17 Search Results for "Cazaux, Bastien"


Document
Fast Pseudoalignment Queries on Compressed Colored de Bruijn Graphs

Authors: Alessio Campanelli, Giulio Ermanno Pibiri, and Rob Patro

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
Motivation. Indexes for the colored de Bruijn graph (c-dBG) play a crucial role in computational biology by facilitating complex tasks such as read mapping and assembly. These indexes map k-mers (substrings of length k) appearing in a large collection of reference strings to the set of identifiers of the strings where they appear. These sets, colloquially referred to as color sets, tend to occupy large quantities of memory, especially for large pangenomes. Our previous work thus focused on leveraging the repetitiveness of the color sets to improve the space effectiveness of the resulting index. As a matter of fact, repetition-aware indexes can be up to one order of magnitude smaller on large pangenomes compared to indexes that do not exploit such repetitiveness. Such improved space effectiveness, on the other hand, imposes an overhead at query time when performing tasks such as pseudoalignment that require the collection and processing of multiple related color sets. Methods. In this paper, we show how to avoid this overhead. We devise novel query algorithms tailored for the specific repetition-aware representations adopted by the Fulgor index, a state-of-the-art c-dBG index, to significantly improve its pseudoalignment efficiency and without consuming additional space. Results. Our results indicate that with increasing redundancy in the pangenomes, the compression factor provided by the Fulgor index increases, while the relative query time actually reduces. For example, while the space of the Fulgor index improves by 2.5× with repetition-aware compression and its query time improves by 1.6× on a collection of 5,000 Salmonella Enterica genomes, these factors become (6.1×,2.8×) and (11.2×,3.2×) for 50,000 and 150,000 genomes respectively. For an even larger collection of 300,000 genomes, we obtained an index that is 22.3× smaller and 2.2× faster.

Cite as

Alessio Campanelli, Giulio Ermanno Pibiri, and Rob Patro. Fast Pseudoalignment Queries on Compressed Colored de Bruijn Graphs. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{campanelli_et_al:LIPIcs.WABI.2025.6,
  author =	{Campanelli, Alessio and Pibiri, Giulio Ermanno and Patro, Rob},
  title =	{{Fast Pseudoalignment Queries on Compressed Colored de Bruijn Graphs}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.6},
  URN =		{urn:nbn:de:0030-drops-239327},
  doi =		{10.4230/LIPIcs.WABI.2025.6},
  annote =	{Keywords: Colored de Bruijn graphs, Pseudoalignment, Repetition-aware compression}
}
Document
Research
On the Construction of Elastic Degenerate Strings

Authors: Nicola Rizzo, Veli Mäkinen, and Nadia Pisanti

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
An elastic degenerate string (EDS) is a sequence of sets of strings. In the context of bioinformatics, EDSes can be used to represent the variations observed in a population from its consensus genome. Pattern matching and comparison problems on EDSes have been widely studied in the literature, but their construction has been largely omitted. We fill this gap by showing how algorithms originally developed for related problems of founder reconstruction can be adapted to minimize the total cardinality of the EDS sets and total length of the EDS strings in linear time, given suitable multiple alignments representing the input data.

Cite as

Nicola Rizzo, Veli Mäkinen, and Nadia Pisanti. On the Construction of Elastic Degenerate Strings. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 2:1-2:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{rizzo_et_al:OASIcs.Grossi.2,
  author =	{Rizzo, Nicola and M\"{a}kinen, Veli and Pisanti, Nadia},
  title =	{{On the Construction of Elastic Degenerate Strings}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{2:1--2:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.2},
  URN =		{urn:nbn:de:0030-drops-238014},
  doi =		{10.4230/OASIcs.Grossi.2},
  annote =	{Keywords: multiple sequence alignment, pattern matching, data structures, segmentation algorithms, founder reconstruction, dynamic programming, semi-dynamic range minimum queries, positional Burrows-Wheeler transform}
}
Document
Research
Conditional Lower Bounds for String Matching in Labelled Graphs

Authors: Massimo Equi

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
The problem of String Matching in Labelled Graphs (SMLG) is one possible generalization of the classic problem of finding a string inside another of greater length. In its most general form, SMLG asks to find a match for a string into a graph, which can be directed or undirected. As for string matching, many different variations are possible. For example, the match could be exact or approximate, and the match could lie on a path or a walk. Some of these variations easily fall into the NP-hard realm, while other variants are solvable in polynomial time. For the latter ones, fine-grained complexity has been a game changer in proving quadratic conditional lower bounds, allowing to finally close the gap with those upper bounds that remained unmatched for almost two decades. If the match is allowed to be approximate, SMLG enjoys the same conditional quadratic lower bounds shown for example for edit distance (Backurs and Indyk, STOC '15). The case that really requires ad hoc conditional lower bounds is the one of finding an exact match that lies on a walk. In this work, we focus on explaining various conditional lower bounds for this version of SMLG, with the goal of giving an overall perspective that could help understand which aspects of the problem make it quadratic. We will introduce the reader to the field of fine-grained complexity and show how it can successfully provide the exact type of lower bounds needed for polynomial problems such as SMLG.

Cite as

Massimo Equi. Conditional Lower Bounds for String Matching in Labelled Graphs. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{equi:OASIcs.Grossi.7,
  author =	{Equi, Massimo},
  title =	{{Conditional Lower Bounds for String Matching in Labelled Graphs}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{7:1--7:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.7},
  URN =		{urn:nbn:de:0030-drops-238063},
  doi =		{10.4230/OASIcs.Grossi.7},
  annote =	{Keywords: conditional lower bounds, strong exponential time hypothesis, fine-grained complexity, string matching, graphs}
}
Document
Circular Dictionary Matching Using Extended BWT

Authors: Wing-Kai Hon, Rahul Shah, and Sharma V. Thankachan

Published in: OASIcs, Volume 131, The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday (2025)


Abstract
The dictionary matching problem involves preprocessing a set of strings (patterns) into a data structure that efficiently identifies all occurrences of these patterns within a query string (text). In this work, we investigate a variation of this problem, termed circular dictionary matching, where the patterns are circular, meaning their cyclic shifts are also considered valid patterns. Such patterns naturally occur in areas such as bioinformatics and computational geometry. Based on the extended Burrows-Wheeler Transformation (eBWT), we design a space-efficient solution for this problem. Specifically, we show that a dictionary of d circular patterns of total length n can be indexed in nlog σ + O(n+dlog n+σ log n) bits of space and support circular dictionary matching on a query text T in O((|T|+occ)log n) time, where σ represents the size of the underlying alphabet and occ represents the output size.

Cite as

Wing-Kai Hon, Rahul Shah, and Sharma V. Thankachan. Circular Dictionary Matching Using Extended BWT. In The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 131, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hon_et_al:OASIcs.Manzini.11,
  author =	{Hon, Wing-Kai and Shah, Rahul and Thankachan, Sharma V.},
  title =	{{Circular Dictionary Matching Using Extended BWT}},
  booktitle =	{The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday},
  pages =	{11:1--11:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-390-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{131},
  editor =	{Ferragina, Paolo and Gagie, Travis and Navarro, Gonzalo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Manzini.11},
  URN =		{urn:nbn:de:0030-drops-239195},
  doi =		{10.4230/OASIcs.Manzini.11},
  annote =	{Keywords: String algorithms, Burrows-Wheeler transformation, suffix trees, succinct data structures}
}
Document
Graph Indexing Beyond Wheeler Graphs

Authors: Jarno N. Alanko, Elena Biagi, Massimo Equi, Veli Mäkinen, Simon J. Puglisi, Nicola Rizzo, Kunihiko Sadakane, and Jouni Sirén

Published in: OASIcs, Volume 131, The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday (2025)


Abstract
After the discovery of the FM index, which linked the Burrows-Wheeler transform (BWT) to pattern matching on strings, several contemporaneous strands of research began on indexing more complex structures with the BWT, such as tries, finite languages, de Bruijn graphs, and aligned sequences. These directions can now be viewed as culminating in the theory of Wheeler Graphs, but sometimes they go beyond. This chapter reviews the significant body of "proto Wheeler Graph" indexes, many of which exploit characteristics of their specific case to outperform Wheeler graphs, especially in practice.

Cite as

Jarno N. Alanko, Elena Biagi, Massimo Equi, Veli Mäkinen, Simon J. Puglisi, Nicola Rizzo, Kunihiko Sadakane, and Jouni Sirén. Graph Indexing Beyond Wheeler Graphs. In The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 131, pp. 13:1-13:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alanko_et_al:OASIcs.Manzini.13,
  author =	{Alanko, Jarno N. and Biagi, Elena and Equi, Massimo and M\"{a}kinen, Veli and Puglisi, Simon J. and Rizzo, Nicola and Sadakane, Kunihiko and Sir\'{e}n, Jouni},
  title =	{{Graph Indexing Beyond Wheeler Graphs}},
  booktitle =	{The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday},
  pages =	{13:1--13:29},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-390-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{131},
  editor =	{Ferragina, Paolo and Gagie, Travis and Navarro, Gonzalo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Manzini.13},
  URN =		{urn:nbn:de:0030-drops-239215},
  doi =		{10.4230/OASIcs.Manzini.13},
  annote =	{Keywords: indexing, compression, compressed data structures, string algorithms, pattern matching}
}
Document
BWT for String Collections

Authors: Davide Cenzato, Zsuzsanna Lipták, Nadia Pisanti, Giovanna Rosone, and Marinella Sciortino

Published in: OASIcs, Volume 131, The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday (2025)


Abstract
We survey the different methods used for extending the BWT to collections of strings, following largely [Cenzato and Lipták, CPM 2022, Bioinformatics 2024]. We analyze the specific aspects and combinatorial properties of the resulting BWT variants and give a categorization of publicly available tools for computing the BWT of string collections. We show how the specific method used impacts on the resulting transform, including the number of runs, and on the dynamicity of the transform with respect to adding or removing strings from the collection. We then focus on the number of runs of these BWT variants and present the optimal BWT introduced in [Cenzato et al., DCC 2023], which implements an algorithm originally proposed by [Bentley et al., ESA 2020] to minimize the number of BWT-runs. We also discuss several recent heuristics and study their impact on the compression of biological sequences. We conclude with an overview of the applications and the impact of the BWT of string collections in bioinformatics.

Cite as

Davide Cenzato, Zsuzsanna Lipták, Nadia Pisanti, Giovanna Rosone, and Marinella Sciortino. BWT for String Collections. In The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 131, pp. 3:1-3:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cenzato_et_al:OASIcs.Manzini.3,
  author =	{Cenzato, Davide and Lipt\'{a}k, Zsuzsanna and Pisanti, Nadia and Rosone, Giovanna and Sciortino, Marinella},
  title =	{{BWT for String Collections}},
  booktitle =	{The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday},
  pages =	{3:1--3:29},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-390-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{131},
  editor =	{Ferragina, Paolo and Gagie, Travis and Navarro, Gonzalo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Manzini.3},
  URN =		{urn:nbn:de:0030-drops-239113},
  doi =		{10.4230/OASIcs.Manzini.3},
  annote =	{Keywords: Burrows-Wheeler transform, Extended Burrows-Wheeler transform, compressed text indexes, text compression, string collections, bioinformatics}
}
Document
Faster Approximate Elastic-Degenerate String Matching - Part B

Authors: Paweł Gawrychowski, Adam Górkiewicz, Pola Marciniak, Solon P. Pissis, and Karol Pokorski

Published in: LIPIcs, Volume 331, 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)


Abstract
We revisit the complexity of approximate pattern matching in an elastic-degenerate string. Such a string is a sequence of n finite sets of strings of total length N, and compactly describes a collection of strings obtained by first choosing exactly one string in every set, and then concatenating them together. This is motivated by the need of storing a collection of highly similar DNA sequences. The basic algorithmic question on elastic-degenerate strings is pattern matching: given such an elastic-degenerate string and a standard pattern of length m, check if the pattern occurs in one of the strings in the described collection. Bernardini et al. [SICOMP 2022] showed how to leverage fast matrix multiplication to obtain an Õ(nm^{ω-1})+𝒪(N)-time complexity for this problem, where ω is the matrix multiplication exponent. However, from the point of view of possible applications, it is more desirable to work with approximate pattern matching, where we seek approximate occurrences of the pattern. This generalization has been considered in a few papers already, but the best result so far for occurrences with k mismatches, where k is a constant, is the Õ(nm²+N)-time algorithm presented in Part A [CPM 2025]. This brings the question whether increasing the dependency on m from m^{ω-1} to quadratic is necessary when moving from k = 0 to larger (but still constant) k. We design an Õ(nm^{1.5}+N)-time algorithm for pattern matching with k mismatches in an elastic-degenerate string, for any constant k. To obtain this time bound, we leverage the structural characterization of occurrences with k mismatches of Charalampopoulos, Kociumaka, and Wellnitz [FOCS 2020] together with fast Fourier transform. We need to work with multiple patterns at the same time, instead of a single pattern, which requires refining the original characterization. This might be of independent interest.

Cite as

Paweł Gawrychowski, Adam Górkiewicz, Pola Marciniak, Solon P. Pissis, and Karol Pokorski. Faster Approximate Elastic-Degenerate String Matching - Part B. In 36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 331, pp. 29:1-29:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gawrychowski_et_al:LIPIcs.CPM.2025.29,
  author =	{Gawrychowski, Pawe{\l} and G\'{o}rkiewicz, Adam and Marciniak, Pola and Pissis, Solon P. and Pokorski, Karol},
  title =	{{Faster Approximate Elastic-Degenerate String Matching - Part B}},
  booktitle =	{36th Annual Symposium on Combinatorial Pattern Matching (CPM 2025)},
  pages =	{29:1--29:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-369-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{331},
  editor =	{Bonizzoni, Paola and M\"{a}kinen, Veli},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2025.29},
  URN =		{urn:nbn:de:0030-drops-231236},
  doi =		{10.4230/LIPIcs.CPM.2025.29},
  annote =	{Keywords: ED string, approximate pattern matching, Hamming distance, k mismatches}
}
Document
Toward Optimal Fingerprint Indexing for Large Scale Genomics

Authors: Clément Agret, Bastien Cazaux, and Antoine Limasset

Published in: LIPIcs, Volume 242, 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)


Abstract
Motivation. To keep up with the scale of genomic databases, several methods rely on local sensitive hashing methods to efficiently find potential matches within large genome collections. Existing solutions rely on Minhash or Hyperloglog fingerprints and require reading the whole index to perform a query. Such solutions can not be considered scalable with the growing amount of documents to index. Results. We present NIQKI, a novel structure with well-designed fingerprints that lead to theoretical and practical query time improvements, outperforming state-of-the-art by orders of magnitude. Our contribution is threefold. First, we generalize the concept of Hyperminhash fingerprints in (h,m)-HMH fingerprints that can be tuned to present the lowest false positive rate given the expected sub-sampling applied. Second, we provide a structure able to index any kind of fingerprints based on inverted indexes that provide optimal queries, namely linear with the size of the output. Third, we implemented these approaches in a tool dubbed NIQKI that can index and calculate pairwise distances for over one million bacterial genomes from GenBank in a few days on a small cluster. We show that our approach can be orders of magnitude faster than state-of-the-art with comparable precision. We believe this approach can lead to tremendous improvements, allowing fast queries and scaling on extensive genomic databases.

Cite as

Clément Agret, Bastien Cazaux, and Antoine Limasset. Toward Optimal Fingerprint Indexing for Large Scale Genomics. In 22nd International Workshop on Algorithms in Bioinformatics (WABI 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 242, pp. 25:1-25:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{agret_et_al:LIPIcs.WABI.2022.25,
  author =	{Agret, Cl\'{e}ment and Cazaux, Bastien and Limasset, Antoine},
  title =	{{Toward Optimal Fingerprint Indexing for Large Scale Genomics}},
  booktitle =	{22nd International Workshop on Algorithms in Bioinformatics (WABI 2022)},
  pages =	{25:1--25:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-243-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{242},
  editor =	{Boucher, Christina and Rahmann, Sven},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2022.25},
  URN =		{urn:nbn:de:0030-drops-170598},
  doi =		{10.4230/LIPIcs.WABI.2022.25},
  annote =	{Keywords: Data Structure, Indexation, Local Sensitive Hashing, Genomes, Databases}
}
Document
Algorithms and Complexity on Indexing Elastic Founder Graphs

Authors: Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and Veli Mäkinen

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We study the problem of matching a string in a labeled graph. Previous research has shown that unless the Orthogonal Vectors Hypothesis (OVH) is false, one cannot solve this problem in strongly sub-quadratic time, nor index the graph in polynomial time to answer queries efficiently (Equi et al. ICALP 2019, SOFSEM 2021). These conditional lower-bounds cover even deterministic graphs with binary alphabet, but there naturally exist also graph classes that are easy to index: E.g. Wheeler graphs (Gagie et al. Theor. Comp. Sci. 2017) cover graphs admitting a Burrows-Wheeler transform -based indexing scheme. However, it is NP-complete to recognize if a graph is a Wheeler graph (Gibney, Thankachan, ESA 2019). We propose an approach to alleviate the construction bottleneck of Wheeler graphs. Rather than starting from an arbitrary graph, we study graphs induced from multiple sequence alignments. Elastic degenerate strings (Bernadini et al. SPIRE 2017, ICALP 2019) can be seen as such graphs, and we introduce here their generalization: elastic founder graphs. We first prove that even such induced graphs are hard to index under OVH. Then we introduce two subclasses that are easy to index. Moreover, we give a near-linear time algorithm to construct indexable elastic founder graphs. This algorithm is based on an earlier segmentation algorithm for gapless multiple sequence alignments inducing non-elastic founder graphs (Mäkinen et al., WABI 2020), but uses more involved techniques to cope with repetitive string collections synchronized with gaps. Finally, we show that one of the subclasses admits a reduction to Wheeler graphs in polynomial time.

Cite as

Massimo Equi, Tuukka Norri, Jarno Alanko, Bastien Cazaux, Alexandru I. Tomescu, and Veli Mäkinen. Algorithms and Complexity on Indexing Elastic Founder Graphs. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 20:1-20:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{equi_et_al:LIPIcs.ISAAC.2021.20,
  author =	{Equi, Massimo and Norri, Tuukka and Alanko, Jarno and Cazaux, Bastien and Tomescu, Alexandru I. and M\"{a}kinen, Veli},
  title =	{{Algorithms and Complexity on Indexing Elastic Founder Graphs}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{20:1--20:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.20},
  URN =		{urn:nbn:de:0030-drops-154532},
  doi =		{10.4230/LIPIcs.ISAAC.2021.20},
  annote =	{Keywords: orthogonal vectors hypothesis, multiple sequence alignment, segmentation}
}
Document
Track A: Algorithms, Complexity and Games
Genome Assembly, from Practice to Theory: Safe, Complete and Linear-Time

Authors: Massimo Cairo, Romeo Rizzi, Alexandru I. Tomescu, and Elia C. Zirondelli

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Genome assembly asks to reconstruct an unknown string from many shorter substrings of it. Even though it is one of the key problems in Bioinformatics, it is generally lacking major theoretical advances. Its hardness stems both from practical issues (size and errors of real data), and from the fact that problem formulations inherently admit multiple solutions. Given these, at their core, most state-of-the-art assemblers are based on finding non-branching paths (unitigs) in an assembly graph. While such paths constitute only partial assemblies, they are likely to be correct. More precisely, if one defines a genome assembly solution as a closed arc-covering walk of the graph, then unitigs appear in all solutions, being thus safe partial solutions. Until recently, it was open what are all the safe walks of an assembly graph. Tomescu and Medvedev (RECOMB 2016) characterized all such safe walks (omnitigs), thus giving the first safe and complete genome assembly algorithm. Even though omnitig finding was later improved to quadratic time, it remained open whether the crucial linear-time feature of finding unitigs can be attained with omnitigs. We answer this question affirmatively, by describing a surprising O(m)-time algorithm to identify all maximal omnitigs of a graph with n nodes and m arcs, notwithstanding the existence of families of graphs with Θ(mn) total maximal omnitig size. This is based on the discovery of a family of walks (macrotigs) with the property that all the non-trivial omnitigs are univocal extensions of subwalks of a macrotig. This has two consequences: (1) A linear-time output-sensitive algorithm enumerating all maximal omnitigs. (2) A compact O(m) representation of all maximal omnitigs, which allows, e.g., for O(m)-time computation of various statistics on them. Our results close a long-standing theoretical question inspired by practical genome assemblers, originating with the use of unitigs in 1995. We envision our results to be at the core of a reverse transfer from theory to practical and complete genome assembly programs, as has been the case for other key Bioinformatics problems.

Cite as

Massimo Cairo, Romeo Rizzi, Alexandru I. Tomescu, and Elia C. Zirondelli. Genome Assembly, from Practice to Theory: Safe, Complete and Linear-Time. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 43:1-43:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{cairo_et_al:LIPIcs.ICALP.2021.43,
  author =	{Cairo, Massimo and Rizzi, Romeo and Tomescu, Alexandru I. and Zirondelli, Elia C.},
  title =	{{Genome Assembly, from Practice to Theory: Safe, Complete and Linear-Time}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{43:1--43:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.43},
  URN =		{urn:nbn:de:0030-drops-141122},
  doi =		{10.4230/LIPIcs.ICALP.2021.43},
  annote =	{Keywords: Graph algorithm, strong connectivity, reachability under failures}
}
Document
A Linear Time Algorithm for Constructing Hierarchical Overlap Graphs

Authors: Sangsoo Park, Sung Gwan Park, Bastien Cazaux, Kunsoo Park, and Eric Rivals

Published in: LIPIcs, Volume 191, 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)


Abstract
The hierarchical overlap graph (HOG) is a graph that encodes overlaps from a given set P of n strings, as the overlap graph does. A best known algorithm constructs HOG in O(||P|| log n) time and O(||P||) space, where ||P|| is the sum of lengths of the strings in P. In this paper we present a new algorithm to construct HOG in O(||P||) time and space. Hence, the construction time and space of HOG are better than those of the overlap graph, which are O(||P|| + n²).

Cite as

Sangsoo Park, Sung Gwan Park, Bastien Cazaux, Kunsoo Park, and Eric Rivals. A Linear Time Algorithm for Constructing Hierarchical Overlap Graphs. In 32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 191, pp. 22:1-22:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{park_et_al:LIPIcs.CPM.2021.22,
  author =	{Park, Sangsoo and Park, Sung Gwan and Cazaux, Bastien and Park, Kunsoo and Rivals, Eric},
  title =	{{A Linear Time Algorithm for Constructing Hierarchical Overlap Graphs}},
  booktitle =	{32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021)},
  pages =	{22:1--22:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-186-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{191},
  editor =	{Gawrychowski, Pawe{\l} and Starikovskaya, Tatiana},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2021.22},
  URN =		{urn:nbn:de:0030-drops-139736},
  doi =		{10.4230/LIPIcs.CPM.2021.22},
  annote =	{Keywords: overlap graph, hierarchical overlap graph, shortest superstring problem, border array}
}
Document
Linear Time Construction of Indexable Founder Block Graphs

Authors: Veli Mäkinen, Bastien Cazaux, Massimo Equi, Tuukka Norri, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 172, 20th International Workshop on Algorithms in Bioinformatics (WABI 2020)


Abstract
We introduce a compact pangenome representation based on an optimal segmentation concept that aims to reconstruct founder sequences from a multiple sequence alignment (MSA). Such founder sequences have the feature that each row of the MSA is a recombination of the founders. Several linear time dynamic programming algorithms have been previously devised to optimize segmentations that induce founder blocks that then can be concatenated into a set of founder sequences. All possible concatenation orders can be expressed as a founder block graph. We observe a key property of such graphs: if the node labels (founder segments) do not repeat in the paths of the graph, such graphs can be indexed for efficient string matching. We call such graphs segment repeat-free founder block graphs. We give a linear time algorithm to construct a segment repeat-free founder block graph given an MSA. The algorithm combines techniques from the founder segmentation algorithms (Cazaux et al. SPIRE 2019) and fully-functional bidirectional Burrows-Wheeler index (Belazzougui and Cunial, CPM 2019). We derive a succinct index structure to support queries of arbitrary length in the paths of the graph. Experiments on an MSA of SARS-CoV-2 strains are reported. An MSA of size 410× 29811 is compacted in one minute into a segment repeat-free founder block graph of 3900 nodes and 4440 edges. The maximum length and total length of node labels is 12 and 34968, respectively. The index on the graph takes only 3% of the size of the MSA.

Cite as

Veli Mäkinen, Bastien Cazaux, Massimo Equi, Tuukka Norri, and Alexandru I. Tomescu. Linear Time Construction of Indexable Founder Block Graphs. In 20th International Workshop on Algorithms in Bioinformatics (WABI 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 172, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{makinen_et_al:LIPIcs.WABI.2020.7,
  author =	{M\"{a}kinen, Veli and Cazaux, Bastien and Equi, Massimo and Norri, Tuukka and Tomescu, Alexandru I.},
  title =	{{Linear Time Construction of Indexable Founder Block Graphs}},
  booktitle =	{20th International Workshop on Algorithms in Bioinformatics (WABI 2020)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-161-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{172},
  editor =	{Kingsford, Carl and Pisanti, Nadia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2020.7},
  URN =		{urn:nbn:de:0030-drops-127961},
  doi =		{10.4230/LIPIcs.WABI.2020.7},
  annote =	{Keywords: Pangenome indexing, founder reconstruction, multiple sequence alignment, compressed data structures, string matching}
}
Document
Finding All Maximal Perfect Haplotype Blocks in Linear Time

Authors: Jarno Alanko, Hideo Bannai, Bastien Cazaux, Pierre Peterlongo, and Jens Stoye

Published in: LIPIcs, Volume 143, 19th International Workshop on Algorithms in Bioinformatics (WABI 2019)


Abstract
Recent large-scale community sequencing efforts allow at an unprecedented level of detail the identification of genomic regions that show signatures of natural selection. Traditional methods for identifying such regions from individuals' haplotype data, however, require excessive computing times and therefore are not applicable to current datasets. In 2019, Cunha et al. (Proceedings of BSB 2019) suggested the maximal perfect haplotype block as a very simple combinatorial pattern, forming the basis of a new method to perform rapid genome-wide selection scans. The algorithm they presented for identifying these blocks, however, had a worst-case running time quadratic in the genome length. It was posed as an open problem whether an optimal, linear-time algorithm exists. In this paper we give two algorithms that achieve this time bound, one conceptually very simple one using suffix trees and a second one using the positional Burrows-Wheeler Transform, that is very efficient also in practice.

Cite as

Jarno Alanko, Hideo Bannai, Bastien Cazaux, Pierre Peterlongo, and Jens Stoye. Finding All Maximal Perfect Haplotype Blocks in Linear Time. In 19th International Workshop on Algorithms in Bioinformatics (WABI 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 143, pp. 8:1-8:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{alanko_et_al:LIPIcs.WABI.2019.8,
  author =	{Alanko, Jarno and Bannai, Hideo and Cazaux, Bastien and Peterlongo, Pierre and Stoye, Jens},
  title =	{{Finding All Maximal Perfect Haplotype Blocks in Linear Time}},
  booktitle =	{19th International Workshop on Algorithms in Bioinformatics (WABI 2019)},
  pages =	{8:1--8:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-123-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{143},
  editor =	{Huber, Katharina T. and Gusfield, Dan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2019.8},
  URN =		{urn:nbn:de:0030-drops-110388},
  doi =		{10.4230/LIPIcs.WABI.2019.8},
  annote =	{Keywords: Population genomics, selection coefficient, haplotype block, positional Burrows-Wheeler Transform}
}
Document
Linking BWT and XBW via Aho-Corasick Automaton: Applications to Run-Length Encoding

Authors: Bastien Cazaux and Eric Rivals

Published in: LIPIcs, Volume 128, 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019)


Abstract
The boom of genomic sequencing makes compression of sets of sequences inescapable. This underlies the need for multi-string indexing data structures that helps compressing the data. The most prominent example of such data structures is the Burrows-Wheeler Transform (BWT), a reversible permutation of a text that improves its compressibility. A similar data structure, the eXtended Burrows-Wheeler Transform (XBW), is able to index a tree labelled with alphabet symbols. A link between a multi-string BWT and the Aho-Corasick automaton has already been found and led to a way to build a XBW from a multi-string BWT. We exhibit a stronger link between a multi-string BWT and a XBW by using the order of the concatenation in the multi-string. This bijective link has several applications: first, it allows one to build one data structure from the other; second, it enables one to compute an ordering of the input strings that optimises a Run-Length measure (i.e., the compressibility) of the BWT or of the XBW.

Cite as

Bastien Cazaux and Eric Rivals. Linking BWT and XBW via Aho-Corasick Automaton: Applications to Run-Length Encoding. In 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 128, pp. 24:1-24:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{cazaux_et_al:LIPIcs.CPM.2019.24,
  author =	{Cazaux, Bastien and Rivals, Eric},
  title =	{{Linking BWT and XBW via Aho-Corasick Automaton: Applications to Run-Length Encoding}},
  booktitle =	{30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019)},
  pages =	{24:1--24:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-103-0},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{128},
  editor =	{Pisanti, Nadia and P. Pissis, Solon},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CPM.2019.24},
  URN =		{urn:nbn:de:0030-drops-104955},
  doi =		{10.4230/LIPIcs.CPM.2019.24},
  annote =	{Keywords: Data Structure, Algorithm, Aho-Corasick Tree, compression, RLE}
}
Document
Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time

Authors: Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen

Published in: LIPIcs, Volume 113, 18th International Workshop on Algorithms in Bioinformatics (WABI 2018)


Abstract
Given a threshold L and a set R = {R_1, ..., R_m} of m strings (haplotype sequences), each having length n, the minimum segmentation problem for founder reconstruction is to partition [1,n] into set P of disjoint segments such that each segment [a,b] in P has length at least L and the number d(a,b)=|{R_i[a,b] : 1 <= i <= m}| of distinct substrings at segment [a,b] is minimized over [a,b] in P. The distinct substrings in the segments represent founder blocks that can be concatenated to form max{d(a,b) : [a,b] in P} founder sequences representing the original R such that crossovers happen only at segment boundaries. We give an optimal O(mn) time algorithm to solve the problem, improving over earlier O(mn^2). This improvement enables to exploit the algorithm on a pan-genomic setting of input strings being aligned haplotype sequences of complete human chromosomes, with a goal of finding a representative set of references that can be indexed for read alignment and variant calling. We implemented the new algorithm and give some experimental evidence on the practicality of the approach on this pan-genomic setting.

Cite as

Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen. Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time. In 18th International Workshop on Algorithms in Bioinformatics (WABI 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 113, pp. 15:1-15:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{norri_et_al:LIPIcs.WABI.2018.15,
  author =	{Norri, Tuukka and Cazaux, Bastien and Kosolobov, Dmitry and M\"{a}kinen, Veli},
  title =	{{Minimum Segmentation for Pan-genomic Founder Reconstruction in Linear Time}},
  booktitle =	{18th International Workshop on Algorithms in Bioinformatics (WABI 2018)},
  pages =	{15:1--15:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-082-8},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{113},
  editor =	{Parida, Laxmi and Ukkonen, Esko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2018.15},
  URN =		{urn:nbn:de:0030-drops-93175},
  doi =		{10.4230/LIPIcs.WABI.2018.15},
  annote =	{Keywords: Pan-genome indexing, founder reconstruction, dynamic programming, positional Burrows-Wheeler transform, range minimum query}
}
  • Refine by Type
  • 17 Document/PDF
  • 7 Document/HTML

  • Refine by Publication Year
  • 7 2025
  • 1 2022
  • 3 2021
  • 1 2020
  • 2 2019
  • Show More...

  • Refine by Author
  • 9 Cazaux, Bastien
  • 5 Mäkinen, Veli
  • 4 Equi, Massimo
  • 4 Rivals, Eric
  • 3 Norri, Tuukka
  • Show More...

  • Refine by Series/Journal
  • 12 LIPIcs
  • 5 OASIcs

  • Refine by Classification
  • 9 Theory of computation → Pattern matching
  • 4 Applied computing → Bioinformatics
  • 4 Theory of computation → Sorting and searching
  • 3 Applied computing → Genomics
  • 3 Theory of computation → Dynamic programming
  • Show More...

  • Refine by Keyword
  • 3 founder reconstruction
  • 3 multiple sequence alignment
  • 2 Data Structure
  • 2 approximation
  • 2 compressed data structures
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail