20 Search Results for "Zimmermann, Thomas"


Document
A Language-Based Version Control System for Python

Authors: Luís Carvalho and João Costa Seco

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
We extend prior work on a language-based approach to versioned software development to support versioned programs with mutable state and evolving method interfaces. Unlike the traditional approach of mainstream version control systems, where a textual diff represents each evolution step, we treat versions as programming elements. Each evolution step, merge operation, and version relationship is represented explicitly in a multifaceted code representation. This provides static guarantees for safe code reuse from previous versions and forward and backwards compatibility between versions, allowing clients to use newly introduced code without needing to refactor their program manually. By lifting versioning to the language level, we pave the way for tools that interact with software repositories to have more insight into a system’s behavior evolution. We instantiate our work in the Python programming language and demonstrate its applicability regarding common evolution and refactoring patterns found in different versions of popular Python packages.

Cite as

Luís Carvalho and João Costa Seco. A Language-Based Version Control System for Python. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 9:1-9:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carvalho_et_al:LIPIcs.ECOOP.2024.9,
  author =	{Carvalho, Lu{\'\i}s and Costa Seco, Jo\~{a}o},
  title =	{{A Language-Based Version Control System for Python}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{9:1--9:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.9},
  URN =		{urn:nbn:de:0030-drops-208586},
  doi =		{10.4230/LIPIcs.ECOOP.2024.9},
  annote =	{Keywords: Software evolution, type theory}
}
Document
Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories

Authors: Ayda Grisiute and Martin Raubal

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
This paper presents the Spatial Nudging framework - a theory-based framework that maps out nudging strategies in the mobility domain and refines its existing definitions. We link these strategies by highlighting the role of perceived affordances across physical and digital interventions based on the Nudge Theory and the Theory of Affordances. Furthermore, we propose to use graph representation techniques as a supportive methodology to better align perceived and actual environments, thereby enhancing the intervention strategies' effectiveness. We illustrate the applicability of the Spatial Nudging framework and the supportive methodology in the context of an E-bike City vision. This paper lays the foundation for future research on theoretically integrating physical and digital interventions to promote sustainable mobility.

Cite as

Ayda Grisiute and Martin Raubal. Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories. In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{grisiute_et_al:LIPIcs.COSIT.2024.5,
  author =	{Grisiute, Ayda and Raubal, Martin},
  title =	{{Spatial Nudging: Converging Persuasive Technologies, Spatial Design, and Behavioral Theories}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.5},
  URN =		{urn:nbn:de:0030-drops-208206},
  doi =		{10.4230/LIPIcs.COSIT.2024.5},
  annote =	{Keywords: spatial nudging, active mobility, Nudge Theory, Theory of Affordances, cognitive graphs}
}
Document
History-Determinism vs Fair Simulation

Authors: Udi Boker, Thomas A. Henzinger, Karoliina Lehtinen, and Aditya Prakash

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
An automaton 𝒜 is history-deterministic if its nondeterminism can be resolved on the fly, only using the prefix of the word read so far. This mild form of nondeterminism has attracted particular attention for its applications in synthesis problems. An automaton 𝒜 is guidable with respect to a class C of automata if it can fairly simulate every automaton in C, whose language is contained in that of 𝒜. In other words, guidable automata are those for which inclusion and simulation coincide, making them particularly interesting for model-checking. We study the connection between these two notions, and specifically the question of when they coincide. For classes of automata on which they do, deciding guidability, an otherwise challenging decision problem, reduces to deciding history-determinism, a problem that is starting to be well-understood for many classes. We provide a selection of sufficient criteria for a class of automata to guarantee the coincidence of the notions, and use them to show that the notions coincide for the most common automata classes, among which are ω-regular automata and many infinite-state automata with safety and reachability acceptance conditions, including vector addition systems with states, one-counter nets, pushdown-, Parikh-, and timed-automata. We also demonstrate that history-determinism and guidability do not always coincide, for example, for the classes of timed automata with a fixed number of clocks.

Cite as

Udi Boker, Thomas A. Henzinger, Karoliina Lehtinen, and Aditya Prakash. History-Determinism vs Fair Simulation. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boker_et_al:LIPIcs.CONCUR.2024.12,
  author =	{Boker, Udi and Henzinger, Thomas A. and Lehtinen, Karoliina and Prakash, Aditya},
  title =	{{History-Determinism vs Fair Simulation}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.12},
  URN =		{urn:nbn:de:0030-drops-207841},
  doi =		{10.4230/LIPIcs.CONCUR.2024.12},
  annote =	{Keywords: History-Determinism}
}
Document
Strategic Dominance: A New Preorder for Nondeterministic Processes

Authors: Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the following refinement relation between nondeterministic state-transition models: model ℬ strategically dominates model 𝒜 iff every deterministic refinement of 𝒜 is language contained in some deterministic refinement of ℬ. While language containment is trace inclusion, and the (fair) simulation preorder coincides with tree inclusion, strategic dominance falls strictly between the two and can be characterized as "strategy inclusion" between 𝒜 and ℬ: every strategy that resolves the nondeterminism of 𝒜 is dominated by a strategy that resolves the nondeterminism of ℬ. Strategic dominance can be checked in 2-ExpTime by a decidable first-order Presburger logic with quantification over words and strategies, called resolver logic. We give several other applications of resolver logic, including checking the co-safety, co-liveness, and history-determinism of boolean and quantitative automata, and checking the inclusion between hyperproperties that are specified by nondeterministic boolean and quantitative automata.

Cite as

Thomas A. Henzinger, Nicolas Mazzocchi, and N. Ege Saraç. Strategic Dominance: A New Preorder for Nondeterministic Processes. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 29:1-29:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.CONCUR.2024.29,
  author =	{Henzinger, Thomas A. and Mazzocchi, Nicolas and Sara\c{c}, N. Ege},
  title =	{{Strategic Dominance: A New Preorder for Nondeterministic Processes}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{29:1--29:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.29},
  URN =		{urn:nbn:de:0030-drops-208011},
  doi =		{10.4230/LIPIcs.CONCUR.2024.29},
  annote =	{Keywords: quantitative automata, refinement relation, resolver, strategy, history-determinism}
}
Document
Mutational Fuzz Testing for Constraint Modeling Systems

Authors: Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint programming (CP) modeling languages, like MiniZinc, Essence and CPMpy, play a crucial role in making CP technology accessible to non-experts. Both solver-independent modeling frameworks and solvers themselves are complex pieces of software that can contain bugs, which undermines their usefulness. Mutational fuzz testing is a way to test complex systems by stochastically mutating input and verifying preserved properties of the mutated output. We investigate different mutations and verification methods that can be used on the constraint specifications directly. This includes methods proposed in the context of SMT problem specifications, as well as new methods related to global constraints, optimization, and solution counting/preservation. Our results show that such a fuzz testing approach improves the overall code coverage of a modeling system compared to only unit testing, and is able to find bugs in the whole toolchain, from the modeling language transformations themselves to the underlying solvers.

Cite as

Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe, and Tias Guns. Mutational Fuzz Testing for Constraint Modeling Systems. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 29:1-29:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanroose_et_al:LIPIcs.CP.2024.29,
  author =	{Vanroose, Wout and Bleukx, Ignace and Devriendt, Jo and Tsouros, Dimos and Verhaeghe, H\'{e}l\`{e}ne and Guns, Tias},
  title =	{{Mutational Fuzz Testing for Constraint Modeling Systems}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{29:1--29:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.29},
  URN =		{urn:nbn:de:0030-drops-207149},
  doi =		{10.4230/LIPIcs.CP.2024.29},
  annote =	{Keywords: fuzz testing, Constraint modeling language, bugs, mutational testing, modeling, constraint reformulation}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Automata-Theoretic Characterisations of Branching-Time Temporal Logics

Authors: Massimo Benerecetti, Laura Bozzelli, Fabio Mogavero, and Adriano Peron

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Characterisations theorems serve as important tools in model theory and can be used to assess and compare the expressive power of temporal languages used for the specification and verification of properties in formal methods. While complete connections have been established for the linear-time case between temporal logics, predicate logics, algebraic models, and automata, the situation in the branching-time case remains considerably more fragmented. In this work, we provide an automata-theoretic characterisation of some important branching-time temporal logics, namely CTL* and ECTL* interpreted on arbitrary-branching trees, by identifying two variants of Hesitant Tree Automata that are proved equivalent to those logics. The characterisations also apply to Monadic Path Logic and the bisimulation-invariant fragment of Monadic Chain Logic, again interpreted over trees. These results widen the characterisation landscape of the branching-time case and solve a forty-year-old open question.

Cite as

Massimo Benerecetti, Laura Bozzelli, Fabio Mogavero, and Adriano Peron. Automata-Theoretic Characterisations of Branching-Time Temporal Logics. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 128:1-128:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{benerecetti_et_al:LIPIcs.ICALP.2024.128,
  author =	{Benerecetti, Massimo and Bozzelli, Laura and Mogavero, Fabio and Peron, Adriano},
  title =	{{Automata-Theoretic Characterisations of Branching-Time Temporal Logics}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{128:1--128:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.128},
  URN =		{urn:nbn:de:0030-drops-202716},
  doi =		{10.4230/LIPIcs.ICALP.2024.128},
  annote =	{Keywords: Branching-Time Temporal Logics, Monadic Second-Order Logics, Tree Automata}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games

Authors: Bruno Loff and Mateusz Skomra

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We devise a policy-iteration algorithm for deterministic two-player discounted and mean-payoff games, that runs in polynomial time with high probability, on any input where each payoff is chosen independently from a sufficiently random distribution and the underlying graph of the game is ergodic. This includes the case where an arbitrary set of payoffs has been perturbed by a Gaussian, showing for the first time that deterministic two-player games can be solved efficiently, in the sense of smoothed analysis. More generally, we devise a condition number for deterministic discounted and mean-payoff games played on ergodic graphs, and show that our algorithm runs in time polynomial in this condition number. Our result confirms a previous conjecture of Boros et al., which was claimed as a theorem [Boros et al., 2011] and later retracted [Boros et al., 2018]. It stands in contrast with a recent counter-example by Christ and Yannakakis [Christ and Yannakakis, 2023], showing that Howard’s policy-iteration algorithm does not run in smoothed polynomial time on stochastic single-player mean-payoff games. Our approach is inspired by the analysis of random optimal assignment instances by Frieze and Sorkin [Frieze and Sorkin, 2007], and the analysis of bias-induced policies for mean-payoff games by Akian, Gaubert and Hochart [Akian et al., 2018].

Cite as

Bruno Loff and Mateusz Skomra. Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 147:1-147:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{loff_et_al:LIPIcs.ICALP.2024.147,
  author =	{Loff, Bruno and Skomra, Mateusz},
  title =	{{Smoothed Analysis of Deterministic Discounted and Mean-Payoff Games}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{147:1--147:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.147},
  URN =		{urn:nbn:de:0030-drops-202908},
  doi =		{10.4230/LIPIcs.ICALP.2024.147},
  annote =	{Keywords: Mean-payoff games, discounted games, policy iteration, smoothed analysis}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Survey
Logics for Conceptual Data Modelling: A Review

Authors: Pablo R. Fillottrani and C. Maria Keet

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Information modelling for databases and object-oriented information systems avails of conceptual data modelling languages such as EER and UML Class Diagrams. Many attempts exist to add logical rigour to them, for various reasons and with disparate strengths. In this paper we aim to provide a structured overview of the many efforts. We focus on aims, approaches to the formalisation, including key dimensions of choice points, popular logics used, and the main relevant reasoning services. We close with current challenges and research directions.

Cite as

Pablo R. Fillottrani and C. Maria Keet. Logics for Conceptual Data Modelling: A Review. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 4:1-4:30, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{fillottrani_et_al:TGDK.2.1.4,
  author =	{Fillottrani, Pablo R. and Keet, C. Maria},
  title =	{{Logics for Conceptual Data Modelling: A Review}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{4:1--4:30},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.4},
  URN =		{urn:nbn:de:0030-drops-198616},
  doi =		{10.4230/TGDK.2.1.4},
  annote =	{Keywords: Conceptual Data Modelling, EER, UML, Description Logics, OWL}
}
Document
Toward Scientific Evidence Standards in Empirical Computer Science (Dagstuhl Seminar 22442)

Authors: Timothy Kluthe, Brett A. Becker, Christopher D. Hundhausen, Ciera Jaspan, Andreas Stefik, and Thomas Zimmermann

Published in: Dagstuhl Reports, Volume 12, Issue 10 (2023)


Abstract
Many scientific fields of study use formally established evidence standards during the peer review and evaluation process, such as Consolidated Standards of Reporting Trials (CONSORT) in medical research, the What Works Clearinghouse (WWC) used in education in the United States, or the APA Journal Article Reporting Standards (JARS) in psychology. The basis for these standards is community agreement on what to report in empirical studies. Such standards achieve two key goals. First, they make it easier to compare studies, facilitating replications, through transparent reporting and sharing of data, which can provide confidence that multiple research teams can obtain the same results. Second, they establish community agreement on how to report on and evaluate studies using different methodologies. The discipline of computer science does not have formalized evidence standards, even for major conferences or journals. This Dagstuhl Seminar has three primary objectives: 1) To establish a process for creating or adopting an existing evidence standard for empirical research in computer science. 2) To build a community of scholars that can discuss what a general standard should include. 3) To kickstart the discussion with scholars from software engineering, human-computer interaction, and computer science education. In order to better discuss and understand the implications of such standards across several empirical subfields of computer science and to facilitate adoption, we brought together participants from a range of backgrounds; including academia and industry, software engineering, computer-human interaction and computer science education, as well as representatives from several prominent journals. Funding: This material is based upon work supported by the National Science Foundation under Grant Numbers NSF HCC: 2106392 and NSF I-TEST: 2048356.

Cite as

Timothy Kluthe, Brett A. Becker, Christopher D. Hundhausen, Ciera Jaspan, Andreas Stefik, and Thomas Zimmermann. Toward Scientific Evidence Standards in Empirical Computer Science (Dagstuhl Seminar 22442). In Dagstuhl Reports, Volume 12, Issue 10, pp. 225-240, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{kluthe_et_al:DagRep.12.10.225,
  author =	{Kluthe, Timothy and Becker, Brett A. and Hundhausen, Christopher D. and Jaspan, Ciera and Stefik, Andreas and Zimmermann, Thomas},
  title =	{{Toward Scientific Evidence Standards in Empirical Computer Science (Dagstuhl Seminar 22442)}},
  pages =	{225--240},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{10},
  editor =	{Kluthe, Timothy and Becker, Brett A. and Hundhausen, Christopher D. and Jaspan, Ciera and Stefik, Andreas and Zimmermann, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.10.225},
  URN =		{urn:nbn:de:0030-drops-178289},
  doi =		{10.4230/DagRep.12.10.225},
  annote =	{Keywords: Community evidence standards, Human factors}
}
Document
HyperLTL Satisfiability Is Σ₁¹-Complete, HyperCTL* Satisfiability Is Σ₁²-Complete

Authors: Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
Temporal logics for the specification of information-flow properties are able to express relations between multiple executions of a system. The two most important such logics are HyperLTL and HyperCTL*, which generalise LTL and CTL* by trace quantification. It is known that this expressiveness comes at a price, i.e. satisfiability is undecidable for both logics. In this paper we settle the exact complexity of these problems, showing that both are in fact highly undecidable: we prove that HyperLTL satisfiability is Σ₁¹-complete and HyperCTL* satisfiability is Σ₁²-complete. These are significant increases over the previously known lower bounds and the first upper bounds. To prove Σ₁²-membership for HyperCTL*, we prove that every satisfiable HyperCTL* sentence has a model that is equinumerous to the continuum, the first upper bound of this kind. We prove this bound to be tight. Finally, we show that the membership problem for every level of the HyperLTL quantifier alternation hierarchy is Π₁¹-complete.

Cite as

Marie Fortin, Louwe B. Kuijer, Patrick Totzke, and Martin Zimmermann. HyperLTL Satisfiability Is Σ₁¹-Complete, HyperCTL* Satisfiability Is Σ₁²-Complete. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 47:1-47:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fortin_et_al:LIPIcs.MFCS.2021.47,
  author =	{Fortin, Marie and Kuijer, Louwe B. and Totzke, Patrick and Zimmermann, Martin},
  title =	{{HyperLTL Satisfiability Is \Sigma₁¹-Complete, HyperCTL* Satisfiability Is \Sigma₁²-Complete}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{47:1--47:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.47},
  URN =		{urn:nbn:de:0030-drops-144870},
  doi =		{10.4230/LIPIcs.MFCS.2021.47},
  annote =	{Keywords: HyperLTL, HyperCTL*, Satisfiability, Analytical Hierarchy}
}
Document
SE4ML - Software Engineering for AI-ML-based Systems (Dagstuhl Seminar 20091)

Authors: Kristian Kersting, Miryung Kim, Guy Van den Broeck, and Thomas Zimmermann

Published in: Dagstuhl Reports, Volume 10, Issue 2 (2020)


Abstract
Multiple research disciplines, from cognitive sciences to biology, finance, physics, and the social sciences, as well as many companies, believe that data-driven and intelligent solutions are necessary. Unfortunately, current artificial intelligence (AI) and machine learning (ML) technologies are not sufficiently democratized - building complex AI and ML systems requires deep expertise in computer science and extensive programming skills to work with various machine reasoning and learning techniques at a rather low level of abstraction. It also requires extensive trial and error exploration for model selection, data cleaning, feature selection, and parameter tuning. Moreover, there is a lack of theoretical understanding that could be used to abstract away these subtleties. Conventional programming languages and software engineering paradigms have also not been designed to address challenges faced by AI and ML practitioners. In 2016, companies invested $26–39 billion in AI and McKinsey predicts that investments will be growing over the next few years. Any AI/ML-based systems will need to be built, tested, and maintained, yet there is a lack of established engineering practices in industry for such systems because they are fundamentally different from traditional software systems. This Dagstuhl Seminar brought together two rather disjoint communities together, software engineering and programming languages (PL/SE) and artificial intelligence and machine learning (AI-ML) to discuss open problems on how to improve the productivity of data scientists, software engineers, and AI-ML practitioners in industry.

Cite as

Kristian Kersting, Miryung Kim, Guy Van den Broeck, and Thomas Zimmermann. SE4ML - Software Engineering for AI-ML-based Systems (Dagstuhl Seminar 20091). In Dagstuhl Reports, Volume 10, Issue 2, pp. 76-87, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Article{kersting_et_al:DagRep.10.2.76,
  author =	{Kersting, Kristian and Kim, Miryung and Van den Broeck, Guy and Zimmermann, Thomas},
  title =	{{SE4ML - Software Engineering for AI-ML-based Systems (Dagstuhl Seminar 20091)}},
  pages =	{76--87},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2020},
  volume =	{10},
  number =	{2},
  editor =	{Kersting, Kristian and Kim, Miryung and Van den Broeck, Guy and Zimmermann, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.10.2.76},
  URN =		{urn:nbn:de:0030-drops-130603},
  doi =		{10.4230/DagRep.10.2.76},
  annote =	{Keywords: correctness / explainability / traceability / fairness for ml, data scientist productivity, debugging/ testing / verification for ml systems}
}
Document
BOTse: Bots in Software Engineering (Dagstuhl Seminar 19471)

Authors: Margaret-Anne Storey, Alexander Serebrenik, Carolyn Penstein Rosé, Thomas Zimmermann, and James D. Herbsleb

Published in: Dagstuhl Reports, Volume 9, Issue 11 (2020)


Abstract
This report documents the program and the outcomes of the Dagstuhl Seminar 19471 "BOTse: Bots in Software Engineering". This Dagstuhl seminar brought researchers and practitioners together from multiple research communities with disparate views of what bots are and what they can do for software engineering. The goals were to understand how bots are used today, how they could be used in innovative ways in the future, how the use of bots can be compared and synthesized, and to identify and share risks and challenges that may emerge from using bots in practice. The report briefly summarizes the goals and format of the seminar and provides selected insights and results collected during the seminar.

Cite as

Margaret-Anne Storey, Alexander Serebrenik, Carolyn Penstein Rosé, Thomas Zimmermann, and James D. Herbsleb. BOTse: Bots in Software Engineering (Dagstuhl Seminar 19471). In Dagstuhl Reports, Volume 9, Issue 11, pp. 84-96, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Article{storey_et_al:DagRep.9.11.84,
  author =	{Storey, Margaret-Anne and Serebrenik, Alexander and Ros\'{e}, Carolyn Penstein and Zimmermann, Thomas and Herbsleb, James D.},
  title =	{{BOTse: Bots in Software Engineering (Dagstuhl Seminar 19471)}},
  pages =	{84--96},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2020},
  volume =	{9},
  number =	{11},
  editor =	{Storey, Margaret-Anne and Serebrenik, Alexander and Ros\'{e}, Carolyn Penstein and Zimmermann, Thomas and Herbsleb, James D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.9.11.84},
  URN =		{urn:nbn:de:0030-drops-119848},
  doi =		{10.4230/DagRep.9.11.84},
  annote =	{Keywords: automated software development, bots, chatbots, collaborative software development, cscw, devops, nlp, software engineering}
}
Document
Rethinking Productivity in Software Engineering (Dagstuhl Seminar 17102)

Authors: Thomas Fritz, Gloria Mark, Gail C. Murphy, and Thomas Zimmermann

Published in: Dagstuhl Reports, Volume 7, Issue 3 (2017)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 17102 "Rethinking Productivity in Software Engineering". In the following, we briefly summarize the goals and format of the of the seminar, before we provide insights and an outlook, including a few grand challenges, based on the results and statements collected during the seminar.

Cite as

Thomas Fritz, Gloria Mark, Gail C. Murphy, and Thomas Zimmermann. Rethinking Productivity in Software Engineering (Dagstuhl Seminar 17102). In Dagstuhl Reports, Volume 7, Issue 3, pp. 19-26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{fritz_et_al:DagRep.7.3.19,
  author =	{Fritz, Thomas and Mark, Gloria and Murphy, Gail C. and Zimmermann, Thomas},
  title =	{{Rethinking Productivity in Software Engineering (Dagstuhl Seminar 17102)}},
  pages =	{19--26},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2017},
  volume =	{7},
  number =	{3},
  editor =	{Fritz, Thomas and Mark, Gloria and Murphy, Gail C. and Zimmermann, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.7.3.19},
  URN =		{urn:nbn:de:0030-drops-73592},
  doi =		{10.4230/DagRep.7.3.19},
  annote =	{Keywords: productivity, software development, human factors, productivity factors, grand challenges}
}
  • Refine by Author
  • 9 Zimmermann, Thomas
  • 4 Breu, Silvia
  • 3 Lindig, Christian
  • 2 Henzinger, Thomas A.
  • 1 Becker, Brett A.
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Formal languages and automata theory
  • 2 Computing methodologies → Artificial intelligence
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Software and its engineering
  • 2 Theory of computation → Logic and verification
  • Show More...

  • Refine by Keyword
  • 2 mining software repositories
  • 2 software development
  • 1 Analytical Hierarchy
  • 1 Applications of logics
  • 1 Aspect Mining
  • Show More...

  • Refine by Type
  • 20 document

  • Refine by Publication Year
  • 10 2024
  • 4 2007
  • 2 2020
  • 1 2014
  • 1 2017
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail