

Authors: Guy Avni, Ehsan Kafshdar Goharshady, Thomas A. Henzinger, and Kaushik Mallik

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Graph games lie at the algorithmic core of many automated design problems in computer science. These are games usually played between two players on a given graph, where the players keep moving a token along the edges according to pre-determined rules (turn-based, concurrent, etc.), and the winner is decided based on the infinite path (aka play) traversed by the token from a given initial position. In bidding games, the players initially get some monetary budgets which they need to use to bid for the privilege of moving the token at each step. Each round of bidding affects the players' available budgets, which is the only form of update that the budgets experience. We introduce bidding games with charging where the players can additionally improve their budgets during the game by collecting vertex-dependent monetary rewards, aka the "charges." Unlike traditional bidding games (where all charges are zero), bidding games with charging allow non-trivial recurrent behaviors. For example, a reachability objective may require multiple detours to vertices with high charges to earn additional budget. We show that, nonetheless, the central property of traditional bidding games generalizes to bidding games with charging: For each vertex there exists a threshold ratio, which is the necessary and sufficient fraction of the total budget for winning the game from that vertex. While the thresholds of traditional bidding games correspond to unique fixed points of linear systems of equations, in games with charging, these fixed points are no longer unique. This significantly complicates the proof of existence and the algorithmic computation of thresholds for infinite-duration objectives. We also provide the lower complexity bounds for computing thresholds for Rabin and Streett objectives, which are the first known lower bounds in any form of bidding games (with or without charging), and we solve the following repair problem for safety and reachability games that have unsatisfiable objectives: Can we distribute a given amount of charge to the players in a way such that the objective can be satisfied?

Cite as

Guy Avni, Ehsan Kafshdar Goharshady, Thomas A. Henzinger, and Kaushik Mallik. Bidding Games with Charging. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{avni_et_al:LIPIcs.CONCUR.2024.8,
  author =	{Avni, Guy and Kafshdar Goharshady, Ehsan and Henzinger, Thomas A. and Mallik, Kaushik},
  title =	{{Bidding Games with Charging}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.8},
  URN =		{urn:nbn:de:0030-drops-207807},
  doi =		{10.4230/LIPIcs.CONCUR.2024.8},
  annote =	{Keywords: Bidding games on graphs, \omega-regular objectives}
}
Document
Pebble Games and Algebraic Proof Systems

Authors: Lisa-Marie Jaser and Jacobo Torán

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Analyzing refutations of the well known pebbling formulas Peb(G) we prove some new strong connections between pebble games and algebraic proof system, showing that there is a parallelism between the reversible, black and black-white pebbling games on one side, and the three algebraic proof systems Nullstellensatz, Monomial Calculus and Polynomial Calculus on the other side. In particular we prove that for any DAG G with a single sink, if there is a Monomial Calculus refutation for Peb(G) having simultaneously degree s and size t then there is a black pebbling strategy on G with space s and time t+s. Also if there is a black pebbling strategy for G with space s and time t it is possible to extract from it a MC refutation for Peb(G) having simultaneously degree s and size ts. These results are analogous to those proven in [Susanna F. de Rezende et al., 2021] for the case of reversible pebbling and Nullstellensatz. Using them we prove degree separations between NS, MC and PC, as well as strong degree-size tradeoffs for MC. We also notice that for any directed acyclic graph G the space needed in a pebbling strategy on G, for the three versions of the game, reversible, black and black-white, exactly matches the variable space complexity of a refutation of the corresponding pebbling formula Peb(G) in each of the algebraic proof systems NS,MC and PC. Using known pebbling bounds on graphs, this connection implies separations between the corresponding variable space measures.

Cite as

Lisa-Marie Jaser and Jacobo Torán. Pebble Games and Algebraic Proof Systems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 64:1-64:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jaser_et_al:LIPIcs.MFCS.2024.64,
  author =	{Jaser, Lisa-Marie and Tor\'{a}n, Jacobo},
  title =	{{Pebble Games and Algebraic Proof Systems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{64:1--64:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.64},
  URN =		{urn:nbn:de:0030-drops-206200},
  doi =		{10.4230/LIPIcs.MFCS.2024.64},
  annote =	{Keywords: Proof Complexity, Algebraic Proof Systems, Pebble Games}
}
Document
Explicit Time and Space Efficient Encoders Exist Only with Random Access

Authors: Joshua Cook and Dana Moshkovitz

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
We give the first explicit constant rate, constant relative distance, linear codes with an encoder that runs in time n^{1 + o(1)} and space polylog(n) provided random access to the message. Prior to this work, the only such codes were non-explicit, for instance repeat accumulate codes [Divsalar et al., 1998] and the codes described in [Gál et al., 2013]. To construct our codes, we also give explicit, efficiently invertible, lossless condensers with constant entropy gap and polylogarithmic seed length. In contrast to encoders with random access to the message, we show that encoders with sequential access to the message can not run in almost linear time and polylogarithmic space. Our notion of sequential access is much stronger than streaming access.

Cite as

Joshua Cook and Dana Moshkovitz. Explicit Time and Space Efficient Encoders Exist Only with Random Access. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 5:1-5:54, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cook_et_al:LIPIcs.CCC.2024.5,
  author =	{Cook, Joshua and Moshkovitz, Dana},
  title =	{{Explicit Time and Space Efficient Encoders Exist Only with Random Access}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{5:1--5:54},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.5},
  URN =		{urn:nbn:de:0030-drops-204015},
  doi =		{10.4230/LIPIcs.CCC.2024.5},
  annote =	{Keywords: Time-Space Trade Offs, Error Correcting Codes, Encoders, Explicit Constructions, Streaming Lower Bounds, Sequential Access, Time-Space Lower Bounds, Lossless Condensers, Invertible Condensers, Condensers}
}
Document
Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries

Authors: Gil Cohen and Tal Yankovitz

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Recently, Kumar and Mon reached a significant milestone by constructing asymptotically good relaxed locally correctable codes (RLCCs) with poly-logarithmic query complexity. Specifically, they constructed n-bit RLCCs with O(log^{69} n) queries. Their construction relies on a clever reduction to locally testable codes (LTCs), capitalizing on recent breakthrough works in LTCs. As for lower bounds, Gur and Lachish (SICOMP 2021) proved that any asymptotically-good RLCC must make Ω̃(√{log n}) queries. Hence emerges the intriguing question regarding the identity of the least value 1/2 ≤ e ≤ 69 for which asymptotically-good RLCCs with query complexity (log n)^{e+o(1)} exist. In this work, we make substantial progress in narrowing the gap by devising asymptotically-good RLCCs with a query complexity of (log n)^{2+o(1)}. The key insight driving our work lies in recognizing that the strong guarantee of local testability overshoots the requirements for the Kumar-Mon reduction. In particular, we prove that we can replace the LTCs by "vanilla" expander codes which indeed have the necessary property: local testability in the code’s vicinity.

Cite as

Gil Cohen and Tal Yankovitz. Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cohen_et_al:LIPIcs.CCC.2024.8,
  author =	{Cohen, Gil and Yankovitz, Tal},
  title =	{{Asymptotically-Good RLCCs with (log n)^(2+o(1)) Queries}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.8},
  URN =		{urn:nbn:de:0030-drops-204045},
  doi =		{10.4230/LIPIcs.CCC.2024.8},
  annote =	{Keywords: Relaxed locally decodable codes, Relxaed locally correctable codes, RLCC, RLDC}
}
Document
Lifting Dichotomies

Authors: Yaroslav Alekseev, Yuval Filmus, and Alexander Smal

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Lifting theorems are used for transferring lower bounds between Boolean function complexity measures. Given a lower bound on a complexity measure A for some function f, we compose f with a carefully chosen gadget function g and get essentially the same lower bound on a complexity measure B for the lifted function f ⋄ g. Lifting theorems have a number of applications in many different areas such as circuit complexity, communication complexity, proof complexity, etc. One of the main question in the context of lifting is how to choose a suitable gadget g. Generally, to get better results, i.e., to minimize the losses when transferring lower bounds, we need the gadget to be of a constant size (number of inputs). Unfortunately, in many settings we know lifting results only for gadgets of size that grows with the size of f, and it is unclear whether it can be improved to a constant size gadget. This motivates us to identify the properties of gadgets that make lifting possible. In this paper, we systematically study the question "For which gadgets does the lifting result hold?" in the following four settings: lifting from decision tree depth to decision tree size, lifting from conjunction DAG width to conjunction DAG size, lifting from decision tree depth to parity decision tree depth and size, and lifting from block sensitivity to deterministic and randomized communication complexities. In all the cases, we prove the complete classification of gadgets by exposing the properties of gadgets that make lifting results hold. The structure of the results shows that there is no intermediate cases - for every gadget there is either a polynomial lifting or no lifting at all. As a byproduct of our studies, we prove the log-rank conjecture for the class of functions that can be represented as f ⋄ OR ⋄ XOR for some function f. In this extended abstract, the proofs are omitted. Full proofs are given in the full version [Yaroslav Alekseev et al., 2024].

Cite as

Yaroslav Alekseev, Yuval Filmus, and Alexander Smal. Lifting Dichotomies. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 9:1-9:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{alekseev_et_al:LIPIcs.CCC.2024.9,
  author =	{Alekseev, Yaroslav and Filmus, Yuval and Smal, Alexander},
  title =	{{Lifting Dichotomies}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{9:1--9:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.9},
  URN =		{urn:nbn:de:0030-drops-204051},
  doi =		{10.4230/LIPIcs.CCC.2024.9},
  annote =	{Keywords: decision trees, log-rank conjecture, lifting, parity decision trees}
}
Document
Exponential Separation Between Powers of Regular and General Resolution over Parities

Authors: Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas using resolution over parities is an outstanding problem that has received a lot of attention after its introduction by Itsykson and Sokolov [Dmitry Itsykson and Dmitry Sokolov, 2014]. Very recently, Efremenko, Garlík and Itsykson [Klim Efremenko et al., 2023] proved the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfiability continue to have exponential size even though there exist short proofs of their unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation between the power of general ResLin and that of regular ResLin for any natural notion of regularity. Our argument, while building upon the work of Efremenko et al. [Klim Efremenko et al., 2023], uses additional ideas from the literature on lifting theorems.

Cite as

Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák. Exponential Separation Between Powers of Regular and General Resolution over Parities. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 23:1-23:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bhattacharya_et_al:LIPIcs.CCC.2024.23,
  author =	{Bhattacharya, Sreejata Kishor and Chattopadhyay, Arkadev and Dvo\v{r}\'{a}k, Pavel},
  title =	{{Exponential Separation Between Powers of Regular and General Resolution over Parities}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{23:1--23:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.23},
  URN =		{urn:nbn:de:0030-drops-204191},
  doi =		{10.4230/LIPIcs.CCC.2024.23},
  annote =	{Keywords: Proof Complexity, Regular Reslin, Branching Programs, Lifting}
}
Document
Track A: Algorithms, Complexity and Games
One-Way Communication Complexity of Partial XOR Functions

Authors: Vladimir V. Podolskii and Dmitrii Sluch

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Boolean function F(x,y) for x,y ∈ {0,1}ⁿ is an XOR function if F(x,y) = f(x⊕ y) for some function f on n input bits, where ⊕ is a bit-wise XOR. XOR functions are relevant in communication complexity, partially for allowing the Fourier analytic technique. For total XOR functions, it is known that deterministic communication complexity of F is closely related to parity decision tree complexity of f. Montanaro and Osbourne (2009) observed that one-way communication complexity D_{cc}^{→}(F) of F is exactly equal to non-adaptive parity decision tree complexity NADT^{⊕}(f) of f. Hatami et al. (2018) showed that unrestricted communication complexity of F is polynomially related to parity decision tree complexity of f. We initiate the study of a similar connection for partial functions. We show that in the case of one-way communication complexity whether these measures are equal, depends on the number of undefined inputs of f. More precisely, if D_{cc}^{→}(F) = t and f is undefined on at most O((2^{n-t})/(√{n-t})) inputs, then NADT^{⊕}(f) = t. We also provide stronger bounds in extreme cases of small and large complexity. We show that the restriction on the number of undefined inputs in these results is unavoidable. That is, for a wide range of values of D_{cc}^{→}(F) and NADT^{⊕}(f) (from constant to n-2) we provide partial functions (with more than Ω((2^{n-t})/(√{n-t})) undefined inputs, where t = D_{cc}^{→}) for which D_{cc}^{→}(F) < NADT^{⊕}(f). In particular, we provide a function with an exponential gap between the two measures. Our separation results translate to the case of two-way communication complexity as well, in particular showing that the result of Hatami et al. (2018) cannot be generalized to partial functions. Previous results for total functions heavily rely on the Boolean Fourier analysis and thus, the technique does not translate to partial functions. For the proofs of our results we build a linear algebraic framework instead. Separation results are proved through the reduction to covering codes.

Cite as

Vladimir V. Podolskii and Dmitrii Sluch. One-Way Communication Complexity of Partial XOR Functions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 116:1-116:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{podolskii_et_al:LIPIcs.ICALP.2024.116,
  author =	{Podolskii, Vladimir V. and Sluch, Dmitrii},
  title =	{{One-Way Communication Complexity of Partial XOR Functions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{116:1--116:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.116},
  URN =		{urn:nbn:de:0030-drops-202591},
  doi =		{10.4230/LIPIcs.ICALP.2024.116},
  annote =	{Keywords: Partial functions, XOR functions, communication complexity, decision trees, covering codes}
}
Document
Track A: Algorithms, Complexity and Games
Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle

Authors: Aaron Potechin and Aaron Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We show that the minimum total coefficient size of a Nullstellensatz proof of the pigeonhole principle on n+1 pigeons and n holes is 2^{Θ(n)}. We also investigate the ordering principle and construct an explicit Nullstellensatz proof for the ordering principle on n elements with total coefficient size 2ⁿ - n.

Cite as

Aaron Potechin and Aaron Zhang. Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 117:1-117:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{potechin_et_al:LIPIcs.ICALP.2024.117,
  author =	{Potechin, Aaron and Zhang, Aaron},
  title =	{{Bounds on the Total Coefficient Size of Nullstellensatz Proofs of the Pigeonhole Principle}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{117:1--117:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.117},
  URN =		{urn:nbn:de:0030-drops-202604},
  doi =		{10.4230/LIPIcs.ICALP.2024.117},
  annote =	{Keywords: Proof complexity, Nullstellensatz, pigeonhole principle, coefficient size}
}
Document
Track A: Algorithms, Complexity and Games
From Proof Complexity to Circuit Complexity via Interactive Protocols

Authors: Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Folklore in complexity theory suspects that circuit lower bounds against NC¹ or P/poly, currently out of reach, are a necessary step towards proving strong proof complexity lower bounds for systems like Frege or Extended Frege. Establishing such a connection formally, however, is already daunting, as it would imply the breakthrough separation NEXP ⊈ P/poly, as recently observed by Pich and Santhanam [Pich and Santhanam, 2023]. We show such a connection conditionally for the Implicit Extended Frege proof system (iEF) introduced by Krajíček [Krajíček, 2004], capable of formalizing most of contemporary complexity theory. In particular, we show that if iEF proves efficiently the standard derandomization assumption that a concrete Boolean function is hard on average for subexponential-size circuits, then any superpolynomial lower bound on the length of iEF proofs implies #P ⊈ FP/poly (which would in turn imply, for example, PSPACE ⊈ P/poly). Our proof exploits the formalization inside iEF of the soundness of the sum-check protocol of Lund, Fortnow, Karloff, and Nisan [Lund et al., 1992]. This has consequences for the self-provability of circuit upper bounds in iEF. Interestingly, further improving our result seems to require progress in constructing interactive proof systems with more efficient provers.

Cite as

Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam. From Proof Complexity to Circuit Complexity via Interactive Protocols. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arteche_et_al:LIPIcs.ICALP.2024.12,
  author =	{Arteche, Noel and Khaniki, Erfan and Pich, J\'{a}n and Santhanam, Rahul},
  title =	{{From Proof Complexity to Circuit Complexity via Interactive Protocols}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.12},
  URN =		{urn:nbn:de:0030-drops-201557},
  doi =		{10.4230/LIPIcs.ICALP.2024.12},
  annote =	{Keywords: proof complexity, circuit complexity, interactive protocols}
}
Document
Property Testing with Online Adversaries

Authors: Omri Ben-Eliezer, Esty Kelman, Uri Meir, and Sofya Raskhodnikova

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
The online manipulation-resilient testing model, proposed by Kalemaj, Raskhodnikova and Varma (ITCS 2022 and Theory of Computing 2023), studies property testing in situations where access to the input degrades continuously and adversarially. Specifically, after each query made by the tester is answered, the adversary can intervene and either erase or corrupt t data points. In this work, we investigate a more nuanced version of the online model in order to overcome old and new impossibility results for the original model. We start by presenting an optimal tester for linearity and a lower bound for low-degree testing of Boolean functions in the original model. We overcome the lower bound by allowing batch queries, where the tester gets a group of queries answered between manipulations of the data. Our batch size is small enough so that function values for a single batch on their own give no information about whether the function is of low degree. Finally, to overcome the impossibility results of Kalemaj et al. for sortedness and the Lipschitz property of sequences, we extend the model to include t < 1, i.e., adversaries that make less than one erasure per query. For sortedness, we characterize the rate of erasures for which online testing can be performed, exhibiting a sharp transition from optimal query complexity to impossibility of testability (with any number of queries). Our online tester works for a general class of local properties of sequences. One feature of our results is that we get new (and in some cases, simpler) optimal algorithms for several properties in the standard property testing model.

Cite as

Omri Ben-Eliezer, Esty Kelman, Uri Meir, and Sofya Raskhodnikova. Property Testing with Online Adversaries. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 11:1-11:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beneliezer_et_al:LIPIcs.ITCS.2024.11,
  author =	{Ben-Eliezer, Omri and Kelman, Esty and Meir, Uri and Raskhodnikova, Sofya},
  title =	{{Property Testing with Online Adversaries}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{11:1--11:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.11},
  URN =		{urn:nbn:de:0030-drops-195395},
  doi =		{10.4230/LIPIcs.ITCS.2024.11},
  annote =	{Keywords: Linearity testing, low-degree testing, Reed-Muller codes, testing properties of sequences, erasure-resilience, corruption-resilience}
}
Document
Resilience of 3-Majority Dynamics to Non-Uniform Schedulers

Authors: Uri Meir, Rotem Oshman, Ofer Shayevitz, and Yuval Volkov

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
In recent years there has been great interest in networks of passive, computationally-weak nodes, whose interactions are controlled by the outside environment; examples include population protocols, chemical reactions networks (CRNs), DNA computing, and more. Such networks are usually studied under one of two extreme regimes: the schedule of interactions is either assumed to be adversarial, or it is assumed to be chosen uniformly at random. In this paper we study an intermediate regime, where the interaction at each step is chosen from some not-necessarily-uniform distribution: we introduce the definition of a (p,ε)-scheduler, where the distribution that the scheduler chooses at every round can be arbitrary, but it must have 𝓁_p-distance at most ε from the uniform distribution. We ask how far from uniform we can get before the dynamics of the model break down. For simplicity, we focus on the 3-majority dynamics, a type of chemical reaction network where the nodes of the network interact in triplets. Each node initially has an opinion of either 𝖷 or 𝖸, and when a triplet of nodes interact, all three nodes change their opinion to the majority of their three opinions. It is known that under a uniformly random scheduler, if we have an initial gap of Ω(√{n log n}) in favor of one value, then w.h.p. all nodes converge to the majority value within O(n log n) steps. For the 3-majority dynamics, we prove that among all non-uniform schedulers with a given 𝓁_1- or 𝓁_∞-distance to the uniform scheduler, the worst case is a scheduler that creates a partition in the network, disconnecting some nodes from the rest: under any (p,ε)-close scheduler, if the scheduler’s distance from uniform only suffices to disconnect a set of size at most S nodes and we start from a configuration with a gap of Ω(S+√{n log n}) in favor of one value, then we are guaranteed that all but O(S) nodes will convert to the majority value. We also show that creating a partition is not necessary to cause the system to converge to the wrong value, or to fail to converge at all. We believe that our work can serve as a first step towards understanding the resilience of chemical reaction networks and population protocols under non-uniform schedulers.

Cite as

Uri Meir, Rotem Oshman, Ofer Shayevitz, and Yuval Volkov. Resilience of 3-Majority Dynamics to Non-Uniform Schedulers. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 86:1-86:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{meir_et_al:LIPIcs.ITCS.2023.86,
  author =	{Meir, Uri and Oshman, Rotem and Shayevitz, Ofer and Volkov, Yuval},
  title =	{{Resilience of 3-Majority Dynamics to Non-Uniform Schedulers}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{86:1--86:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.86},
  URN =		{urn:nbn:de:0030-drops-175895},
  doi =		{10.4230/LIPIcs.ITCS.2023.86},
  annote =	{Keywords: chemical reaction networks, population protocols, randomized scheduler}
}
Document
RANDOM
Lifting with Inner Functions of Polynomial Discrepancy

Authors: Yahel Manor and Or Meir

Published in: LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)


Abstract
Lifting theorems are theorems that bound the communication complexity of a composed function f∘gⁿ in terms of the query complexity of f and the communication complexity of g. Such theorems constitute a powerful generalization of direct-sum theorems for g, and have seen numerous applications in recent years. We prove a new lifting theorem that works for every two functions f,g such that the discrepancy of g is at most inverse polynomial in the input length of f. Our result is a significant generalization of the known direct-sum theorem for discrepancy, and extends the range of inner functions g for which lifting theorems hold.

Cite as

Yahel Manor and Or Meir. Lifting with Inner Functions of Polynomial Discrepancy. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 26:1-26:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{manor_et_al:LIPIcs.APPROX/RANDOM.2022.26,
  author =	{Manor, Yahel and Meir, Or},
  title =	{{Lifting with Inner Functions of Polynomial Discrepancy}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)},
  pages =	{26:1--26:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-249-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{245},
  editor =	{Chakrabarti, Amit and Swamy, Chaitanya},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.26},
  URN =		{urn:nbn:de:0030-drops-171486},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2022.26},
  annote =	{Keywords: Lifting, communication complexity, query complexity, discrepancy}
}
  • Refine by Author
  • 6 Meir, Or
  • 3 Filmus, Yuval
  • 3 Meir, Uri
  • 2 Chattopadhyay, Arkadev
  • 2 Dinur, Irit
  • Show More...

  • Refine by Classification
  • 7 Theory of computation → Communication complexity
  • 6 Theory of computation → Proof complexity
  • 5 Theory of computation → Circuit complexity
  • 5 Theory of computation → Oracles and decision trees
  • 3 Theory of computation → Error-correcting codes
  • Show More...

  • Refine by Keyword
  • 5 communication complexity
  • 3 Nullstellensatz
  • 2 Lifting
  • 2 Proof Complexity
  • 2 Proof complexity
  • Show More...

  • Refine by Type
  • 26 document

  • Refine by Publication Year
  • 13 2024
  • 5 2019
  • 3 2021
  • 2 2022
  • 1 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail