30 Search Results for "Munro, Ian"


Document
On Line-Separable Weighted Unit-Disk Coverage and Related Problems

Authors: Gang Liu and Haitao Wang

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Given a set P of n points and a set S of n weighted disks in the plane, the disk coverage problem is to compute a subset of disks of smallest total weight such that the union of the disks in the subset covers all points of P. The problem is NP-hard. In this paper, we consider a line-separable unit-disk version of the problem where all disks have the same radius and their centers are separated from the points of P by a line 𝓁. We present an O(n^{3/2}log² n) time algorithm for the problem. This improves the previously best work of O(n²log n) time. Our result leads to an algorithm of O(n^{7/2}log² n) time for the halfplane coverage problem (i.e., using n weighted halfplanes to cover n points), an improvement over the previous O(n⁴log n) time solution. If all halfplanes are lower ones, our algorithm runs in O(n^{3/2}log² n) time, while the previous best algorithm takes O(n²log n) time. Using duality, the hitting set problems under the same settings can be solved with similar time complexities.

Cite as

Gang Liu and Haitao Wang. On Line-Separable Weighted Unit-Disk Coverage and Related Problems. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 70:1-70:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{liu_et_al:LIPIcs.MFCS.2024.70,
  author =	{Liu, Gang and Wang, Haitao},
  title =	{{On Line-Separable Weighted Unit-Disk Coverage and Related Problems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{70:1--70:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.70},
  URN =		{urn:nbn:de:0030-drops-206265},
  doi =		{10.4230/LIPIcs.MFCS.2024.70},
  annote =	{Keywords: Line-separable, unit disks, halfplanes, geometric coverage, geometric hitting set}
}
Document
Enumeration and Succinct Encoding of AVL Trees

Authors: Jeremy Chizewer, Stephen Melczer, J. Ian Munro, and Ava Pun

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We use a novel decomposition to create succinct data structures - supporting a wide range of operations on static trees in constant time - for a variety of tree classes, extending results of Munro, Nicholson, Benkner, and Wild. Motivated by the class of AVL trees, we further derive asymptotics for the information-theoretic lower bound on the number of bits needed to store tree classes whose generating functions satisfy certain functional equations. In particular, we prove that AVL trees require approximately 0.938 bits per node to encode.

Cite as

Jeremy Chizewer, Stephen Melczer, J. Ian Munro, and Ava Pun. Enumeration and Succinct Encoding of AVL Trees. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 2:1-2:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chizewer_et_al:LIPIcs.AofA.2024.2,
  author =	{Chizewer, Jeremy and Melczer, Stephen and Munro, J. Ian and Pun, Ava},
  title =	{{Enumeration and Succinct Encoding of AVL Trees}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{2:1--2:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.2},
  URN =		{urn:nbn:de:0030-drops-204376},
  doi =		{10.4230/LIPIcs.AofA.2024.2},
  annote =	{Keywords: AVL trees, analytic combinatorics, succinct data structures, enumeration}
}
Document
SPIDER: Improved Succinct Rank and Select Performance

Authors: Matthew D. Laws, Jocelyn Bliven, Kit Conklin, Elyes Laalai, Samuel McCauley, and Zach S. Sturdevant

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Rank and select data structures seek to preprocess a bit vector to quickly answer two kinds of queries: Rank(i) gives the number of 1 bits in slots 0 through i, and Select(j) gives the first slot s with Rank(s) = j. A succinct data structure can answer these queries while using space much smaller than the size of the original bit vector. State of the art succinct rank and select data structures use as little as 4% extra space (over the underlying bit vector) while answering rank and select queries very quickly. Rank queries can be answered using only a handful of array accesses. Select queries can be answered by starting with similar array accesses, followed by a linear scan through the bit vector. Nonetheless, a tradeoff remains: data structures that use under 4% space are significantly slower at answering rank and select queries than less-space-efficient data structures (using, say, over 20% extra space). In this paper we make significantly progress towards closing this gap. We give a new data structure, SPIDER, which uses 3.82% extra space. SPIDER gives the best known rank query time for data sets of 8 billion or more bits, even compared to much less space-efficient data structures. For select queries, SPIDER outperforms all data structures that use less than 4% space, and significantly closes the gap in select performance between data structures with less than 4% space, and those that use more (over 20% for both rank and select) space. SPIDER makes two main technical contributions. For rank queries, it improves performance by interleaving the metadata with the bit vector to improve cache efficiency. For select queries, it uses predictions to almost eliminate the cost of the linear scan. These predictions are inspired by recent results on data structures with machine-learned predictions, adapted to the succinct data structure setting. Our results hold on both real and synthetic data, showing that these predictions are effective in practice.

Cite as

Matthew D. Laws, Jocelyn Bliven, Kit Conklin, Elyes Laalai, Samuel McCauley, and Zach S. Sturdevant. SPIDER: Improved Succinct Rank and Select Performance. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{laws_et_al:LIPIcs.SEA.2024.21,
  author =	{Laws, Matthew D. and Bliven, Jocelyn and Conklin, Kit and Laalai, Elyes and McCauley, Samuel and Sturdevant, Zach S.},
  title =	{{SPIDER: Improved Succinct Rank and Select Performance}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.21},
  URN =		{urn:nbn:de:0030-drops-203865},
  doi =		{10.4230/LIPIcs.SEA.2024.21},
  annote =	{Keywords: Rank and Select, Succinct Data Structures, Data Structres, Cache Performance, Predictions}
}
Document
Track A: Algorithms, Complexity and Games
Fast Approximate Counting of Cycles

Authors: Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal.

Cite as

Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams. Fast Approximate Counting of Cycles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.ICALP.2024.37,
  author =	{Censor-Hillel, Keren and Even, Tomer and Vassilevska Williams, Virginia},
  title =	{{Fast Approximate Counting of Cycles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.37},
  URN =		{urn:nbn:de:0030-drops-201809},
  doi =		{10.4230/LIPIcs.ICALP.2024.37},
  annote =	{Keywords: Approximate triangle counting, Approximate cycle counting Fast matrix multiplication, Fast rectangular matrix multiplication}
}
Document
Track A: Algorithms, Complexity and Games
The Group Access Bounds for Binary Search Trees

Authors: Parinya Chalermsook, Manoj Gupta, Wanchote Jiamjitrak, Akash Pareek, and Sorrachai Yingchareonthawornchai

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The access lemma (Sleator and Tarjan, JACM 1985) is a property of binary search trees (BSTs) that implies interesting consequences such as static optimality, static finger, and working set property on any access sequence X = (x_1,x_2,… ,x_m). However, there are known corollaries of the dynamic optimality that cannot be derived via the access lemma, such as the dynamic finger, and any o(log n)-competitive ratio to the optimal BST where n is the number of keys. In this paper, we introduce the group access bound that can be defined with respect to a reference group access tree. Group access bounds generalize the access lemma and imply properties that are far stronger than those implied by the classical access lemma. For each of the following results, there is a group access tree whose group access bound 1) Is O(√{log n})-competitive to the optimal BST. 2) Achieves the k-finger bound with an additive term of O(m log k log log n) (randomized) when the reference tree is an almost complete binary tree. 3) Satisfies the unified bound with an additive term of O(m log log n). 4) Matches the unified bound with a time window k with an additive term of O(m log k log log n) (randomized). Furthermore, we prove the simulation theorem: For every group access tree, there is an online BST algorithm that is O(1)-competitive with its group access bound. In particular, any new group access bound will automatically imply a new BST algorithm achieving the same bound. Thereby, we obtain an improved k-finger bound (reference tree is an almost complete binary tree), an improved unified bound with a time window k, and matching the best-known bound for Unified bound in the BST model. Since any dynamically optimal BST must achieve the group access bounds, we believe our results provide a new direction towards proving o(log n)-competitiveness of the Splay tree and Greedy, two prime candidates for the dynamic optimality conjecture.

Cite as

Parinya Chalermsook, Manoj Gupta, Wanchote Jiamjitrak, Akash Pareek, and Sorrachai Yingchareonthawornchai. The Group Access Bounds for Binary Search Trees. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 38:1-38:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chalermsook_et_al:LIPIcs.ICALP.2024.38,
  author =	{Chalermsook, Parinya and Gupta, Manoj and Jiamjitrak, Wanchote and Pareek, Akash and Yingchareonthawornchai, Sorrachai},
  title =	{{The Group Access Bounds for Binary Search Trees}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{38:1--38:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.38},
  URN =		{urn:nbn:de:0030-drops-201817},
  doi =		{10.4230/LIPIcs.ICALP.2024.38},
  annote =	{Keywords: Dynamic Optimality, Binary Search Tree, Online Algorithm}
}
Document
Track A: Algorithms, Complexity and Games
Towards an Analysis of Quadratic Probing

Authors: William Kuszmaul and Zoe Xi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Since 1968, one of the simplest open questions in the theory of hash tables has been to prove anything nontrivial about the correctness of quadratic probing. We make the first tangible progress towards this goal, showing that there exists a positive-constant load factor at which quadratic probing is a constant-expected-time hash table. Our analysis applies more generally to any fixed-offset open-addressing hash table, and extends to higher load factors in the case where the hash table examines blocks of some size B = ω(1).

Cite as

William Kuszmaul and Zoe Xi. Towards an Analysis of Quadratic Probing. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 103:1-103:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kuszmaul_et_al:LIPIcs.ICALP.2024.103,
  author =	{Kuszmaul, William and Xi, Zoe},
  title =	{{Towards an Analysis of Quadratic Probing}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{103:1--103:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.103},
  URN =		{urn:nbn:de:0030-drops-202463},
  doi =		{10.4230/LIPIcs.ICALP.2024.103},
  annote =	{Keywords: quadratic probing, hashing, open addressing, witness trees}
}
Document
Track A: Algorithms, Complexity and Games
Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching

Authors: Kento Iseri, Tomohiro I, Diptarama Hendrian, Dominik Köppl, Ryo Yoshinaka, and Ayumi Shinohara

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A parameterized string (p-string) is a string over an alphabet (Σ_s ∪ Σ_p), where Σ_s and Σ_p are disjoint alphabets for static symbols (s-symbols) and for parameter symbols (p-symbols), respectively. Two p-strings x and y are said to parameterized match (p-match) if and only if x can be transformed into y by applying a bijection on Σ_p to every occurrence of p-symbols in x. The indexing problem for p-matching is to preprocess a p-string T of length n so that we can efficiently find the occurrences of substrings of T that p-match with a given pattern. Let σ_s and respectively σ_p be the numbers of distinct s-symbols and p-symbols that appear in T and σ = σ_s + σ_p. Extending the Burrows-Wheeler Transform (BWT) based index for exact string pattern matching, Ganguly et al. [SODA 2017] proposed parameterized BWTs (pBWTs) to design the first compact index for p-matching, and posed an open problem on how to construct the pBWT-based index in compact space, i.e., in O(n lg |Σ_s ∪ Σ_p|) bits of space. Hashimoto et al. [SPIRE 2022] showed how to construct the pBWT for T, under the assumption that Σ_s ∪ Σ_p = [0..O(σ)], in O(n lg σ) bits of space and O(n (σ_p lg n)/(lg lg n)) time in an online manner while reading the symbols of T from right to left. In this paper, we refine Hashimoto et al.’s algorithm to work in O(n lg σ) bits of space and O(n (lg σ_p lg n)/(lg lg n)) time in a more general assumption that Σ_s ∪ Σ_p = [0..n^{O(1)}]. Our result has an immediate application to constructing parameterized suffix arrays in O(n (lg σ_p lg n)/(lg lg n)) time and O(n lg σ) bits of working space. We also show that our data structure can support backward search, a core procedure of BWT-based indexes, at any stage of the online construction, making it the first compact index for p-matching that can be constructed in compact space and even in an online manner.

Cite as

Kento Iseri, Tomohiro I, Diptarama Hendrian, Dominik Köppl, Ryo Yoshinaka, and Ayumi Shinohara. Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 89:1-89:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{iseri_et_al:LIPIcs.ICALP.2024.89,
  author =	{Iseri, Kento and I, Tomohiro and Hendrian, Diptarama and K\"{o}ppl, Dominik and Yoshinaka, Ryo and Shinohara, Ayumi},
  title =	{{Breaking a Barrier in Constructing Compact Indexes for Parameterized Pattern Matching}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{89:1--89:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.89},
  URN =		{urn:nbn:de:0030-drops-202324},
  doi =		{10.4230/LIPIcs.ICALP.2024.89},
  annote =	{Keywords: Index for parameterized pattern matching, Parameterized Burrows-Wheeler Transform, Online construction}
}
Document
Distance Queries over Dynamic Interval Graphs

Authors: Jingbang Chen, Meng He, J. Ian Munro, Richard Peng, Kaiyu Wu, and Daniel J. Zhang

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We design the first dynamic distance oracles for interval graphs, which are intersection graphs of a set of intervals on the real line, and for proper interval graphs, which are intersection graphs of a set of intervals in which no interval is properly contained in another. For proper interval graphs, we design a linear space data structure which supports distance queries (computing the distance between two query vertices) and vertex insertion or deletion in O(lg n) worst-case time, where n is the number of vertices currently in G. Under incremental (insertion only) or decremental (deletion only) settings, we design linear space data structures that support distance queries in O(lg n) worst-case time and vertex insertion or deletion in O(lg n) amortized time, where n is the maximum number of vertices in the graph. Under fully dynamic settings, we design a data structure that represents an interval graph G in O(n) words of space to support distance queries in O(n lg n/S(n)) worst-case time and vertex insertion or deletion in O(S(n)+lg n) worst-case time, where n is the number of vertices currently in G and S(n) is an arbitrary function that satisfies S(n) = Ω(1) and S(n) = O(n). This implies an O(n)-word solution with O(√{nlg n})-time support for both distance queries and updates. All four data structures can answer shortest path queries by reporting the vertices in the shortest path between two query vertices in O(lg n) worst-case time per vertex. We also study the hardness of supporting distance queries under updates over an intersection graph of 3D axis-aligned line segments, which generalizes our problem to 3D. Finally, we solve the problem of computing the diameter of a dynamic connected interval graph.

Cite as

Jingbang Chen, Meng He, J. Ian Munro, Richard Peng, Kaiyu Wu, and Daniel J. Zhang. Distance Queries over Dynamic Interval Graphs. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 18:1-18:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2023.18,
  author =	{Chen, Jingbang and He, Meng and Munro, J. Ian and Peng, Richard and Wu, Kaiyu and Zhang, Daniel J.},
  title =	{{Distance Queries over Dynamic Interval Graphs}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{18:1--18:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.18},
  URN =		{urn:nbn:de:0030-drops-193207},
  doi =		{10.4230/LIPIcs.ISAAC.2023.18},
  annote =	{Keywords: interval graph, proper interval graph, intersection graph, geometric intersection graph, distance oracle, distance query, shortest path query, dynamic graph}
}
Document
Shortest Beer Path Queries in Interval Graphs

Authors: Rathish Das, Meng He, Eitan Kondratovsky, J. Ian Munro, Anurag Murty Naredla, and Kaiyu Wu

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Our interest is in paths between pairs of vertices that go through at least one of a subset of the vertices known as beer vertices. Such a path is called a beer path, and the beer distance between two vertices is the length of the shortest beer path. We show that we can represent unweighted interval graphs using 2n log n + O(n) + O(|B|log n) bits where |B| is the number of beer vertices. This data structure answers beer distance queries in O(log^ε n) time for any constant ε > 0 and shortest beer path queries in O(log^ε n + d) time, where d is the beer distance between the two nodes. We also show that proper interval graphs may be represented using 3n + o(n) bits to support beer distance queries in O(f(n)log n) time for any f(n) ∈ ω(1) and shortest beer path queries in O(d) time. All of these results also have time-space trade-offs. Lastly we show that the information theoretic lower bound for beer proper interval graphs is very close to the space of our structure, namely log(4+2√3)n - o(n) (or about 2.9 n) bits.

Cite as

Rathish Das, Meng He, Eitan Kondratovsky, J. Ian Munro, Anurag Murty Naredla, and Kaiyu Wu. Shortest Beer Path Queries in Interval Graphs. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 59:1-59:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.ISAAC.2022.59,
  author =	{Das, Rathish and He, Meng and Kondratovsky, Eitan and Munro, J. Ian and Naredla, Anurag Murty and Wu, Kaiyu},
  title =	{{Shortest Beer Path Queries in Interval Graphs}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{59:1--59:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.59},
  URN =		{urn:nbn:de:0030-drops-173442},
  doi =		{10.4230/LIPIcs.ISAAC.2022.59},
  annote =	{Keywords: Beer Path, Interval Graph}
}
Document
Dynamic Boolean Formula Evaluation

Authors: Rathish Das, Andrea Lincoln, Jayson Lynch, and J. Ian Munro

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We present a linear space data structure for Dynamic Evaluation of k-CNF Boolean Formulas which achieves O(m^{1-1/k}) query and variable update time where m is the number of clauses in the formula and clauses are of size at most a constant k. Our algorithm is additionally able to count the total number of satisfied clauses. We then show how this data structure can be parallelized in the PRAM model to achieve O(log m) span (i.e. parallel time) and still O(m^{1-1/k}) work. This parallel algorithm works in the stronger Binary Fork model. We then give a series of lower bounds on the problem including an average-case result showing the lower bounds hold even when the updates to the variables are chosen at random. Specifically, a reduction from k-Clique shows that dynamically counting the number of satisfied clauses takes time at least n^{(2ω-3)/6 √{2k} -1 -o(√k)}, where 2 ≤ ω < 2.38 is the matrix multiplication constant. We show the Combinatorial k-Clique Hypothesis implies a lower bound of m^{(1-k^{-1/2})(1-o(1))} which suggests our algorithm is close to optimal without involving Matrix Multiplication or new techniques. We next give an average-case reduction to k-clique showing the prior lower bounds hold even when the updates are chosen at random. We use our conditional lower bound to show any Binary Fork algorithm solving these problems requires at least Ω(log m) span, which is tight against our algorithm in this model. Finally, we give an unconditional linear space lower bound for Dynamic k-CNF Boolean Formula Evaluation.

Cite as

Rathish Das, Andrea Lincoln, Jayson Lynch, and J. Ian Munro. Dynamic Boolean Formula Evaluation. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 61:1-61:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.ISAAC.2021.61,
  author =	{Das, Rathish and Lincoln, Andrea and Lynch, Jayson and Munro, J. Ian},
  title =	{{Dynamic Boolean Formula Evaluation}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{61:1--61:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.61},
  URN =		{urn:nbn:de:0030-drops-154945},
  doi =		{10.4230/LIPIcs.ISAAC.2021.61},
  annote =	{Keywords: Data Structures, SAT, Dynamic Algorithms, Boolean Formulas, Fine-grained Complexity, Parallel Algorithms}
}
Document
Hypersuccinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures and Range Minima

Authors: J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach Benkner, and Sebastian Wild

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We present a new universal source code for distributions of unlabeled binary and ordinal trees that achieves optimal compression to within lower order terms for all tree sources covered by existing universal codes. At the same time, it supports answering many navigational queries on the compressed representation in constant time on the word-RAM; this is not known to be possible for any existing tree compression method. The resulting data structures, "hypersuccinct trees", hence combine the compression achieved by the best known universal codes with the operation support of the best succinct tree data structures. We apply hypersuccinct trees to obtain a universal compressed data structure for range-minimum queries. It has constant query time and the optimal worst-case space usage of 2n+o(n) bits, but the space drops to 1.736n + o(n) bits on average for random permutations of n elements, and 2lg binom{n}{r} + o(n) for arrays with r increasing runs, respectively. Both results are optimal; the former answers an open problem of Davoodi et al. (2014) and Golin et al. (2016). Compared to prior work on succinct data structures, we do not have to tailor our data structure to specific applications; hypersuccinct trees automatically adapt to the trees at hand. We show that they simultaneously achieve the optimal space usage to within lower order terms for a wide range of distributions over tree shapes, including: binary search trees (BSTs) generated by insertions in random order / Cartesian trees of random arrays, random fringe-balanced BSTs, binary trees with a given number of binary/unary/leaf nodes, random binary tries generated from memoryless sources, full binary trees, unary paths, as well as uniformly chosen weight-balanced BSTs, AVL trees, and left-leaning red-black trees.

Cite as

J. Ian Munro, Patrick K. Nicholson, Louisa Seelbach Benkner, and Sebastian Wild. Hypersuccinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures and Range Minima. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 70:1-70:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{munro_et_al:LIPIcs.ESA.2021.70,
  author =	{Munro, J. Ian and Nicholson, Patrick K. and Benkner, Louisa Seelbach and Wild, Sebastian},
  title =	{{Hypersuccinct Trees - New Universal Tree Source Codes for Optimal Compressed Tree Data Structures and Range Minima}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{70:1--70:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.70},
  URN =		{urn:nbn:de:0030-drops-146512},
  doi =		{10.4230/LIPIcs.ESA.2021.70},
  annote =	{Keywords: analysis of algorithms, universal source code, compressed trees, succinct data structure, succinct trees, tree covering, random binary search trees, range-minimum queries}
}
Document
Distance Oracles for Interval Graphs via Breadth-First Rank/Select in Succinct Trees

Authors: Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu

Published in: LIPIcs, Volume 181, 31st International Symposium on Algorithms and Computation (ISAAC 2020)


Abstract
We present the first succinct distance oracles for (unweighted) interval graphs and related classes of graphs, using a novel succinct data structure for ordinal trees that supports the mapping between preorder (i.e., depth-first) ranks and level-order (breadth-first) ranks of nodes in constant time. Our distance oracles for interval graphs also support navigation queries - testing adjacency, computing node degrees, neighborhoods, and shortest paths - all in optimal time. Our technique also yields optimal distance oracles for proper interval graphs (unit-interval graphs) and circular-arc graphs. Our tree data structure supports all operations provided by different approaches in previous work, as well as mapping to and from level-order ranks and retrieving the last (first) internal node before (after) a given node in a level-order traversal, all in constant time.

Cite as

Meng He, J. Ian Munro, Yakov Nekrich, Sebastian Wild, and Kaiyu Wu. Distance Oracles for Interval Graphs via Breadth-First Rank/Select in Succinct Trees. In 31st International Symposium on Algorithms and Computation (ISAAC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 181, pp. 25:1-25:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{he_et_al:LIPIcs.ISAAC.2020.25,
  author =	{He, Meng and Munro, J. Ian and Nekrich, Yakov and Wild, Sebastian and Wu, Kaiyu},
  title =	{{Distance Oracles for Interval Graphs via Breadth-First Rank/Select in Succinct Trees}},
  booktitle =	{31st International Symposium on Algorithms and Computation (ISAAC 2020)},
  pages =	{25:1--25:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-173-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{181},
  editor =	{Cao, Yixin and Cheng, Siu-Wing and Li, Minming},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2020.25},
  URN =		{urn:nbn:de:0030-drops-133693},
  doi =		{10.4230/LIPIcs.ISAAC.2020.25},
  annote =	{Keywords: succinct data structures, distance oracles, ordinal tree, level order, breadth-first order, interval graphs, proper interval graphs, succinct graph representation}
}
Document
Track A: Algorithms, Complexity and Games
Space Efficient Construction of Lyndon Arrays in Linear Time

Authors: Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Gørtz, Florian Kurpicz, J. Ian Munro, and Eva Rotenberg

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Given a string S of length n, its Lyndon array identifies for each suffix S[i..n] the next lexicographically smaller suffix S[j..n], i.e. the minimal index j > i with S[i..n] ≻ S[j..n]. Apart from its plain (n log₂ n)-bit array representation, the Lyndon array can also be encoded as a succinct parentheses sequence that requires only 2n bits of space. While linear time construction algorithms for both representations exist, it has previously been unknown if the same time bound can be achieved with less than Ω(n lg n) bits of additional working space. We show that, in fact, o(n) additional bits are sufficient to compute the succinct 2n-bit version of the Lyndon array in linear time. For the plain (n log₂ n)-bit version, we only need 𝒪(1) additional words to achieve linear time. Our space efficient construction algorithm makes the Lyndon array more accessible as a fundamental data structure in applications like full-text indexing.

Cite as

Philip Bille, Jonas Ellert, Johannes Fischer, Inge Li Gørtz, Florian Kurpicz, J. Ian Munro, and Eva Rotenberg. Space Efficient Construction of Lyndon Arrays in Linear Time. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bille_et_al:LIPIcs.ICALP.2020.14,
  author =	{Bille, Philip and Ellert, Jonas and Fischer, Johannes and G{\o}rtz, Inge Li and Kurpicz, Florian and Munro, J. Ian and Rotenberg, Eva},
  title =	{{Space Efficient Construction of Lyndon Arrays in Linear Time}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.14},
  URN =		{urn:nbn:de:0030-drops-124211},
  doi =		{10.4230/LIPIcs.ICALP.2020.14},
  annote =	{Keywords: String algorithms, string suffixes, succinct data structures, Lyndon word, Lyndon array, nearest smaller values, nearest smaller suffixes}
}
Document
Space-Efficient Data Structures for Lattices

Authors: J. Ian Munro, Bryce Sandlund, and Corwin Sinnamon

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
A lattice is a partially-ordered set in which every pair of elements has a unique meet (greatest lower bound) and join (least upper bound). We present new data structures for lattices that are simple, efficient, and nearly optimal in terms of space complexity. Our first data structure can answer partial order queries in constant time and find the meet or join of two elements in O(n^{3/4}) time, where n is the number of elements in the lattice. It occupies O(n^{3/2}log n) bits of space, which is only a Θ(log n) factor from the Θ(n^{3/2})-bit lower bound for storing lattices. The preprocessing time is O(n²). This structure admits a simple space-time tradeoff so that, for any c ∈ [1/2, 1], the data structure supports meet and join queries in O(n^{1-c/2}) time, occupies O(n^{1+c}log n) bits of space, and can be constructed in O(n² + n^{1+3c/2}) time. Our second data structure uses O(n^{3/2}log n) bits of space and supports meet and join in O(d (log n)/(log d)) time, where d is the maximum degree of any element in the transitive reduction graph of the lattice. This structure is much faster for lattices with low-degree elements. This paper also identifies an error in a long-standing solution to the problem of representing lattices. We discuss the issue with this previous work.

Cite as

J. Ian Munro, Bryce Sandlund, and Corwin Sinnamon. Space-Efficient Data Structures for Lattices. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 31:1-31:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{munro_et_al:LIPIcs.SWAT.2020.31,
  author =	{Munro, J. Ian and Sandlund, Bryce and Sinnamon, Corwin},
  title =	{{Space-Efficient Data Structures for Lattices}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{31:1--31:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.31},
  URN =		{urn:nbn:de:0030-drops-122782},
  doi =		{10.4230/LIPIcs.SWAT.2020.31},
  annote =	{Keywords: Lattice, Partially-ordered set, Space-efficient data structure, Succinct data structure}
}
Document
Text Indexing and Searching in Sublinear Time

Authors: J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich

Published in: LIPIcs, Volume 161, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)


Abstract
We introduce the first index that can be built in o(n) time for a text of length n, and can also be queried in o(q) time for a pattern of length q. On an alphabet of size σ, our index uses O(n log σ) bits, is built in O(n log σ / √{log n}) deterministic time, and computes the number of occurrences of the pattern in time O(q/log_σ n + log n log_σ n). Each such occurrence can then be found in O(log n) time. Other trade-offs between the space usage and the cost of reporting occurrences are also possible.

Cite as

J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Text Indexing and Searching in Sublinear Time. In 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 161, pp. 24:1-24:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{munro_et_al:LIPIcs.CPM.2020.24,
  author =	{Munro, J. Ian and Navarro, Gonzalo and Nekrich, Yakov},
  title =	{{Text Indexing and Searching in Sublinear Time}},
  booktitle =	{31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020)},
  pages =	{24:1--24:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-149-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{161},
  editor =	{G{\o}rtz, Inge Li and Weimann, Oren},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2020.24},
  URN =		{urn:nbn:de:0030-drops-121497},
  doi =		{10.4230/LIPIcs.CPM.2020.24},
  annote =	{Keywords: data structures, string indexes}
}
  • Refine by Author
  • 20 Munro, J. Ian
  • 9 Nekrich, Yakov
  • 5 El-Zein, Hicham
  • 5 He, Meng
  • 4 Munro, Ian
  • Show More...

  • Refine by Classification
  • 10 Theory of computation → Data structures design and analysis
  • 4 Theory of computation → Data compression
  • 3 Theory of computation → Design and analysis of algorithms
  • 3 Theory of computation → Sorting and searching
  • 2 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 4 Data Structures
  • 3 Succinct Data Structures
  • 3 succinct data structures
  • 2 Computational Geometry
  • 2 Range Searching
  • Show More...

  • Refine by Type
  • 30 document

  • Refine by Publication Year
  • 7 2024
  • 6 2018
  • 4 2020
  • 3 2019
  • 2 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail