17 Search Results for "Schmidt, Sebastian"


Document
The Platin Multi-Target Worst-Case Analysis Tool

Authors: Emad Jacob Maroun, Eva Dengler, Christian Dietrich, Stefan Hepp, Henriette Herzog, Benedikt Huber, Jens Knoop, Daniel Wiltsche-Prokesch, Peter Puschner, Phillip Raffeck, Martin Schoeberl, Simon Schuster, and Peter Wägemann

Published in: OASIcs, Volume 121, 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)


Abstract
With the increasing number of applications that require reliable runtime guarantees, the relevance of static worst-case analysis tools that can provide such guarantees increases. These analysis tools determine resource-consumption bounds of application tasks, with a model of the underlying hardware, to meet given resource budgets during runtime, such as deadlines of real-time tasks. This paper presents enhancements to the Platin worst-case analysis tool developed since its original release more than ten years ago. These novelties comprise Platin’s support for new architectures (i.e., ARMv6-M, RISC-V, and AVR) in addition to the previous backends for Patmos and ARMv7-M. Further, Platin now features system-wide analysis methods and annotation support to express system-level constraints. Besides an overview of these enhancements, we evaluate Platin’s accuracy for the two supported architecture implementations, Patmos and RISC-V.

Cite as

Emad Jacob Maroun, Eva Dengler, Christian Dietrich, Stefan Hepp, Henriette Herzog, Benedikt Huber, Jens Knoop, Daniel Wiltsche-Prokesch, Peter Puschner, Phillip Raffeck, Martin Schoeberl, Simon Schuster, and Peter Wägemann. The Platin Multi-Target Worst-Case Analysis Tool. In 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024). Open Access Series in Informatics (OASIcs), Volume 121, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{maroun_et_al:OASIcs.WCET.2024.2,
  author =	{Maroun, Emad Jacob and Dengler, Eva and Dietrich, Christian and Hepp, Stefan and Herzog, Henriette and Huber, Benedikt and Knoop, Jens and Wiltsche-Prokesch, Daniel and Puschner, Peter and Raffeck, Phillip and Schoeberl, Martin and Schuster, Simon and W\"{a}gemann, Peter},
  title =	{{The Platin Multi-Target Worst-Case Analysis Tool}},
  booktitle =	{22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)},
  pages =	{2:1--2:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-346-1},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{121},
  editor =	{Carle, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2024.2},
  URN =		{urn:nbn:de:0030-drops-204704},
  doi =		{10.4230/OASIcs.WCET.2024.2},
  annote =	{Keywords: worst-case resource consumption, WCET, static analysis tool}
}
Document
Crêpe: Clock-Reconfiguration-Aware Preemption Control in Real-Time Systems with Devices

Authors: Eva Dengler and Peter Wägemann

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
The domain of energy-constrained real-time systems that are operated on modern embedded system-on-chip (SoC) platforms brings numerous novel challenges for optimal resource minimization. These modern hardware platforms offer a heterogeneous variety of features to configure the tradeoff between temporal performance and energy efficiency, which goes beyond the state-of-the-art of existing dynamic-voltage-frequency-scaling (DVFS) scheduling schemes. The control center for configuring this tradeoff on platforms are complex clock subsystems that are intertwined with requirements of the SoC’s components (e.g., transceiver/memory/sensor devices). That is, several devices have precedence constraints with respect to specific clock sources and their settings. The challenge of dynamically adapting the various clock sources to select resource-optimal configurations becomes especially challenging in the presence of asynchronous preemptions, which are inherent to systems that use devices. In this paper, we present Crêpe, an approach to clock-reconfiguration-aware preemption control: Crêpe has an understanding of the target platform’s clock subsystem, its sleep states, and penalties to reconfigure clock sources for adapting clock frequencies. Crêpe’s hardware model is combined with an awareness of the application’s device requirements for each executed task, as well as possible interrupts that cause preemptions during runtime. Using these software/hardware constraints, Crêpe employs, in its offline phase, a mathematical formalization in order to select energy-minimal configurations while meeting given deadlines. This optimizing formalization, processed by standard mathematical solver tools, accounts for potentially occurring interrupts and the respective clock reconfigurations, which are then forwarded as alternative schedules to Crêpe’s runtime system. During runtime, the dispatcher assesses these offline-determined alternative schedules and reconfigures the clock sources for energy minimization. We developed an implementation based on a widely-used SoC platform (i.e., ESP32-C3) and an automated testbed for comprehensive energy-consumption evaluations to validate Crêpe’s claim of selecting resource-optimal settings under worst-case considerations.

Cite as

Eva Dengler and Peter Wägemann. Crêpe: Clock-Reconfiguration-Aware Preemption Control in Real-Time Systems with Devices. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 10:1-10:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dengler_et_al:LIPIcs.ECRTS.2024.10,
  author =	{Dengler, Eva and W\"{a}gemann, Peter},
  title =	{{Cr\^{e}pe: Clock-Reconfiguration-Aware Preemption Control in Real-Time Systems with Devices}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{10:1--10:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.10},
  URN =		{urn:nbn:de:0030-drops-203135},
  doi =		{10.4230/LIPIcs.ECRTS.2024.10},
  annote =	{Keywords: energy-constrained real-time systems, time/energy tradeoff, system-on-chip, energy-aware real-time scheduling, resource minimization, preemption control, worst-case energy consumption (WCEC), worst-case execution time (WCET), static whole-system analysis}
}
Document
Response Time Analysis for Fixed-Priority Preemptive Uniform Multiprocessor Systems

Authors: Binqi Sun, Tomasz Kloda, and Marco Caccamo

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
We present a response time analysis for global fixed-priority preemptive scheduling of constrained-deadline tasks upon a uniform multiprocessor where each processor can be characterized by a different speed. A fixed-priority scheduler assigns the jobs with the highest priorities to the fastest processors. Since determining whether all tasks can meet their deadlines is generally intractable even with identical processors, we propose two sufficient schedulability tests that calculate upper bounds on the task’s worst-case response time within polynomial and pseudo-polynomial time. The proposed tests leverage the linear programming model to upper bound the interference of the higher-priority tasks. Furthermore, we identify specific conditions and platforms upon which the problem can be solved more efficiently within linear time. These formulations are used to iteratively evaluate and refine possible solutions until a safe upper bound on the task’s worst-case response time is found. Additionally, we demonstrate that, with specific minor modifications, the proposed tests are compatible with Audsley’s optimal priority assignment. Experimental evaluations performed on synthetic task sets show that the proposed approach outperforms the state-of-the-art methods.

Cite as

Binqi Sun, Tomasz Kloda, and Marco Caccamo. Response Time Analysis for Fixed-Priority Preemptive Uniform Multiprocessor Systems. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 17:1-17:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ECRTS.2024.17,
  author =	{Sun, Binqi and Kloda, Tomasz and Caccamo, Marco},
  title =	{{Response Time Analysis for Fixed-Priority Preemptive Uniform Multiprocessor Systems}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{17:1--17:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.17},
  URN =		{urn:nbn:de:0030-drops-203201},
  doi =		{10.4230/LIPIcs.ECRTS.2024.17},
  annote =	{Keywords: Real-time scheduling, Uniform multiprocessor, Response time analysis}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Deciding Linear Height and Linear Size-To-Height Increase of Macro Tree Transducers

Authors: Paul Gallot, Sebastian Maneth, Keisuke Nakano, and Charles Peyrat

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We present a novel normal form for (total deterministic) macro tree transducers (mtts), called "depth proper normal form". If an mtt is in this normal form, then it is guaranteed that each parameter of each state appears at arbitrary depths in the output trees of that state. Intuitively, if some parameter only appears at certain bounded depths in the output trees of a state, then this parameter can be eliminated by in-lining the corresponding output paths at each call site of that state. We use regular look-ahead in order to determine which of the paths should be in-lined. As a consequence of changing the look-ahead, a parameter that was previously appearing at unbounded depths, may be appearing at bounded depths for some new look-ahead; for this reason, our construction has to be iterated to obtain an mtt in depth-normal form. Using the normal form, we can decide whether the translation of an mtt has linear height increase or has linear size-to-height increase.

Cite as

Paul Gallot, Sebastian Maneth, Keisuke Nakano, and Charles Peyrat. Deciding Linear Height and Linear Size-To-Height Increase of Macro Tree Transducers. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 138:1-138:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{gallot_et_al:LIPIcs.ICALP.2024.138,
  author =	{Gallot, Paul and Maneth, Sebastian and Nakano, Keisuke and Peyrat, Charles},
  title =	{{Deciding Linear Height and Linear Size-To-Height Increase of Macro Tree Transducers}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{138:1--138:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.138},
  URN =		{urn:nbn:de:0030-drops-202818},
  doi =		{10.4230/LIPIcs.ICALP.2024.138},
  annote =	{Keywords: automata, formal language theory, macro tree transducer, normal form}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Survey
Logics for Conceptual Data Modelling: A Review

Authors: Pablo R. Fillottrani and C. Maria Keet

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Information modelling for databases and object-oriented information systems avails of conceptual data modelling languages such as EER and UML Class Diagrams. Many attempts exist to add logical rigour to them, for various reasons and with disparate strengths. In this paper we aim to provide a structured overview of the many efforts. We focus on aims, approaches to the formalisation, including key dimensions of choice points, popular logics used, and the main relevant reasoning services. We close with current challenges and research directions.

Cite as

Pablo R. Fillottrani and C. Maria Keet. Logics for Conceptual Data Modelling: A Review. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 4:1-4:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{fillottrani_et_al:TGDK.2.1.4,
  author =	{Fillottrani, Pablo R. and Keet, C. Maria},
  title =	{{Logics for Conceptual Data Modelling: A Review}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:30},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.4},
  URN =		{urn:nbn:de:0030-drops-198616},
  doi =		{10.4230/TGDK.2.1.4},
  annote =	{Keywords: Conceptual Data Modelling, EER, UML, Description Logics, OWL}
}
Document
Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover

Authors: Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
In the Directed Feedback Vertex Set (DFVS) problem, one is given a directed graph G = (V,E) and wants to find a minimum cardinality set S ⊆ V such that G-S is acyclic. DFVS is a fundamental problem in computer science and finds applications in areas such as deadlock detection. The problem was the subject of the 2022 PACE coding challenge. We develop a novel exact algorithm for the problem that is tailored to perform well on instances that are mostly bi-directed. For such instances, we adapt techniques from the well-researched vertex cover problem. Our core idea is an iterative reduction to vertex cover. To this end, we also develop a new reduction rule that reduces the number of not bi-directed edges. With the resulting algorithm, we were able to win third place in the exact track of the PACE challenge. We perform computational experiments and compare the running time to other exact algorithms, in particular to the winning algorithm in PACE. Our experiments show that we outpace the other algorithms on instances that have a low density of uni-directed edges.

Cite as

Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt. Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{angrick_et_al:LIPIcs.SEA.2023.10,
  author =	{Angrick, Sebastian and Bals, Ben and Casel, Katrin and Cohen, Sarel and Friedrich, Tobias and Hastrich, Niko and Hradilak, Theresa and Issac, Davis and Ki{\ss}ig, Otto and Schmidt, Jonas and Wendt, Leo},
  title =	{{Solving Directed Feedback Vertex Set by Iterative Reduction to Vertex Cover}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.10},
  URN =		{urn:nbn:de:0030-drops-183602},
  doi =		{10.4230/LIPIcs.SEA.2023.10},
  annote =	{Keywords: directed feedback vertex set, vertex cover, reduction rules}
}
Document
Cut Paths and Their Remainder Structure, with Applications

Authors: Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian Schmidt, Alexandru I. Tomescu, and Elia C. Zirondelli

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
In a strongly connected graph G = (V,E), a cut arc (also called strong bridge) is an arc e ∈ E whose removal makes the graph no longer strongly connected. Equivalently, there exist u,v ∈ V, such that all u-v walks contain e. Cut arcs are a fundamental graph-theoretic notion, with countless applications, especially in reachability problems. In this paper we initiate the study of cut paths, as a generalisation of cut arcs, which we naturally define as those paths P for which there exist u,v ∈ V, such that all u-v walks contain P as subwalk. We first prove various properties of cut paths and define their remainder structures, which we use to present a simple O(m)-time verification algorithm for a cut path (|V| = n, |E| = m). Secondly, we apply cut paths and their remainder structures to improve several reachability problems from bioinformatics, as follows. A walk is called safe if it is a subwalk of every node-covering closed walk of a strongly connected graph. Multi-safety is defined analogously, by considering node-covering sets of closed walks instead. We show that cut paths provide simple O(m)-time algorithms verifying if a walk is safe or multi-safe. For multi-safety, we present the first linear time algorithm, while for safety, we present a simple algorithm where the state-of-the-art employed complex data structures. Finally we show that the simultaneous computation of remainder structures of all subwalks of a cut path can be performed in linear time, since they are related in a structured way. These properties yield an O(mn)-time algorithm outputting all maximal multi-safe walks, improving over the state-of-the-art algorithm running in time O(m²+n³). The results of this paper only scratch the surface in the study of cut paths, and we believe a rich structure of a graph can be revealed, considering the perspective of a path, instead of just an arc.

Cite as

Massimo Cairo, Shahbaz Khan, Romeo Rizzi, Sebastian Schmidt, Alexandru I. Tomescu, and Elia C. Zirondelli. Cut Paths and Their Remainder Structure, with Applications. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cairo_et_al:LIPIcs.STACS.2023.17,
  author =	{Cairo, Massimo and Khan, Shahbaz and Rizzi, Romeo and Schmidt, Sebastian and Tomescu, Alexandru I. and Zirondelli, Elia C.},
  title =	{{Cut Paths and Their Remainder Structure, with Applications}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{17:1--17:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.17},
  URN =		{urn:nbn:de:0030-drops-176690},
  doi =		{10.4230/LIPIcs.STACS.2023.17},
  annote =	{Keywords: reachability, cut arc, strong bridge, covering walk, safety, persistence, essentiality, genome assembly}
}
Document
PACE Solver Description
PACE Solver Description: Mount Doom - An Exact Solver for Directed Feedback Vertex Set

Authors: Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
In this document we describe the techniques we used and implemented for our submission to the Parameterized Algorithms and Computational Experiments Challenge (PACE) 2022. The given problem is Directed Feedback Vertex Set (DFVS), where one is given a directed graph G = (V,E) and wants to find a minimum S ⊆ V such that G-S is acyclic. We approach this problem by first exhaustively applying a set of reduction rules. In order to find a minimum DFVS on the remaining instance, we create and solve a series of Vertex Cover instances.

Cite as

Sebastian Angrick, Ben Bals, Katrin Casel, Sarel Cohen, Tobias Friedrich, Niko Hastrich, Theresa Hradilak, Davis Issac, Otto Kißig, Jonas Schmidt, and Leo Wendt. PACE Solver Description: Mount Doom - An Exact Solver for Directed Feedback Vertex Set. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 28:1-28:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{angrick_et_al:LIPIcs.IPEC.2022.28,
  author =	{Angrick, Sebastian and Bals, Ben and Casel, Katrin and Cohen, Sarel and Friedrich, Tobias and Hastrich, Niko and Hradilak, Theresa and Issac, Davis and Ki{\ss}ig, Otto and Schmidt, Jonas and Wendt, Leo},
  title =	{{PACE Solver Description: Mount Doom - An Exact Solver for Directed Feedback Vertex Set}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{28:1--28:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.28},
  URN =		{urn:nbn:de:0030-drops-173847},
  doi =		{10.4230/LIPIcs.IPEC.2022.28},
  annote =	{Keywords: directed feedback vertex set, vertex cover, reduction rules}
}
Document
Eulertigs: Minimum Plain Text Representation of k-mer Sets Without Repetitions in Linear Time

Authors: Sebastian Schmidt and Jarno N. Alanko

Published in: LIPIcs, Volume 242, 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)


Abstract
A fundamental operation in computational genomics is to reduce the input sequences to their constituent k-mers. For maximum performance of downstream applications it is important to store the k-mers in small space, while keeping the representation easy and efficient to use (i.e. without k-mer repetitions and in plain text). Recently, heuristics were presented to compute a near-minimum such representation. We present an algorithm to compute a minimum representation in optimal (linear) time and use it to evaluate the existing heuristics. For that, we present a formalisation of arc-centric bidirected de Bruijn graphs and carefully prove that it accurately models the k-mer spectrum of the input. Our algorithm first constructs the de Bruijn graph in linear time in the length of the input strings (for a fixed-size alphabet). Then it uses a Eulerian-cycle-based algorithm to compute the minimum representation, in time linear in the size of the output.

Cite as

Sebastian Schmidt and Jarno N. Alanko. Eulertigs: Minimum Plain Text Representation of k-mer Sets Without Repetitions in Linear Time. In 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 242, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{schmidt_et_al:LIPIcs.WABI.2022.2,
  author =	{Schmidt, Sebastian and Alanko, Jarno N.},
  title =	{{Eulertigs: Minimum Plain Text Representation of k-mer Sets Without Repetitions in Linear Time}},
  booktitle =	{22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)},
  pages =	{2:1--2:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-243-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{242},
  editor =	{Boucher, Christina and Rahmann, Sven},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2022.2},
  URN =		{urn:nbn:de:0030-drops-170361},
  doi =		{10.4230/LIPIcs.WABI.2022.2},
  annote =	{Keywords: Spectrum preserving string sets, Eulerian cycle, Suffix tree, Bidirected arc-centric de Bruijn graph, k-mer based methods}
}
Document
Track A: Algorithms, Complexity and Games
Genome Assembly, from Practice to Theory: Safe, Complete and Linear-Time

Authors: Massimo Cairo, Romeo Rizzi, Alexandru I. Tomescu, and Elia C. Zirondelli

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Genome assembly asks to reconstruct an unknown string from many shorter substrings of it. Even though it is one of the key problems in Bioinformatics, it is generally lacking major theoretical advances. Its hardness stems both from practical issues (size and errors of real data), and from the fact that problem formulations inherently admit multiple solutions. Given these, at their core, most state-of-the-art assemblers are based on finding non-branching paths (unitigs) in an assembly graph. While such paths constitute only partial assemblies, they are likely to be correct. More precisely, if one defines a genome assembly solution as a closed arc-covering walk of the graph, then unitigs appear in all solutions, being thus safe partial solutions. Until recently, it was open what are all the safe walks of an assembly graph. Tomescu and Medvedev (RECOMB 2016) characterized all such safe walks (omnitigs), thus giving the first safe and complete genome assembly algorithm. Even though omnitig finding was later improved to quadratic time, it remained open whether the crucial linear-time feature of finding unitigs can be attained with omnitigs. We answer this question affirmatively, by describing a surprising O(m)-time algorithm to identify all maximal omnitigs of a graph with n nodes and m arcs, notwithstanding the existence of families of graphs with Θ(mn) total maximal omnitig size. This is based on the discovery of a family of walks (macrotigs) with the property that all the non-trivial omnitigs are univocal extensions of subwalks of a macrotig. This has two consequences: (1) A linear-time output-sensitive algorithm enumerating all maximal omnitigs. (2) A compact O(m) representation of all maximal omnitigs, which allows, e.g., for O(m)-time computation of various statistics on them. Our results close a long-standing theoretical question inspired by practical genome assemblers, originating with the use of unitigs in 1995. We envision our results to be at the core of a reverse transfer from theory to practical and complete genome assembly programs, as has been the case for other key Bioinformatics problems.

Cite as

Massimo Cairo, Romeo Rizzi, Alexandru I. Tomescu, and Elia C. Zirondelli. Genome Assembly, from Practice to Theory: Safe, Complete and Linear-Time. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cairo_et_al:LIPIcs.ICALP.2021.43,
  author =	{Cairo, Massimo and Rizzi, Romeo and Tomescu, Alexandru I. and Zirondelli, Elia C.},
  title =	{{Genome Assembly, from Practice to Theory: Safe, Complete and Linear-Time}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{43:1--43:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.43},
  URN =		{urn:nbn:de:0030-drops-141122},
  doi =		{10.4230/LIPIcs.ICALP.2021.43},
  annote =	{Keywords: Graph algorithm, strong connectivity, reachability under failures}
}
Document
Media Exposition
Can You Walk This? Eulerian Tours and IDEA Instructions (Media Exposition)

Authors: Aaron T. Becker, Sándor P. Fekete, Matthias Konitzny, Sebastian Morr, and Arne Schmidt

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We illustrate and animate the classic problem of deciding whether a given graph has an Eulerian path. Starting with a collection of instances of increasing difficulty, we present a set of pictorial instructions, and show how they can be used to solve all instances. These IDEA instructions ("A series of nonverbal algorithm assembly instructions") have proven to be both entertaining for experts and enlightening for novices. We (w)rap up with a song and dance to Euler’s original instance.

Cite as

Aaron T. Becker, Sándor P. Fekete, Matthias Konitzny, Sebastian Morr, and Arne Schmidt. Can You Walk This? Eulerian Tours and IDEA Instructions (Media Exposition). In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 62:1-62:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{becker_et_al:LIPIcs.SoCG.2021.62,
  author =	{Becker, Aaron T. and Fekete, S\'{a}ndor P. and Konitzny, Matthias and Morr, Sebastian and Schmidt, Arne},
  title =	{{Can You Walk This? Eulerian Tours and IDEA Instructions}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{62:1--62:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.62},
  URN =		{urn:nbn:de:0030-drops-138616},
  doi =		{10.4230/LIPIcs.SoCG.2021.62},
  annote =	{Keywords: Eulerian tours, algorithms, education, IDEA instructions}
}
Document
Worst-Case Optimal Covering of Rectangles by Disks

Authors: Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any λ ≥ 1, the critical covering area A^*(λ) is the minimum value for which any set of disks with total area at least A^*(λ) can cover a rectangle of dimensions λ× 1. We show that there is a threshold value λ₂ = √{√7/2 - 1/4} ≈ 1.035797…, such that for λ < λ₂ the critical covering area A^*(λ) is A^*(λ) = 3π(λ²/16 + 5/32 + 9/(256λ²)), and for λ ≥ λ₂, the critical area is A^*(λ)=π(λ²+2)/4; these values are tight. For the special case λ=1, i.e., for covering a unit square, the critical covering area is 195π/256 ≈ 2.39301…. The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.

Cite as

Sándor P. Fekete, Utkarsh Gupta, Phillip Keldenich, Christian Scheffer, and Sahil Shah. Worst-Case Optimal Covering of Rectangles by Disks. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 42:1-42:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fekete_et_al:LIPIcs.SoCG.2020.42,
  author =	{Fekete, S\'{a}ndor P. and Gupta, Utkarsh and Keldenich, Phillip and Scheffer, Christian and Shah, Sahil},
  title =	{{Worst-Case Optimal Covering of Rectangles by Disks}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{42:1--42:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.42},
  URN =		{urn:nbn:de:0030-drops-122003},
  doi =		{10.4230/LIPIcs.SoCG.2020.42},
  annote =	{Keywords: Disk covering, critical density, covering coefficient, tight worst-case bound, interval arithmetic, approximation}
}
Document
Vehicle Capacity-Aware Rerouting of Passengers in Delay Management

Authors: Matthias Müller-Hannemann, Ralf Rückert, and Sebastian S. Schmidt

Published in: OASIcs, Volume 75, 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)


Abstract
Due to the significant growth in passenger numbers, higher vehicle load factors and crowding become more and more of an issue in public transport. For safety reasons and because of an unsatisfactory discomfort, standing of passengers is rather limited in high-speed long-distance trains. In case of delays and (partially) cancelled trains, many passengers have to be rerouted. State-of-the-art rerouting merely focuses on minimizing delay at the destination of affected passengers but neglects limited vehicle capacities and crowding. Not considering capacities allows using highly efficient shortest path algorithms like RAPTOR or the connection scan algorithm (CSA). In this paper, we study the more complicated scenario where passengers compete for scarce capacities. This can be modeled as a piece-wise linear, convex cost multi-source multi-commodity unsplittable flow problem where each passenger group which has to be rerouted corresponds to a commodity. We compare a path-based integer linear programming (ILP) model with a heuristic greedy approach. In experiments with instances from German long-distance train traffic, we quantify the importance of considering vehicle capacities in case of train cancellations. We observe a tradeoff: The ILP approach slightly outperforms the greedy approach and both are much better than capacity unaware rerouting in quality, while the greedy algorithm runs more than three times faster.

Cite as

Matthias Müller-Hannemann, Ralf Rückert, and Sebastian S. Schmidt. Vehicle Capacity-Aware Rerouting of Passengers in Delay Management. In 19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019). Open Access Series in Informatics (OASIcs), Volume 75, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{mullerhannemann_et_al:OASIcs.ATMOS.2019.7,
  author =	{M\"{u}ller-Hannemann, Matthias and R\"{u}ckert, Ralf and Schmidt, Sebastian S.},
  title =	{{Vehicle Capacity-Aware Rerouting of Passengers in Delay Management}},
  booktitle =	{19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019)},
  pages =	{7:1--7:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-128-3},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{75},
  editor =	{Cacchiani, Valentina and Marchetti-Spaccamela, Alberto},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2019.7},
  URN =		{urn:nbn:de:0030-drops-114192},
  doi =		{10.4230/OASIcs.ATMOS.2019.7},
  annote =	{Keywords: Delay management, passenger flows, vehicle capacities, rerouting}
}
  • Refine by Author
  • 2 Angrick, Sebastian
  • 2 Bals, Ben
  • 2 Cairo, Massimo
  • 2 Casel, Katrin
  • 2 Cohen, Sarel
  • Show More...

  • Refine by Classification
  • 3 Applied computing → Computational biology
  • 3 Computer systems organization → Real-time systems
  • 3 Theory of computation → Graph algorithms analysis
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Mathematics of computing → Graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 directed feedback vertex set
  • 2 reduction rules
  • 2 vertex cover
  • 1 Applications of logics
  • 1 Bidirected arc-centric de Bruijn graph
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 7 2024
  • 2 2021
  • 2 2022
  • 2 2023
  • 1 2011
  • Show More...