4 Search Results for "Zhou, Leo"


Document
Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations

Authors: Anurag Anshu and Tony Metger

Published in: LIPIcs, Volume 251, 14th Innovations in Theoretical Computer Science Conference (ITCS 2023)


Abstract
We prove concentration bounds for the following classes of quantum states: (i) output states of shallow quantum circuits, answering an open question from [De Palma et al., 2022]; (ii) injective matrix product states; (iii) output states of dense Hamiltonian evolution, i.e. states of the form e^{ιH^{(p)}} ⋯ e^{ιH^{(1)}} |ψ₀⟩ for any n-qubit product state |ψ₀⟩, where each H^{(i)} can be any local commuting Hamiltonian satisfying a norm constraint, including dense Hamiltonians with interactions between any qubits. Our proofs use polynomial approximations to show that these states are close to local operators. This implies that the distribution of the Hamming weight of a computational basis measurement (and of other related observables) concentrates. An example of (iii) are the states produced by the quantum approximate optimisation algorithm (QAOA). Using our concentration results for these states, we show that for a random spin model, the QAOA can only succeed with negligible probability even at super-constant level p = o(log log n), assuming a strengthened version of the so-called overlap gap property. This gives the first limitations on the QAOA on dense instances at super-constant level, improving upon the recent result [Basso et al., 2022].

Cite as

Anurag Anshu and Tony Metger. Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations. In 14th Innovations in Theoretical Computer Science Conference (ITCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 251, pp. 5:1-5:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{anshu_et_al:LIPIcs.ITCS.2023.5,
  author =	{Anshu, Anurag and Metger, Tony},
  title =	{{Concentration Bounds for Quantum States and Limitations on the QAOA from Polynomial Approximations}},
  booktitle =	{14th Innovations in Theoretical Computer Science Conference (ITCS 2023)},
  pages =	{5:1--5:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-263-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{251},
  editor =	{Tauman Kalai, Yael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2023.5},
  URN =		{urn:nbn:de:0030-drops-175085},
  doi =		{10.4230/LIPIcs.ITCS.2023.5},
  annote =	{Keywords: quantum computing, polynomial approximation, quantum optimization algorithm, QAOA, overlap gap property}
}
Document
The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model

Authors: Joao Basso, Edward Farhi, Kunal Marwaha, Benjamin Villalonga, and Leo Zhou

Published in: LIPIcs, Volume 232, 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)


Abstract
The Quantum Approximate Optimization Algorithm (QAOA) finds approximate solutions to combinatorial optimization problems. Its performance monotonically improves with its depth p. We apply the QAOA to MaxCut on large-girth D-regular graphs. We give an iterative formula to evaluate performance for any D at any depth p. Looking at random D-regular graphs, at optimal parameters and as D goes to infinity, we find that the p = 11 QAOA beats all classical algorithms (known to the authors) that are free of unproven conjectures. While the iterative formula for these D-regular graphs is derived by looking at a single tree subgraph, we prove that it also gives the ensemble-averaged performance of the QAOA on the Sherrington-Kirkpatrick (SK) model defined on the complete graph. We also generalize our formula to Max-q-XORSAT on large-girth regular hypergraphs. Our iteration is a compact procedure, but its computational complexity grows as O(p² 4^p). This iteration is more efficient than the previous procedure for analyzing QAOA performance on the SK model, and we are able to numerically go to p = 20. Encouraged by our findings, we make the optimistic conjecture that the QAOA, as p goes to infinity, will achieve the Parisi value. We analyze the performance of the quantum algorithm, but one needs to run it on a quantum computer to produce a string with the guaranteed performance.

Cite as

Joao Basso, Edward Farhi, Kunal Marwaha, Benjamin Villalonga, and Leo Zhou. The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model. In 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 232, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{basso_et_al:LIPIcs.TQC.2022.7,
  author =	{Basso, Joao and Farhi, Edward and Marwaha, Kunal and Villalonga, Benjamin and Zhou, Leo},
  title =	{{The Quantum Approximate Optimization Algorithm at High Depth for MaxCut on Large-Girth Regular Graphs and the Sherrington-Kirkpatrick Model}},
  booktitle =	{17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2022)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-237-2},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{232},
  editor =	{Le Gall, Fran\c{c}ois and Morimae, Tomoyuki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2022.7},
  URN =		{urn:nbn:de:0030-drops-165144},
  doi =		{10.4230/LIPIcs.TQC.2022.7},
  annote =	{Keywords: Quantum algorithm, Max-Cut, spin glass, approximation algorithm}
}
Document
Classical Algorithms and Quantum Limitations for Maximum Cut on High-Girth Graphs

Authors: Boaz Barak and Kunal Marwaha

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
We study the performance of local quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) for the maximum cut problem, and their relationship to that of randomized classical algorithms. 1) We prove that every (quantum or classical) one-local algorithm (where the value of a vertex only depends on its and its neighbors' state) achieves on D-regular graphs of girth > 5 a maximum cut of at most 1/2 + C/√D for C = 1/√2 ≈ 0.7071. This is the first such result showing that one-local algorithms achieve a value that is bounded away from the true optimum for random graphs, which is 1/2 + P_*/√D + o(1/√D) for P_* ≈ 0.7632 [Dembo et al., 2017]. 2) We show that there is a classical k-local algorithm that achieves a value of 1/2 + C/√D - O(1/√k) for D-regular graphs of girth > 2k+1, where C = 2/π ≈ 0.6366. This is an algorithmic version of the existential bound of [Lyons, 2017] and is related to the algorithm of [Aizenman et al., 1987] (ALR) for the Sherrington-Kirkpatrick model. This bound is better than that achieved by the one-local and two-local versions of QAOA on high-girth graphs [M. B. Hastings, 2019; Marwaha, 2021]. 3) Through computational experiments, we give evidence that the ALR algorithm achieves better performance than constant-locality QAOA for random D-regular graphs, as well as other natural instances, including graphs that do have short cycles. While our theoretical bounds require the locality and girth assumptions, our experimental work suggests that it could be possible to extend them beyond these constraints. This points at the tantalizing possibility that O(1)-local quantum maximum-cut algorithms might be pointwise dominated by polynomial-time classical algorithms, in the sense that there is a classical algorithm outputting cuts of equal or better quality on every possible instance. This is in contrast to the evidence that polynomial-time algorithms cannot simulate the probability distributions induced by local quantum algorithms.

Cite as

Boaz Barak and Kunal Marwaha. Classical Algorithms and Quantum Limitations for Maximum Cut on High-Girth Graphs. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 14:1-14:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{barak_et_al:LIPIcs.ITCS.2022.14,
  author =	{Barak, Boaz and Marwaha, Kunal},
  title =	{{Classical Algorithms and Quantum Limitations for Maximum Cut on High-Girth Graphs}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{14:1--14:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.14},
  URN =		{urn:nbn:de:0030-drops-156105},
  doi =		{10.4230/LIPIcs.ITCS.2022.14},
  annote =	{Keywords: approximation algorithms, QAOA, maximum cut, local distributions}
}
Document
Hamiltonian Sparsification and Gap-Simulation

Authors: Dorit Aharonov and Leo Zhou

Published in: LIPIcs, Volume 124, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019)


Abstract
Analog quantum simulation - simulation of one Hamiltonian by another - is one of the major goals in the noisy intermediate-scale quantum computation (NISQ) era, and has many applications in quantum complexity. We initiate the rigorous study of the physical resources required for such simulations, where we focus on the task of Hamiltonian sparsification. The goal is to find a simulating Hamiltonian H~ whose underlying interaction graph has bounded degree (this is called degree-reduction) or much fewer edges than that of the original Hamiltonian H (this is called dilution). We set this study in a relaxed framework for analog simulations that we call gap-simulation, where H~ is only required to simulate the groundstate(s) and spectral gap of H instead of its full spectrum, and we believe it is of independent interest. Our main result is a proof that in stark contrast to the classical setting, general degree-reduction is impossible in the quantum world, even under our relaxed notion of gap-simulation. The impossibility proof relies on devising counterexample Hamiltonians and applying a strengthened variant of Hastings-Koma decay of correlations theorem. We also show a complementary result where degree-reduction is possible when the strength of interactions is allowed to grow polynomially. Furthermore, we prove the impossibility of the related sparsification task of generic Hamiltonian dilution, under a computational hardness assumption. We also clarify the (currently weak) implications of our results to the question of quantum PCP. Our work provides basic answers to many of the "first questions" one would ask about Hamiltonian sparsification and gap-simulation; we hope this serves as a good starting point for future research of these topics.

Cite as

Dorit Aharonov and Leo Zhou. Hamiltonian Sparsification and Gap-Simulation. In 10th Innovations in Theoretical Computer Science Conference (ITCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 124, pp. 2:1-2:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{aharonov_et_al:LIPIcs.ITCS.2019.2,
  author =	{Aharonov, Dorit and Zhou, Leo},
  title =	{{Hamiltonian Sparsification and Gap-Simulation}},
  booktitle =	{10th Innovations in Theoretical Computer Science Conference (ITCS 2019)},
  pages =	{2:1--2:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-095-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{124},
  editor =	{Blum, Avrim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2019.2},
  URN =		{urn:nbn:de:0030-drops-100956},
  doi =		{10.4230/LIPIcs.ITCS.2019.2},
  annote =	{Keywords: quantum simulation, quantum Hamiltonian complexity, sparsification, quantum PCP}
}
  • Refine by Author
  • 2 Marwaha, Kunal
  • 2 Zhou, Leo
  • 1 Aharonov, Dorit
  • 1 Anshu, Anurag
  • 1 Barak, Boaz
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Quantum computation theory
  • 1 Mathematics of computing → Combinatorial optimization
  • 1 Theory of computation → Quantum complexity theory

  • Refine by Keyword
  • 2 QAOA
  • 1 Max-Cut
  • 1 Quantum algorithm
  • 1 approximation algorithm
  • 1 approximation algorithms
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 2 2022
  • 1 2019
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail