10 Search Results for "Turner, Andrew"


Document
Investigating Wrench Attacks: Physical Attacks Targeting Cryptocurrency Users

Authors: Marilyne Ordekian, Gilberto Atondo-Siu, Alice Hutchings, and Marie Vasek

Published in: LIPIcs, Volume 316, 6th Conference on Advances in Financial Technologies (AFT 2024)


Abstract
Cryptocurrency wrench attacks are physical attacks targeting cryptocurrency users in the real world to illegally obtain cryptocurrencies. These attacks significantly undermine the efficacy of existing digital security norms when confronted with real-world threats. We present the first comprehensive study on wrench attacks. We propose a theoretical approach to defining wrench attacks per criminal law norms, and an interdisciplinary empirical approach to measure their incidence. Leveraging three data sources, we perform crime script analysis, detecting incidents globally across 10 interviews with victims and experts, 146 news articles, and 37 online forums. Our findings reveal diverse groups of attackers ranging from organized crime groups to friends and family, various modi operandi, and different forms of attacks varying from blackmail to murder. Despite existing since Bitcoin’s early days, these attacks are underreported due to revictimization fears. Additionally, unlike other cryptocurrency crimes, users with advanced security experience were not immune to them. We identify potential vulnerabilities in users' behavior and encourage cryptocurrency holders to lean into digital as well as physical safety measures to protect themselves and their cryptocurrency. We offer actionable recommendations for the security community and regulators, highlighting the double-edged sword of Know Your Customer policies.

Cite as

Marilyne Ordekian, Gilberto Atondo-Siu, Alice Hutchings, and Marie Vasek. Investigating Wrench Attacks: Physical Attacks Targeting Cryptocurrency Users. In 6th Conference on Advances in Financial Technologies (AFT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 316, pp. 24:1-24:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ordekian_et_al:LIPIcs.AFT.2024.24,
  author =	{Ordekian, Marilyne and Atondo-Siu, Gilberto and Hutchings, Alice and Vasek, Marie},
  title =	{{Investigating Wrench Attacks: Physical Attacks Targeting Cryptocurrency Users}},
  booktitle =	{6th Conference on Advances in Financial Technologies (AFT 2024)},
  pages =	{24:1--24:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-345-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{316},
  editor =	{B\"{o}hme, Rainer and Kiffer, Lucianna},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AFT.2024.24},
  URN =		{urn:nbn:de:0030-drops-209609},
  doi =		{10.4230/LIPIcs.AFT.2024.24},
  annote =	{Keywords: cryptocurrency, Bitcoin, crime, wrench attack, physical attack}
}
Document
InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference

Authors: Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Supporting automatic type inference is in demand in modern language development. It is a challenging task but without appropriate supporting toolkits. This paper presents InferType, a Java library that helps implement constraint-based type inference. A compiler writer uses InferType’s classes and methods to describe type constraints and typing rules for type inference. InferType then performs constraint solving by translation to the Z3 SMT solver. InferType is equipped with our developed optimization technique. It reduces the search space for type variables by pre-computing the structures of those type variables for mitigating the performance bottleneck of constraint solving with deeply nested types. We use InferType to implement type inference for a subset of Python, and conduct experiments to evaluate how the developed optimization technique can affect the performance of type inference. Our results show that InferType’s optimization can greatly mitigate the performance bottleneck for programs with deeply nested types, and can potentially improve the performance for large nested types.

Cite as

Senxi Li, Tetsuro Yamazaki, and Shigeru Chiba. InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 23:1-23:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ECOOP.2024.23,
  author =	{Li, Senxi and Yamazaki, Tetsuro and Chiba, Shigeru},
  title =	{{InferType: A Compiler Toolkit for Implementing Efficient Constraint-Based Type Inference}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{23:1--23:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.23},
  URN =		{urn:nbn:de:0030-drops-208728},
  doi =		{10.4230/LIPIcs.ECOOP.2024.23},
  annote =	{Keywords: Domain Specific Languages, Compilation, Static Analysis, Type Inference, Constraint Solving, SMT Solver}
}
Document
Type Tailoring

Authors: Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Type systems evolve too slowly to keep up with the quick evolution of libraries - especially libraries that introduce abstractions. Type tailoring offers a lightweight solution by equipping the core language with an API for modifying the elaboration of surface code into the internal language of the typechecker. Through user-programmable elaboration, tailoring rules appear to improve the precision and expressiveness of the underlying type system. Furthermore, type tailoring cooperates with the host type system by expanding to code that the host then typechecks. In the context of a hygienic metaprogramming system, tailoring rules can even harmoniously compose with one another. Type tailoring has emerged as a theme across several languages and metaprogramming systems, but never with direct support and rarely in the same shape twice. For example, both OCaml and Typed Racket enable forms of tailoring, but in quite different ways. This paper identifies key dimensions of type tailoring systems and tradeoffs along each dimension. It demonstrates the usefulness of tailoring with examples that cover sized vectors, database queries, and optional types. Finally, it outlines a vision for future research at the intersection of types and metaprogramming.

Cite as

Ashton Wiersdorf, Stephen Chang, Matthias Felleisen, and Ben Greenman. Type Tailoring. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 44:1-44:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{wiersdorf_et_al:LIPIcs.ECOOP.2024.44,
  author =	{Wiersdorf, Ashton and Chang, Stephen and Felleisen, Matthias and Greenman, Ben},
  title =	{{Type Tailoring}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{44:1--44:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.44},
  URN =		{urn:nbn:de:0030-drops-208933},
  doi =		{10.4230/LIPIcs.ECOOP.2024.44},
  annote =	{Keywords: Types, Metaprogramming, Macros, Partial Evaluation}
}
Document
RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs

Authors: Théo Boury, Laurent Bulteau, and Yann Ponty

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Inverse folding is a classic instance of negative RNA design which consists in finding a sequence that uniquely folds into a target secondary structure with respect to energy minimization. A breakthrough result of Bonnet et al. shows that, even in simple base pairs-based (BP) models, the decision version of a mildly constrained version of inverse folding is NP-hard. In this work, we show that inverse folding can be solved in linear time for a large collection of targets, including every structure that contains no isolated BP and no isolated stack (or, equivalently, when all helices consist of 3^{+} base pairs). For structures featuring shorter helices, our linear algorithm is no longer guaranteed to produce a solution, but still does so for a large proportion of instances. Our approach introduces a notion of modulo m-separability, generalizing a property pioneered by Hales et al. Separability is a sufficient condition for the existence of a solution to the inverse folding problem. We show that, for any input secondary structure of length n, a modulo m-separated sequence can be produced in time 𝒪(n 2^m) anytime such a sequence exists. Meanwhile, we show that any structure consisting of 3^{+} base pairs is either trivially non-designable, or always admits a modulo-2 separated solution (m = 2). Solution sequences can thus be produced in linear time, and even be uniformly generated within the set of modulo-2 separable sequences.

Cite as

Théo Boury, Laurent Bulteau, and Yann Ponty. RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 19:1-19:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boury_et_al:LIPIcs.WABI.2024.19,
  author =	{Boury, Th\'{e}o and Bulteau, Laurent and Ponty, Yann},
  title =	{{RNA Inverse Folding Can Be Solved in Linear Time for Structures Without Isolated Stacks or Base Pairs}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{19:1--19:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.19},
  URN =		{urn:nbn:de:0030-drops-206632},
  doi =		{10.4230/LIPIcs.WABI.2024.19},
  annote =	{Keywords: RNA structure, String Design, Parameterized Complexity, Uniform Sampling}
}
Document
Anchorage Accurately Assembles Anchor-Flanked Synthetic Long Reads

Authors: Xiaofei Carl Zang, Xiang Li, Kyle Metcalfe, Tuval Ben-Yehezkel, Ryan Kelley, and Mingfu Shao

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Modern sequencing technologies allow for the addition of short-sequence tags, known as anchors, to both ends of a captured molecule. Anchors are useful in assembling the full-length sequence of a captured molecule as they can be used to accurately determine the endpoints. One representative of such anchor-enabled technology is LoopSeq Solo, a synthetic long read (SLR) sequencing protocol. LoopSeq Solo also achieves ultra-high sequencing depth and high purity of short reads covering the entire captured molecule. Despite the availability of many assembly methods, constructing full-length sequence from these anchor-enabled, ultra-high coverage sequencing data remains challenging due to the complexity of the underlying assembly graphs and the lack of specific algorithms leveraging anchors. We present Anchorage, a novel assembler that performs anchor-guided assembly for ultra-high-depth sequencing data. Anchorage starts with a kmer-based approach for precise estimation of molecule lengths. It then formulates the assembly problem as finding an optimal path that connects the two nodes determined by anchors in the underlying compact de Bruijn graph. The optimality is defined as maximizing the weight of the smallest node while matching the estimated sequence length. Anchorage uses a modified dynamic programming algorithm to efficiently find the optimal path. Through both simulations and real data, we show that Anchorage outperforms existing assembly methods, particularly in the presence of sequencing artifacts. Anchorage fills the gap in assembling anchor-enabled data. We anticipate its broad use as anchor-enabled sequencing technologies become prevalent. Anchorage is freely available at https://github.com/Shao-Group/anchorage; the scripts and documents that can reproduce all experiments in this manuscript are available at https://github.com/Shao-Group/anchorage-test.

Cite as

Xiaofei Carl Zang, Xiang Li, Kyle Metcalfe, Tuval Ben-Yehezkel, Ryan Kelley, and Mingfu Shao. Anchorage Accurately Assembles Anchor-Flanked Synthetic Long Reads. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 22:1-22:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{zang_et_al:LIPIcs.WABI.2024.22,
  author =	{Zang, Xiaofei Carl and Li, Xiang and Metcalfe, Kyle and Ben-Yehezkel, Tuval and Kelley, Ryan and Shao, Mingfu},
  title =	{{Anchorage Accurately Assembles Anchor-Flanked Synthetic Long Reads}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{22:1--22:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.22},
  URN =		{urn:nbn:de:0030-drops-206660},
  doi =		{10.4230/LIPIcs.WABI.2024.22},
  annote =	{Keywords: Genome assembly, de Bruijn graph, synthetic long reads, anchor-guided assembly, LoopSeq}
}
Document
Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture

Authors: Jordi Weggemans, Marten Folkertsma, and Chris Cade

Published in: LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)


Abstract
We study "Merlinized" versions of the recently defined Guided Local Hamiltonian problem, which we call "Guidable Local Hamiltonian" problems. Unlike their guided counterparts, these problems do not have a guiding state provided as a part of the input, but merely come with the promise that one exists. We consider in particular two classes of guiding states: those that can be prepared efficiently by a quantum circuit; and those belonging to a class of quantum states we call classically evaluatable, for which it is possible to efficiently compute expectation values of local observables classically. We show that guidable local Hamiltonian problems for both classes of guiding states are QCMA-complete in the inverse-polynomial precision setting, but lie within NP (or NqP) in the constant precision regime when the guiding state is classically evaluatable. Our completeness results show that, from a complexity-theoretic perspective, classical Ansätze selected by classical heuristics are just as powerful as quantum Ansätze prepared by quantum heuristics, as long as one has access to quantum phase estimation. In relation to the quantum PCP conjecture, we (i) define a complexity class capturing quantum-classical probabilistically checkable proof systems and show that it is contained in BQP^NP[1] for constant proof queries; (ii) give a no-go result on "dequantizing" the known quantum reduction which maps a QPCP-verification circuit to a local Hamiltonian with constant promise gap; (iii) give several no-go results for the existence of quantum gap amplification procedures that preserve certain ground state properties; and (iv) propose two conjectures that can be viewed as stronger versions of the NLTS theorem. Finally, we show that many of our results can be directly modified to obtain similar results for the class MA.

Cite as

Jordi Weggemans, Marten Folkertsma, and Chris Cade. Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{weggemans_et_al:LIPIcs.TQC.2024.10,
  author =	{Weggemans, Jordi and Folkertsma, Marten and Cade, Chris},
  title =	{{Guidable Local Hamiltonian Problems with Implications to Heuristic Ansatz State Preparation and the Quantum PCP Conjecture}},
  booktitle =	{19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-328-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{310},
  editor =	{Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.10},
  URN =		{urn:nbn:de:0030-drops-206804},
  doi =		{10.4230/LIPIcs.TQC.2024.10},
  annote =	{Keywords: Quantum complexity theory, local Hamiltonian problem, quantum state ansatzes, QCMA, quantum PCP conjecture}
}
Document
Efficient Computation of Topological Integral Transforms

Authors: Vadim Lebovici, Steve Oudot, and Hugo Passe

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Topological integral transforms have found many applications in shape analysis, from prediction of clinical outcomes in brain cancer to analysis of barley seeds. Using Euler characteristic as a measure, these objects record rich geometric information on weighted polytopal complexes. While some implementations exist, they only enable discretized representations of the transforms, and they do not handle weighted complexes (such as for instance images). Moreover, recent hybrid transforms lack an implementation. In this paper, we introduce eucalc, a novel implementation of three topological integral transforms - the Euler characteristic transform, the Radon transform, and hybrid transforms - for weighted cubical complexes. Leveraging piecewise linear Morse theory and Euler calculus, the algorithms significantly reduce computational complexity by focusing on critical points. Our software provides exact representations of transforms, handles both binary and grayscale images, and supports multi-core processing. It is publicly available as a C++ library with a Python wrapper. We present mathematical foundations, implementation details, and experimental evaluations, demonstrating eucalc’s efficiency.

Cite as

Vadim Lebovici, Steve Oudot, and Hugo Passe. Efficient Computation of Topological Integral Transforms. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 22:1-22:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{lebovici_et_al:LIPIcs.SEA.2024.22,
  author =	{Lebovici, Vadim and Oudot, Steve and Passe, Hugo},
  title =	{{Efficient Computation of Topological Integral Transforms}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{22:1--22:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.22},
  URN =		{urn:nbn:de:0030-drops-203878},
  doi =		{10.4230/LIPIcs.SEA.2024.22},
  annote =	{Keywords: Topological data analysis, Euler calculus, Topological integral transform, Euler characteristic transform, Hybrid transforms}
}
Document
IMELL Cut Elimination with Linear Overhead

Authors: Beniamino Accattoli and Claudio Sacerdoti Coen

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Recently, Accattoli introduced the Exponential Substitution Calculus (ESC) given by untyped proof terms for Intuitionistic Multiplicative Exponential Linear Logic (IMELL), endowed with rewriting rules at-a-distance for cut elimination. He also introduced a new cut elimination strategy, dubbed the good strategy, and showed that its number of steps is a time cost model with polynomial overhead for ESC/IMELL, and the first such one. Here, we refine Accattoli’s result by introducing an abstract machine for ESC and proving that it implements the good strategy and computes cut-free terms/proofs within a linear overhead.

Cite as

Beniamino Accattoli and Claudio Sacerdoti Coen. IMELL Cut Elimination with Linear Overhead. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 24:1-24:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{accattoli_et_al:LIPIcs.FSCD.2024.24,
  author =	{Accattoli, Beniamino and Sacerdoti Coen, Claudio},
  title =	{{IMELL Cut Elimination with Linear Overhead}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{24:1--24:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.24},
  URN =		{urn:nbn:de:0030-drops-203539},
  doi =		{10.4230/LIPIcs.FSCD.2024.24},
  annote =	{Keywords: Lambda calculus, linear logic, abstract machines}
}
Document
Track A: Algorithms, Complexity and Games
Fast Approximate Counting of Cycles

Authors: Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal.

Cite as

Keren Censor-Hillel, Tomer Even, and Virginia Vassilevska Williams. Fast Approximate Counting of Cycles. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 37:1-37:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{censorhillel_et_al:LIPIcs.ICALP.2024.37,
  author =	{Censor-Hillel, Keren and Even, Tomer and Vassilevska Williams, Virginia},
  title =	{{Fast Approximate Counting of Cycles}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{37:1--37:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.37},
  URN =		{urn:nbn:de:0030-drops-201809},
  doi =		{10.4230/LIPIcs.ICALP.2024.37},
  annote =	{Keywords: Approximate triangle counting, Approximate cycle counting Fast matrix multiplication, Fast rectangular matrix multiplication}
}
Document
Improving Discovery of Open Civic Data

Authors: Sara Lafia, Andrew Turner, and Werner Kuhn

Published in: LIPIcs, Volume 114, 10th International Conference on Geographic Information Science (GIScience 2018)


Abstract
We describe a method and system design for improved data discovery in an integrated network of open geospatial data that supports collaborative policy development between governments and local constituents. Metadata about civic data (such as thematic categories, user-generated tags, geo-references, or attribute schemata) primarily rely on technical vocabularies that reflect scientific or organizational hierarchies. By contrast, public consumers of data often search for information using colloquial terminology that does not align with official metadata vocabularies. For example, citizens searching for data about bicycle collisions in an area are unlikely to use the search terms with which organizations like Departments of Transportation describe relevant data. Users may also search with broad terms, such as "traffic safety", and will then not discover data tagged with narrower official terms, such as "vehicular crash". This mismatch raises the question of how to bridge the users' ways of talking and searching with the language of technical metadata. In similar situations, it has been beneficial to augment official metadata with semantic annotations that expand the discoverability and relevance recommendations of data, supporting more inclusive access. Adopting this strategy, we develop a method for automated semantic annotation, which aggregates similar thematic and geographic information. A novelty of our approach is the development and application of a crosscutting base vocabulary that supports the description of geospatial themes. The resulting annotation method is integrated into a novel open access collaboration platform (Esri's ArcGIS Hub) that supports public dissemination of civic data and is in use by thousands of government agencies. Our semantic annotation method improves data discovery for users across organizational repositories and has the potential to facilitate the coordination of community and organizational work, improving the transparency and efficacy of government policies.

Cite as

Sara Lafia, Andrew Turner, and Werner Kuhn. Improving Discovery of Open Civic Data. In 10th International Conference on Geographic Information Science (GIScience 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 114, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{lafia_et_al:LIPIcs.GISCIENCE.2018.9,
  author =	{Lafia, Sara and Turner, Andrew and Kuhn, Werner},
  title =	{{Improving Discovery of Open Civic Data}},
  booktitle =	{10th International Conference on Geographic Information Science (GIScience 2018)},
  pages =	{9:1--9:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-083-5},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{114},
  editor =	{Winter, Stephan and Griffin, Amy and Sester, Monika},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GISCIENCE.2018.9},
  URN =		{urn:nbn:de:0030-drops-93376},
  doi =		{10.4230/LIPIcs.GISCIENCE.2018.9},
  annote =	{Keywords: data discovery, metadata, query expansion, interoperability}
}
  • Refine by Author
  • 1 Accattoli, Beniamino
  • 1 Atondo-Siu, Gilberto
  • 1 Ben-Yehezkel, Tuval
  • 1 Boury, Théo
  • 1 Bulteau, Laurent
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Digital cash
  • 1 Applied computing → Law
  • 1 Applied computing → Molecular sequence analysis
  • 1 Applied computing → Molecular structural biology
  • 1 Information systems → Digital libraries and archives
  • Show More...

  • Refine by Keyword
  • 1 Approximate cycle counting Fast matrix multiplication
  • 1 Approximate triangle counting
  • 1 Bitcoin
  • 1 Compilation
  • 1 Constraint Solving
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 9 2024
  • 1 2018

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail