10 Search Results for "Sun, Yuan"


Document
Improved Cut Strategy for Tensor Network Contraction Orders

Authors: Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
In the field of quantum computing, simulating quantum systems on classical computers is crucial. Tensor networks are fundamental in simulating quantum systems. A tensor network is a collection of tensors, that need to be contracted into a result tensor. Tensor contraction is a generalization of matrix multiplication to higher order tensors. The contractions can be performed in different orders, and the order has a significant impact on the number of floating point operations (flops) needed to get the result tensor. It is known that finding an optimal contraction order is NP-hard. The current state-of-the-art approach for finding efficient contraction orders is to combinine graph partitioning with a greedy strategy. Although heavily used in practice, the current approach ignores so-called free indices, chooses node weights without regarding previous computations, and requires numerous hyperparameters that need to be tuned at runtime. In this paper, we address these shortcomings by developing a novel graph cut strategy. The proposed modifications yield contraction orders that significantly reduce the number of flops in the tensor contractions compared to the current state of the art. Moreover, by removing the need for hyperparameter tuning at runtime, our approach converges to an efficient solution faster, which reduces the required optimization time by at least an order of magnitude.

Cite as

Christoph Staudt, Mark Blacher, Julien Klaus, Farin Lippmann, and Joachim Giesen. Improved Cut Strategy for Tensor Network Contraction Orders. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 27:1-27:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{staudt_et_al:LIPIcs.SEA.2024.27,
  author =	{Staudt, Christoph and Blacher, Mark and Klaus, Julien and Lippmann, Farin and Giesen, Joachim},
  title =	{{Improved Cut Strategy for Tensor Network Contraction Orders}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{27:1--27:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.27},
  URN =		{urn:nbn:de:0030-drops-203924},
  doi =		{10.4230/LIPIcs.SEA.2024.27},
  annote =	{Keywords: tensor network, contraction order, graph partitioniong, quantum simulation}
}
Document
Track A: Algorithms, Complexity and Games
It’s Hard to HAC Average Linkage!

Authors: MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Average linkage Hierarchical Agglomerative Clustering (HAC) is an extensively studied and applied method for hierarchical clustering. Recent applications to massive datasets have driven significant interest in near-linear-time and efficient parallel algorithms for average linkage HAC. We provide hardness results that rule out such algorithms. On the sequential side, we establish a runtime lower bound of n^{3/2-ε} on n node graphs for sequential combinatorial algorithms under standard fine-grained complexity assumptions. This essentially matches the best-known running time for average linkage HAC. On the parallel side, we prove that average linkage HAC likely cannot be parallelized even on simple graphs by showing that it is CC-hard on trees of diameter 4. On the possibility side, we demonstrate that average linkage HAC can be efficiently parallelized (i.e., it is in NC) on paths and can be solved in near-linear time when the height of the output cluster hierarchy is small.

Cite as

MohammadHossein Bateni, Laxman Dhulipala, Kishen N. Gowda, D. Ellis Hershkowitz, Rajesh Jayaram, and Jakub Łącki. It’s Hard to HAC Average Linkage!. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bateni_et_al:LIPIcs.ICALP.2024.18,
  author =	{Bateni, MohammadHossein and Dhulipala, Laxman and Gowda, Kishen N. and Hershkowitz, D. Ellis and Jayaram, Rajesh and {\L}\k{a}cki, Jakub},
  title =	{{It’s Hard to HAC Average Linkage!}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.18},
  URN =		{urn:nbn:de:0030-drops-201613},
  doi =		{10.4230/LIPIcs.ICALP.2024.18},
  annote =	{Keywords: Clustering, Hierarchical Graph Clustering, HAC, Fine-Grained Complexity, Parallel Algorithms, CC}
}
Document
Track A: Algorithms, Complexity and Games
Algorithms for the Generalized Poset Sorting Problem

Authors: Shaofeng H.-C. Jiang, Wenqian Wang, Yubo Zhang, and Yuhao Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider a generalized poset sorting problem (GPS), in which we are given a query graph G = (V, E) and an unknown poset 𝒫(V, ≺) that is defined on the same vertex set V, and the goal is to make as few queries as possible to edges in G in order to fully recover 𝒫, where each query (u, v) returns the relation between u, v, i.e., u ≺ v, v ≺ u or u ̸ ∼ v. This generalizes both the poset sorting problem [Faigle et al., SICOMP 88] and the generalized sorting problem [Huang et al., FOCS 11]. We give algorithms with Õ(n poly(k)) query complexity when G is a complete bipartite graph or G is stochastic under the Erdős-Rényi model, where k is the width of the poset, and these generalize [Daskalakis et al., SICOMP 11] which only studies complete graph G. Both results are based on a unified framework that reduces the poset sorting to partitioning the vertices with respect to a given pivot element, which may be of independent interest. Moreover, we also propose novel algorithms to implement this partition oracle. Notably, we suggest a randomized BFS with vertex skipping for the stochastic G, and it yields a nearly-tight bound even for the special case of generalized sorting (for stochastic G) which is comparable to the main result of a recent work [Kuszmaul et al., FOCS 21] but is conceptually different and simplified. Our study of GPS also leads to a new Õ(n^{1 - 1 / (2W)}) competitive ratio for the so-called weighted generalized sorting problem where W is the number of distinct weights in the query graph. This problem was considered as an open question in [Charikar et al., JCSS 02], and our result makes important progress as it yields the first nontrivial sublinear ratio for general weighted query graphs (for any bounded W). We obtain this via an Õ(nk + n^{1.5}) query complexity algorithm for the case where every edge in G is guaranteed to be comparable in the poset, which generalizes a Õ(n^{1.5}) bound for generalized sorting [Huang et al., FOCS 11].

Cite as

Shaofeng H.-C. Jiang, Wenqian Wang, Yubo Zhang, and Yuhao Zhang. Algorithms for the Generalized Poset Sorting Problem. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 92:1-92:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.ICALP.2024.92,
  author =	{Jiang, Shaofeng H.-C. and Wang, Wenqian and Zhang, Yubo and Zhang, Yuhao},
  title =	{{Algorithms for the Generalized Poset Sorting Problem}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{92:1--92:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.92},
  URN =		{urn:nbn:de:0030-drops-202359},
  doi =		{10.4230/LIPIcs.ICALP.2024.92},
  annote =	{Keywords: sorting, poset sorting, generalized sorting}
}
Document
Track A: Algorithms, Complexity and Games
Refuting Approaches to the Log-Rank Conjecture for XOR Functions

Authors: Hamed Hatami, Kaave Hosseini, Shachar Lovett, and Anthony Ostuni

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The log-rank conjecture, a longstanding problem in communication complexity, has persistently eluded resolution for decades. Consequently, some recent efforts have focused on potential approaches for establishing the conjecture in the special case of XOR functions, where the communication matrix is lifted from a boolean function, and the rank of the matrix equals the Fourier sparsity of the function, which is the number of its nonzero Fourier coefficients. In this note, we refute two conjectures. The first has origins in Montanaro and Osborne (arXiv'09) and is considered in Tsang, Wong, Xie, and Zhang (FOCS'13), and the second is due to Mande and Sanyal (FSTTCS'20). These conjectures were proposed in order to improve the best-known bound of Lovett (STOC'14) regarding the log-rank conjecture in the special case of XOR functions. Both conjectures speculate that the set of nonzero Fourier coefficients of the boolean function has some strong additive structure. We refute these conjectures by constructing two specific boolean functions tailored to each.

Cite as

Hamed Hatami, Kaave Hosseini, Shachar Lovett, and Anthony Ostuni. Refuting Approaches to the Log-Rank Conjecture for XOR Functions. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 82:1-82:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hatami_et_al:LIPIcs.ICALP.2024.82,
  author =	{Hatami, Hamed and Hosseini, Kaave and Lovett, Shachar and Ostuni, Anthony},
  title =	{{Refuting Approaches to the Log-Rank Conjecture for XOR Functions}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{82:1--82:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.82},
  URN =		{urn:nbn:de:0030-drops-202252},
  doi =		{10.4230/LIPIcs.ICALP.2024.82},
  annote =	{Keywords: Communication complexity, log-rank conjecture, XOR functions, additive structure}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
On Min-Max Graph Balancing with Strict Negative Correlation Constraints

Authors: Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and Mong-Jen Kao

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
We consider the min-max graph balancing problem with strict negative correlation (SNC) constraints. The graph balancing problem arises as an equivalent formulation of the classic unrelated machine scheduling problem, where we are given a hypergraph G = (V,E) with vertex-dependent edge weight function p: E×V ↦ ℤ^{≥0} that represents the processing time of the edges (jobs). The SNC constraints, which are given as edge subsets C_1,C_2,…,C_k, require that the edges in the same subset cannot be assigned to the same vertex at the same time. Under these constraints, the goal is to compute an edge orientation (assignment) that minimizes the maximum workload of the vertices. In this paper, we conduct a general study on the approximability of this problem. First, we show that, in the presence of SNC constraints, the case with max_{e ∈ E} |e| = max_i |C_i| = 2 is the only case for which approximation solutions can be obtained. Further generalization on either direction, e.g., max_{e ∈ E} |e| or max_i |C_i|, will directly make computing a feasible solution an NP-complete problem to solve. Then, we present a 2-approximation algorithm for the case with max_{e ∈ E} |e| = max_i |C_i| = 2, based on a set of structural simplifications and a tailored assignment LP for this problem. We note that our approach is general and can be applied to similar settings, e.g., scheduling with SNC constraints to minimize the weighted completion time, to obtain similar approximation guarantees. Further cases are discussed to describe the landscape of the approximability of this prbolem. For the case with |V| ≤ 2, which is already known to be NP-hard, we present a fully-polynomial time approximation scheme (FPTAS). On the other hand, we show that the problem is at least as hard as vertex cover to approximate when |V| ≥ 3.

Cite as

Ting-Yu Kuo, Yu-Han Chen, Andrea Frosini, Sun-Yuan Hsieh, Shi-Chun Tsai, and Mong-Jen Kao. On Min-Max Graph Balancing with Strict Negative Correlation Constraints. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 50:1-50:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kuo_et_al:LIPIcs.ISAAC.2023.50,
  author =	{Kuo, Ting-Yu and Chen, Yu-Han and Frosini, Andrea and Hsieh, Sun-Yuan and Tsai, Shi-Chun and Kao, Mong-Jen},
  title =	{{On Min-Max Graph Balancing with Strict Negative Correlation Constraints}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{50:1--50:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.50},
  URN =		{urn:nbn:de:0030-drops-193524},
  doi =		{10.4230/LIPIcs.ISAAC.2023.50},
  annote =	{Keywords: Unrelated Scheduling, Graph Balancing, Strict Correlation Constraints}
}
Document
Maximal k-Edge-Connected Subgraphs in Almost-Linear Time for Small k

Authors: Thatchaphol Saranurak and Wuwei Yuan

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We give the first almost-linear time algorithm for computing the maximal k-edge-connected subgraphs of an undirected unweighted graph for any constant k. More specifically, given an n-vertex m-edge graph G = (V,E) and a number k = log^o(1) n, we can deterministically compute in O(m+n^{1+o(1)}) time the unique vertex partition {V_1,… ,V_z} such that, for every i, V_i induces a k-edge-connected subgraph while every superset V'_i ⊃ V_{i} does not. Previous algorithms with linear time work only when k ≤ 2 [Tarjan SICOMP'72], otherwise they all require Ω(m+n√n) time even when k = 3 [Chechik et al. SODA'17; Forster et al. SODA'20]. Our algorithm also extends to the decremental graph setting; we can deterministically maintain the maximal k-edge-connected subgraphs of a graph undergoing edge deletions in m^{1+o(1)} total update time. Our key idea is a reduction to the dynamic algorithm supporting pairwise k-edge-connectivity queries [Jin and Sun FOCS'20].

Cite as

Thatchaphol Saranurak and Wuwei Yuan. Maximal k-Edge-Connected Subgraphs in Almost-Linear Time for Small k. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 92:1-92:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{saranurak_et_al:LIPIcs.ESA.2023.92,
  author =	{Saranurak, Thatchaphol and Yuan, Wuwei},
  title =	{{Maximal k-Edge-Connected Subgraphs in Almost-Linear Time for Small k}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{92:1--92:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.92},
  URN =		{urn:nbn:de:0030-drops-187451},
  doi =		{10.4230/LIPIcs.ESA.2023.92},
  annote =	{Keywords: Graph algorithms, Maximal k-edge-connected subgraphs, Dynamic k-edge connectivity}
}
Document
The Tight Spanning Ratio of the Rectangle Delaunay Triangulation

Authors: André van Renssen, Yuan Sha, Yucheng Sun, and Sampson Wong

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Spanner construction is a well-studied problem and Delaunay triangulations are among the most popular spanners. Tight bounds are known if the Delaunay triangulation is constructed using an equilateral triangle, a square, or a regular hexagon. However, all other shapes have remained elusive. In this paper we extend the restricted class of spanners for which tight bounds are known. We prove that Delaunay triangulations constructed using rectangles with aspect ratio A have spanning ratio at most √2 √{1+A² + A √{A²+1}}, which matches the known lower bound.

Cite as

André van Renssen, Yuan Sha, Yucheng Sun, and Sampson Wong. The Tight Spanning Ratio of the Rectangle Delaunay Triangulation. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 99:1-99:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{vanrenssen_et_al:LIPIcs.ESA.2023.99,
  author =	{van Renssen, Andr\'{e} and Sha, Yuan and Sun, Yucheng and Wong, Sampson},
  title =	{{The Tight Spanning Ratio of the Rectangle Delaunay Triangulation}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{99:1--99:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.99},
  URN =		{urn:nbn:de:0030-drops-187523},
  doi =		{10.4230/LIPIcs.ESA.2023.99},
  annote =	{Keywords: Spanners, Delaunay Triangulation, Spanning Ratio}
}
Document
Track A: Algorithms, Complexity and Games
On the Degree of Boolean Functions as Polynomials over ℤ_m

Authors: Xiaoming Sun, Yuan Sun, Jiaheng Wang, Kewen Wu, Zhiyu Xia, and Yufan Zheng

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Polynomial representations of Boolean functions over various rings such as ℤ and ℤ_m have been studied since Minsky and Papert (1969). From then on, they have been employed in a large variety of areas including communication complexity, circuit complexity, learning theory, coding theory and so on. For any integer m ≥ 2, each Boolean function has a unique multilinear polynomial representation over ring ℤ_m. The degree of such polynomial is called modulo-m degree, denoted as deg_m(⋅). In this paper, we investigate the lower bound of modulo-m degree of Boolean functions. When m = p^k (k ≥ 1) for some prime p, we give a tight lower bound deg_m(f) ≥ k(p-1) for any non-degenerate function f:{0,1}ⁿ → {0,1}, provided that n is sufficient large. When m contains two different prime factors p and q, we give a nearly optimal lower bound for any symmetric function f:{0,1}ⁿ → {0,1} that deg_m(f) ≥ n/{2+1/(p-1)+1/(q-1)}.

Cite as

Xiaoming Sun, Yuan Sun, Jiaheng Wang, Kewen Wu, Zhiyu Xia, and Yufan Zheng. On the Degree of Boolean Functions as Polynomials over ℤ_m. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 100:1-100:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ICALP.2020.100,
  author =	{Sun, Xiaoming and Sun, Yuan and Wang, Jiaheng and Wu, Kewen and Xia, Zhiyu and Zheng, Yufan},
  title =	{{On the Degree of Boolean Functions as Polynomials over \mathbb{Z}\underlinem}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{100:1--100:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.100},
  URN =		{urn:nbn:de:0030-drops-125070},
  doi =		{10.4230/LIPIcs.ICALP.2020.100},
  annote =	{Keywords: Boolean function, polynomial, modular degree, Ramsey theory}
}
Document
An Efficient Fixed-Parameter Algorithm for the 2-Plex Bipartition Problem

Authors: Li-Hsuan Chen, Sun-Yuan Hsieh, Ling-Ju Hung, and Peter Rossmanith

Published in: LIPIcs, Volume 92, 28th International Symposium on Algorithms and Computation (ISAAC 2017)


Abstract
Given a graph G=(V, E), an s-plex S\subseteq V is a vertex subset such that for v\in S the degree of v in G[S] is at least |S|-s. An s-plex bipartition \mathcal{P}=(V_1, V_2) is a bipartition of G=(V, E), V=V_1\uplus V_2, satisfying that both V_1 and V_2 are s-plexes. Given an instance G=(V, E) and a parameter k, the s-Plex Bipartition problem asks whether there exists an s-plex bipartition of G such that min{|V_1|, |V_2|\}\leq k. The s-Plex Bipartition problem is NP-complete. However, it is still open whether this problem is fixed-parameter tractable. In this paper, we give a fixed-parameter algorithm for 2-Plex Bipartition running in time O*(2.4143^k). A graph G = (V, E) is called defective (p, d)-colorable if it admits a vertex coloring with p colors such that each color class in G induces a subgraph of maximum degree at most d. A graph G admits an s-plex bipartition if and only if the complement graph of G, \bar{G}, admits a defective (2, s-1)-coloring such that one of the two color classes is of size at most k. By applying our fixed-parameter algorithm as a subroutine, one can find a defective (2,1)-coloring with one of the two colors of minimum cardinality for a given graph in O*(1.5539^n) time where n is the number of vertices in the input graph.

Cite as

Li-Hsuan Chen, Sun-Yuan Hsieh, Ling-Ju Hung, and Peter Rossmanith. An Efficient Fixed-Parameter Algorithm for the 2-Plex Bipartition Problem. In 28th International Symposium on Algorithms and Computation (ISAAC 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 92, pp. 20:1-20:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ISAAC.2017.20,
  author =	{Chen, Li-Hsuan and Hsieh, Sun-Yuan and Hung, Ling-Ju and Rossmanith, Peter},
  title =	{{An Efficient Fixed-Parameter Algorithm for the 2-Plex Bipartition Problem}},
  booktitle =	{28th International Symposium on Algorithms and Computation (ISAAC 2017)},
  pages =	{20:1--20:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-054-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{92},
  editor =	{Okamoto, Yoshio and Tokuyama, Takeshi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2017.20},
  URN =		{urn:nbn:de:0030-drops-82458},
  doi =		{10.4230/LIPIcs.ISAAC.2017.20},
  annote =	{Keywords: 2-plex, 2-plex bipartition, bounded-degree-1 set bipartition, defective (2,1)-coloring}
}
  • Refine by Author
  • 2 Hsieh, Sun-Yuan
  • 1 Bateni, MohammadHossein
  • 1 Blacher, Mark
  • 1 Chen, Li-Hsuan
  • 1 Chen, Yu-Han
  • Show More...

  • Refine by Classification
  • 2 Theory of computation → Graph algorithms analysis
  • 1 Applied computing → Physics
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Knowledge representation and reasoning
  • 1 Information systems → Information integration
  • Show More...

  • Refine by Keyword
  • 1 2-plex
  • 1 2-plex bipartition
  • 1 Applications of logics
  • 1 Boolean function
  • 1 CC
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 5 2024
  • 3 2023
  • 1 2017
  • 1 2020