8 Search Results for "Chen, Yiling"


Document
Omega-Regular Verification and Control for Distributional Specifications in MDPs

Authors: S. Akshay, Ouldouz Neysari, and Ðorđe Žikelić

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
A classical approach to studying Markov decision processes (MDPs) is to view them as state transformers. However, MDPs can also be viewed as distribution transformers, where an MDP under a strategy generates a sequence of probability distributions over MDP states. This view arises in several applications, even as the probabilistic model checking problem becomes much harder compared to the classical state transformer counterpart. It is known that even distributional reachability and safety problems become computationally intractable (Skolem- and positivity-hard). To address this challenge, recent works focused on sound but possibly incomplete methods for verification and control of MDPs under the distributional view. However, existing automated methods are applicable only to distributional reachability, safety and reach-avoidance specifications. In this work, we present the first automated method for verification and control of MDPs with respect to distributional omega-regular specifications. To achieve this, we propose a novel notion of distributional certificates, which are sound and complete proof rules for proving that an MDP under a distributionally memoryless strategy satisfies some distributional omega-regular specification. We then use our distributional certificates to design the first fully automated algorithms for verification and control of MDPs with respect to distributional omega-regular specifications. Our algorithms follow a template-based synthesis approach and provide soundness and relative completeness guarantees, while running in PSPACE. Our prototype implementation demonstrates practical applicability of our algorithms to challenging examples collected from the literature.

Cite as

S. Akshay, Ouldouz Neysari, and Ðorđe Žikelić. Omega-Regular Verification and Control for Distributional Specifications in MDPs. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{akshay_et_al:LIPIcs.CONCUR.2025.6,
  author =	{Akshay, S. and Neysari, Ouldouz and \v{Z}ikeli\'{c}, Ðor{\d}e},
  title =	{{Omega-Regular Verification and Control for Distributional Specifications in MDPs}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.6},
  URN =		{urn:nbn:de:0030-drops-239562},
  doi =		{10.4230/LIPIcs.CONCUR.2025.6},
  annote =	{Keywords: MDPs, Distributional objectives, \omega-regularity, Certificates}
}
Document
Explainability is a Game for Probabilistic Bisimilarity Distances

Authors: Emily Vlasman, Anto Nanah Ji, James Worrell, and Franck van Breugel

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
We revisit a game from the literature that characterizes the probabilistic bisimilarity distances of a labelled Markov chain. We illustrate how an optimal policy of the game can explain these distances. Like the games that characterize bisimilarity and probabilistic bisimilarity, the game is played on pairs of states and matches transitions of those states. To obtain more convincing and interpretable explanations than those provided by generic optimal policies, we restrict to optimal policies that delay reaching observably inequivalent state pairs for as long as possible (called 1-maximal) while quickly reaching equivalent ones (called 0-minimal). We present iterative algorithms that compute 1-maximal and 0-minimal policies and prove an exponential lower bound for the number of iterations of the algorithm that computes 1-maximal policies.

Cite as

Emily Vlasman, Anto Nanah Ji, James Worrell, and Franck van Breugel. Explainability is a Game for Probabilistic Bisimilarity Distances. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 36:1-36:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vlasman_et_al:LIPIcs.CONCUR.2025.36,
  author =	{Vlasman, Emily and Nanah Ji, Anto and Worrell, James and van Breugel, Franck},
  title =	{{Explainability is a Game for Probabilistic Bisimilarity Distances}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{36:1--36:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.36},
  URN =		{urn:nbn:de:0030-drops-239861},
  doi =		{10.4230/LIPIcs.CONCUR.2025.36},
  annote =	{Keywords: probabilistic bisimilarity distance, labelled Markov chain, game, policy, explainability}
}
Document
Track A: Algorithms, Complexity and Games
q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations

Authors: Kiril Bangachev and S. Matthew Weinberg

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For a set M of m elements, we define a decreasing chain of classes of normalized monotone-increasing valuation functions from 2^M to ℝ_{≥ 0}, parameterized by an integer q ∈ [2,m]. For a given q, we refer to the class as q-partitioning. A valuation function is subadditive if and only if it is 2-partitioning, and fractionally subadditive if and only if it is m-partitioning. Thus, our chain establishes an interpolation between subadditive and fractionally subadditive valuations. We show that this interpolation is smooth (q-partitioning valuations are "nearly" (q-1)-partitioning in a precise sense, Theorem 6), interpretable (the definition arises by analyzing the core of a cost-sharing game, à la the Bondareva-Shapley Theorem for fractionally subadditive valuations, Section 3.1), and non-trivial (the class of q-partitioning valuations is distinct for all q, Proposition 3). For domains where provable separations exist between subadditive and fractionally subadditive, we interpolate the stronger guarantees achievable for fractionally subadditive valuations to all q ∈ {2,…, m}. Two highlights are the following: 1) An Ω ((log log q)/(log log m))-competitive posted price mechanism for q-partitioning valuations. Note that this matches asymptotically the state-of-the-art for both subadditive (q = 2) [Paul Dütting et al., 2020], and fractionally subadditive (q = m) [Feldman et al., 2015]. 2) Two upper-tail concentration inequalities on 1-Lipschitz, q-partitioning valuations over independent items. One extends the state-of-the-art for q = m to q < m, the other improves the state-of-the-art for q = 2 for q > 2. Our concentration inequalities imply several corollaries that interpolate between subadditive and fractionally subadditive, for example: 𝔼[v(S)] ≤ (1 + 1/log q)Median[v(S)] + O(log q). To prove this, we develop a new isoperimetric inequality using Talagrand’s method of control by q points, which may be of independent interest. We also discuss other probabilistic inequalities and game-theoretic applications of q-partitioning valuations, and connections to subadditive MPH-k valuations [Tomer Ezra et al., 2019].

Cite as

Kiril Bangachev and S. Matthew Weinberg. q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bangachev_et_al:LIPIcs.ICALP.2025.18,
  author =	{Bangachev, Kiril and Weinberg, S. Matthew},
  title =	{{q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.18},
  URN =		{urn:nbn:de:0030-drops-233956},
  doi =		{10.4230/LIPIcs.ICALP.2025.18},
  annote =	{Keywords: Subadditive Functions, Fractionally Subadditive Functions, Posted Price Mechanisms, Concentration Inequalities}
}
Document
On Cascades of Reset Automata

Authors: Roberto Borelli, Luca Geatti, Marco Montali, and Angelo Montanari

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
The Krohn-Rhodes decomposition theorem is a pivotal result in automata theory. It introduces the concept of cascade product, where two semiautomata, that is, automata devoid of initial and final states, are combined in a feed-forward fashion. The theorem states that any semiautomaton can be decomposed into a sequence of permutation-reset semiautomata. For the counter-free case, this decomposition consists entirely of reset components with two states each. This decomposition has significantly impacted recent research in various areas of computer science, including the identification of a class of transformer encoders equivalent to star-free languages and the conversion of Linear Temporal Logic formulas into past-only expressions (pastification). The paper revisits the cascade product in the context of reset automata, thus considering each component of the cascade as a language acceptor. First, we give regular expression counterparts of cascades of reset automata. We then establish several expressiveness results, identifying hierarchies of languages based on the restriction of the height (number of components) of the cascade or of the number of states in each level. We also show that any cascade of reset automata can be transformed, with a quadratic increase in height, into a cascade that only includes two-state components. Finally, we show that some fundamental operations on cascades, like intersection, union, negation, and concatenation with a symbol to the left, can be directly and efficiently computed by adding a two-state component.

Cite as

Roberto Borelli, Luca Geatti, Marco Montali, and Angelo Montanari. On Cascades of Reset Automata. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 20:1-20:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{borelli_et_al:LIPIcs.STACS.2025.20,
  author =	{Borelli, Roberto and Geatti, Luca and Montali, Marco and Montanari, Angelo},
  title =	{{On Cascades of Reset Automata}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{20:1--20:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.20},
  URN =		{urn:nbn:de:0030-drops-228453},
  doi =		{10.4230/LIPIcs.STACS.2025.20},
  annote =	{Keywords: Automata, Cascade products, Regular expressions, Krohn-Rhodes theory}
}
Document
Extended Abstract
Information Design with Unknown Prior (Extended Abstract)

Authors: Tao Lin and Ce Li

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
Classical information design models (e.g., Bayesian persuasion and cheap talk) require players to have perfect knowledge of the prior distribution of the state of the world. Our paper studies repeated persuasion problems in which the information designer does not know the prior. The information designer learns to design signaling schemes from repeated interactions with the receiver. We design learning algorithms for the information designer to achieve no regret compared to using the optimal signaling scheme with known prior, under two models of the receiver’s decision-making: (1) The first model assumes that the receiver knows the prior and can perform posterior update and best respond to signals. In this model, we design a learning algorithm for the information designer to achieve O(log T) regret in the general case, and another algorithm with Θ(log log T) regret in the case where the receiver has only two actions. Our algorithms are based on multi-dimensional and conservative binary search techniques, which circumvent the Ω(√T) limitation of empirical estimation in previous works. (2) The second model assumes that the receiver does not know the prior either and employs a no-regret learning algorithm to take actions. Bayesian persuasion and cheap talk are equivalent under this no-regret learning receiver model. We show that the information designer can achieve regret O(√{rReg(T) T}), where rReg(T) = o(T) is an upper bound on the receiver’s learning regret. The algorithm is based on exploration + robustification. The O(√{rReg(T) T}) regret bound is tight even when the information designer knows the prior [Lin and Chen, 2024]. Our work thus provides a learning foundation for the problem of information design with unknown prior.

Cite as

Tao Lin and Ce Li. Information Design with Unknown Prior (Extended Abstract). In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, p. 72:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lin_et_al:LIPIcs.ITCS.2025.72,
  author =	{Lin, Tao and Li, Ce},
  title =	{{Information Design with Unknown Prior}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{72:1--72:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.72},
  URN =		{urn:nbn:de:0030-drops-227009},
  doi =		{10.4230/LIPIcs.ITCS.2025.72},
  annote =	{Keywords: information design, Bayesian persuasion, online learning, unknown prior}
}
Document
Survey
How Does Knowledge Evolve in Open Knowledge Graphs?

Authors: Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Openly available, collaboratively edited Knowledge Graphs (KGs) are key platforms for the collective management of evolving knowledge. The present work aims t o provide an analysis of the obstacles related to investigating and processing specifically this central aspect of evolution in KGs. To this end, we discuss (i) the dimensions of evolution in KGs, (ii) the observability of evolution in existing, open, collaboratively constructed Knowledge Graphs over time, and (iii) possible metrics to analyse this evolution. We provide an overview of relevant state-of-the-art research, ranging from metrics developed for Knowledge Graphs specifically to potential methods from related fields such as network science. Additionally, we discuss technical approaches - and their current limitations - related to storing, analysing and processing large and evolving KGs in terms of handling typical KG downstream tasks.

Cite as

Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs. How Does Knowledge Evolve in Open Knowledge Graphs?. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 11:1-11:59, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{polleres_et_al:TGDK.1.1.11,
  author =	{Polleres, Axel and Pernisch, Romana and Bonifati, Angela and Dell'Aglio, Daniele and Dobriy, Daniil and Dumbrava, Stefania and Etcheverry, Lorena and Ferranti, Nicolas and Hose, Katja and Jim\'{e}nez-Ruiz, Ernesto and Lissandrini, Matteo and Scherp, Ansgar and Tommasini, Riccardo and Wachs, Johannes},
  title =	{{How Does Knowledge Evolve in Open Knowledge Graphs?}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{11:1--11:59},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.11},
  URN =		{urn:nbn:de:0030-drops-194855},
  doi =		{10.4230/TGDK.1.1.11},
  annote =	{Keywords: KG evolution, temporal KG, versioned KG, dynamic KG}
}
Document
Cursed yet Satisfied Agents

Authors: Yiling Chen, Alon Eden, and Juntao Wang

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
In real-life auctions, a widely observed phenomenon is the winner’s curse - the winner’s high bid implies that the winner often overestimates the value of the good for sale, resulting in an incurred negative utility. The seminal work of Eyster and Rabin [Econometrica'05] introduced a behavioral model aimed to explain this observed anomaly. We term agents who display this bias "cursed agents." We adopt their model in the interdependent value setting, and aim to devise mechanisms that prevent the agents from obtaining negative utility. We design mechanisms that are cursed ex-post incentive compatible, that is, incentivize agents to bid their true signal even though they are cursed, while ensuring that the outcome is ex-post individually rational (EPIR) - the price the agents pay is no more than the agents' true value. Since the agents might overestimate the value of the allocated good, such mechanisms might require the seller to make positive (monetary) transfers to the agents in order to prevent agents from over-paying for the good. While the revenue of the seller not requiring EPIR might increase when agents are cursed, when imposing EPIR, cursed agents will always pay less than fully rational agents (due to the positive transfers the seller makes). We devise revenue and welfare maximizing mechanisms for cursed agents. For revenue maximization, we give the optimal deterministic and anonymous mechanism. For welfare maximization, we require ex-post budget balance (EPBB), as positive transfers might cause the seller to have negative revenue. We propose a masking operation that takes any deterministic mechanism, and masks the allocation whenever the seller requires to make positive transfers. The masking operation ensures that the mechanism is both EPIR and EPBB. We show that in typical settings, EPBB implies that the mechanism cannot make any positive transfers. Thus, applying the masking operation on the fully efficient mechanism results in a socially optimal EPBB mechanism. This further implies that if the valuation function is the maximum of agents' signals, the optimal EPBB mechanism obtains zero welfare. In contrast, we show that for sum-concave valuations, which include weighted-sum valuations and 𝓁_p-norms, the welfare optimal EPBB mechanism obtains half of the optimal welfare as the number of agents grows large.

Cite as

Yiling Chen, Alon Eden, and Juntao Wang. Cursed yet Satisfied Agents. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, p. 44:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ITCS.2022.44,
  author =	{Chen, Yiling and Eden, Alon and Wang, Juntao},
  title =	{{Cursed yet Satisfied Agents}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{44:1--44:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.44},
  URN =		{urn:nbn:de:0030-drops-156407},
  doi =		{10.4230/LIPIcs.ITCS.2022.44},
  annote =	{Keywords: Mechanism Design, Interdependent Valuation Auction, Bounded Rationality, Cursed Equilibrium, Winner’s curse}
}
Document
Simple Envy-Free and Truthful Mechanisms for Cake Cutting with a Small Number of Cuts

Authors: Takao Asano

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
For the cake-cutting problem, Alijani, et al. [Reza Alijani et al., 2017; Masoud Seddighin et al., 2019] and Asano and Umeda [Takao Asano and Hiroyuki Umeda, 2020; Takao Asano and Hiroyuki Umeda, 2020] gave envy-free and truthful mechanisms with a small number of cuts, where the desired part of each player’s valuation function is a single interval on a given cake. In this paper, we give envy-free and truthful mechanisms with a small number of cuts, which are much simpler than those proposed by Alijani, et al. [Reza Alijani et al., 2017; Masoud Seddighin et al., 2019] and Asano and Umeda [Takao Asano and Hiroyuki Umeda, 2020; Takao Asano and Hiroyuki Umeda, 2020]. Furthermore, we show that this approach can be applied to the envy-free and truthful mechanism proposed by Chen, et al. [Yiling Chen et al., 2013], where the valuation function of each player is more general and piecewise uniform. Thus, we can obtain an envy-free and truthful mechanism with a small number of cuts even if the valuation function of each player is piecewise uniform, which solves the future problem posed by Alijani, et al. [Reza Alijani et al., 2017; Masoud Seddighin et al., 2019].

Cite as

Takao Asano. Simple Envy-Free and Truthful Mechanisms for Cake Cutting with a Small Number of Cuts. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 68:1-68:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{asano:LIPIcs.ISAAC.2021.68,
  author =	{Asano, Takao},
  title =	{{Simple Envy-Free and Truthful Mechanisms for Cake Cutting with a Small Number of Cuts}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{68:1--68:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.68},
  URN =		{urn:nbn:de:0030-drops-155011},
  doi =		{10.4230/LIPIcs.ISAAC.2021.68},
  annote =	{Keywords: cake-cutting problem, envy-freeness, fairness, truthfulness, mechanism design}
}
  • Refine by Type
  • 8 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 5 2025
  • 1 2023
  • 1 2022
  • 1 2021

  • Refine by Author
  • 1 Akshay, S.
  • 1 Asano, Takao
  • 1 Bangachev, Kiril
  • 1 Bonifati, Angela
  • 1 Borelli, Roberto
  • Show More...

  • Refine by Series/Journal
  • 7 LIPIcs
  • 1 TGDK

  • Refine by Classification
  • 2 Mathematics of computing → Probability and statistics
  • 2 Theory of computation → Algorithmic game theory and mechanism design
  • 1 Applied computing → Economics
  • 1 Information systems → Data streaming
  • 1 Information systems → Graph-based database models
  • Show More...

  • Refine by Keyword
  • 1 Automata
  • 1 Bayesian persuasion
  • 1 Bounded Rationality
  • 1 Cascade products
  • 1 Certificates
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail