9 Search Results for "Funke, Daniel"


Document
Linear-Time Multilevel Graph Partitioning via Edge Sparsification

Authors: Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
The current landscape of balanced graph partitioning is divided into high-quality but expensive multilevel algorithms and cheaper approaches with linear running time, such as single-level algorithms and streaming algorithms. We demonstrate how to achieve the best of both worlds with a linear time multilevel algorithm. Multilevel algorithms construct a hierarchy of increasingly smaller graphs by repeatedly contracting clusters of nodes. Our approach preserves their distinct advantage, allowing refinement of the partition over multiple levels with increasing detail. At the same time, we use edge sparsification to guarantee geometric size reduction between the levels and thus linear running time. We provide a proof of the linear running time as well as additional insights into the behavior of multilevel algorithms, showing that graphs with low modularity are most likely to trigger worst-case running time. We evaluate multiple approaches for edge sparsification and integrate our algorithm into the state-of-the-art multilevel partitioner KaMinPar, maintaining its excellent parallel scalability. As demonstrated in detailed experiments, this results in a 1.49× average speedup (up to 4× for some instances) with only 1% loss in solution quality. Moreover, our algorithm clearly outperforms state-of-the-art single-level and streaming approaches.

Cite as

Lars Gottesbüren, Nikolai Maas, Dominik Rosch, Peter Sanders, and Daniel Seemaier. Linear-Time Multilevel Graph Partitioning via Edge Sparsification. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 32:1-32:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.ESA.2025.32,
  author =	{Gottesb\"{u}ren, Lars and Maas, Nikolai and Rosch, Dominik and Sanders, Peter and Seemaier, Daniel},
  title =	{{Linear-Time Multilevel Graph Partitioning via Edge Sparsification}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{32:1--32:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.32},
  URN =		{urn:nbn:de:0030-drops-245007},
  doi =		{10.4230/LIPIcs.ESA.2025.32},
  annote =	{Keywords: Graph Partitioning, Graph Algorithms, Linear Time Algorithms, Graph Sparsification}
}
Document
(Multivariate) k-SUM as Barrier to Succinct Computation

Authors: Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
How does the time complexity of a problem change when the input is given succinctly rather than explicitly? We study this question for several geometric problems defined on a set X of N points in ℤ^d. As succinct representation, we choose a sumset (or Minkowski sum) representation: Instead of receiving X explicitly, we are given sets A,B of n points that define X as A+B = {a+b∣ a ∈ A,b ∈ B}. We investigate the fine-grained complexity of this succinct version for several Õ(N)-time computable geometric primitives. Remarkably, we can tie their complexity tightly to the complexity of corresponding k-SUM problems. Specifically, we introduce as All-ints 3-SUM(n,n,k) the following multivariate, multi-output variant of 3-SUM: given sets A,B of size n and set C of size k, determine for all c ∈ C whether there are a ∈ A and b ∈ B with a+b = c. We obtain the following results: 1) Succinct closest L_∞-pair requires time N^{1-o(1)} under the 3-SUM hypothesis, while succinct furthest L_∞-pair can be solved in time Õ(n). 2) Succinct bichromatic closest L_∞-Pair requires time N^{1-o(1)} iff the 4-SUM hypothesis holds. 3) The following problems are fine-grained equivalent to All-ints 3-SUM(n,n,k): succinct skyline computation in 2D with output size k and succinct batched orthogonal range search with k given ranges. This establishes conditionally tight Õ(min{nk, N})-time algorithms for these problems. We obtain further connections with All-ints 3-SUM(n,n,k) for succinctly computing independent sets in unit interval graphs. Thus, (Multivariate) k-SUM problems precisely capture the barrier for enabling sumset-succinct computation for various geometric primitives.

Cite as

Geri Gokaj, Marvin Künnemann, Sabine Storandt, and Carina Truschel. (Multivariate) k-SUM as Barrier to Succinct Computation. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gokaj_et_al:LIPIcs.ESA.2025.42,
  author =	{Gokaj, Geri and K\"{u}nnemann, Marvin and Storandt, Sabine and Truschel, Carina},
  title =	{{(Multivariate) k-SUM as Barrier to Succinct Computation}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.42},
  URN =		{urn:nbn:de:0030-drops-245101},
  doi =		{10.4230/LIPIcs.ESA.2025.42},
  annote =	{Keywords: Fine-grained complexity theory, sumsets, additive combinatorics, succinct inputs, computational geometry}
}
Document
A Research Framework to Develop a Real-Time Synchrony Index to Monitor Team Cohesion and Performance in Long-Duration Space Exploration

Authors: Federico Nemmi, Emma Chabani, Laure Boyer, Charlie Madier, and Daniel Lewkowicz

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
As humanity prepares for long-distance space exploration, optimizing group performance, the ability of a group to achieve its goals efficiently, is critical. Astronaut crews will endure isolation, confinement, and operational stress, making group synchrony - the alignment of behaviors, emotions, and physiological states - a key factor in mission success. Synchrony influences team cohesion, performance, and resilience, necessitating effective crew management strategies. This paper proposes a framework for a real-time, unobtrusive index of group synchrony to support astronauts and mission control. Research indicates that team cohesion fluctuates in isolated environments, with reduced communication and interpersonal conflicts emerging over time. A system tracking synchrony could mitigate these issues, providing proactive support and improving remote management. Additionally, it could serve as a cognitive and physiological feedback tool for astronauts and a decision-making aid for mission control, enhancing well-being and efficiency. Our approach integrates behavioral and physiological synchrony measures to assess team cohesion and performance. We propose a multi-modal synchrony index combining movement coordination, communication patterns, and physiological signals such as heart rate, electrodermal activity, and EEG. This index will be validated across different tasks to ensure applicability across diverse mission scenarios. By developing a robust synchrony index, we address a fundamental challenge in space missions: sustaining team effectiveness under extreme conditions. Beyond space exploration, our findings could benefit high-risk, high-isolation teams in submarine crews, polar expeditions, and remote research groups. Our collaboration with the Centre National d'Etudes Spatiales, the Institut de Médecine et de Physiologie Spatiales, and the Toulouse University Hospital marks the first step, with experimental data collection starting this year. Ultimately, this research fosters more adaptive, responsive, and resilient teams for future space missions.

Cite as

Federico Nemmi, Emma Chabani, Laure Boyer, Charlie Madier, and Daniel Lewkowicz. A Research Framework to Develop a Real-Time Synchrony Index to Monitor Team Cohesion and Performance in Long-Duration Space Exploration. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 30:1-30:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nemmi_et_al:OASIcs.SpaceCHI.2025.30,
  author =	{Nemmi, Federico and Chabani, Emma and Boyer, Laure and Madier, Charlie and Lewkowicz, Daniel},
  title =	{{A Research Framework to Develop a Real-Time Synchrony Index to Monitor Team Cohesion and Performance in Long-Duration Space Exploration}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{30:1--30:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.30},
  URN =		{urn:nbn:de:0030-drops-240200},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.30},
  annote =	{Keywords: Performance, Synchronie, Crew monitoring, Cohesion}
}
Document
Continuous Map Matching to Paths Under Travel Time Constraints

Authors: Yannick Bosch and Sabine Storandt

Published in: LIPIcs, Volume 338, 23rd International Symposium on Experimental Algorithms (SEA 2025)


Abstract
In this paper, we study the problem of map matching with travel time constraints. Given a sequence of k spatio-temporal measurements and an embedded path graph with travel time costs, the goal is to snap each measurement to a close-by location in the graph, such that consecutive locations can be reached from one another along the path within the timestamp difference of the respective measurements. This problem arises in public transit data processing as well as in map matching of movement trajectories to general graphs. We show that the classical approach for this problem, which relies on selecting a finite set of candidate locations in the graph for each measurement, cannot guarantee to find a consistent solution. We propose a new algorithm that can deal with an infinite set of candidate locations per measurement. We prove that our algorithm always detects a consistent map matching path (if one exists). Despite the enlarged candidate set, we also demonstrate that our algorithm has superior running time in theory and practice. For a path graph with n nodes, we show that our algorithm runs in 𝒪(k² n log {nk}) and under mild assumptions in 𝒪(k n ^λ + n log³ n) for λ ≈ 0.695. This is a significant improvement over the baseline, which runs in 𝒪(k n²) and which might not even identify a correct solution. The performance of our algorithm hinges on an efficient segment-circle intersection data structure. We describe how to design and implement such a data structure for our application. In the experimental evaluation, we demonstrate the usefulness of our novel algorithm on a diverse set of generated measurements as well as GTFS data.

Cite as

Yannick Bosch and Sabine Storandt. Continuous Map Matching to Paths Under Travel Time Constraints. In 23rd International Symposium on Experimental Algorithms (SEA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 338, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bosch_et_al:LIPIcs.SEA.2025.7,
  author =	{Bosch, Yannick and Storandt, Sabine},
  title =	{{Continuous Map Matching to Paths Under Travel Time Constraints}},
  booktitle =	{23rd International Symposium on Experimental Algorithms (SEA 2025)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-375-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{338},
  editor =	{Mutzel, Petra and Prezza, Nicola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2025.7},
  URN =		{urn:nbn:de:0030-drops-232457},
  doi =		{10.4230/LIPIcs.SEA.2025.7},
  annote =	{Keywords: Map matching, Travel time, Segment-circle intersection data structure}
}
Document
CluStRE: Streaming Graph Clustering with Multi-Stage Refinement

Authors: Adil Chhabra, Shai Dorian Peretz, and Christian Schulz

Published in: LIPIcs, Volume 338, 23rd International Symposium on Experimental Algorithms (SEA 2025)


Abstract
We present CluStRE, a novel streaming graph clustering algorithm that balances computational efficiency with high-quality clustering using multi-stage refinement. Unlike traditional in-memory clustering approaches, CluStRE processes graphs in a streaming setting, significantly reducing memory overhead while leveraging re-streaming and evolutionary heuristics to improve solution quality. Our method dynamically constructs a quotient graph, enabling modularity-based optimization while efficiently handling large-scale graphs. We introduce multiple configurations of CluStRE to provide trade-offs between speed, memory consumption, and clustering quality. Experimental evaluations demonstrate that CluStRE improves solution quality by 89.8%, operates 2.6× faster, and uses less than two-thirds of the memory required by the state-of-the-art streaming clustering algorithm on average. Moreover, our strongest mode enhances solution quality by up to 150% on average. With this, CluStRE achieves comparable solution quality to in-memory algorithms, i.e. over 96% of the quality of clustering approaches, including Louvain, effectively bridging the gap between streaming and traditional clustering methods.

Cite as

Adil Chhabra, Shai Dorian Peretz, and Christian Schulz. CluStRE: Streaming Graph Clustering with Multi-Stage Refinement. In 23rd International Symposium on Experimental Algorithms (SEA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 338, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chhabra_et_al:LIPIcs.SEA.2025.11,
  author =	{Chhabra, Adil and Dorian Peretz, Shai and Schulz, Christian},
  title =	{{CluStRE: Streaming Graph Clustering with Multi-Stage Refinement}},
  booktitle =	{23rd International Symposium on Experimental Algorithms (SEA 2025)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-375-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{338},
  editor =	{Mutzel, Petra and Prezza, Nicola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2025.11},
  URN =		{urn:nbn:de:0030-drops-232493},
  doi =		{10.4230/LIPIcs.SEA.2025.11},
  annote =	{Keywords: graph clustering, community, streaming, online, memetic, evolutionary}
}
Document
Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs

Authors: Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We propose an algorithm for counting the number of cycles under local differential privacy for degeneracy-bounded input graphs. Numerous studies have focused on counting the number of triangles under the privacy notion, demonstrating that the expected 𝓁₂-error of these algorithms is Ω(n^{1.5}), where n is the number of nodes in the graph. When parameterized by the number of cycles of length four (C₄), the best existing triangle counting algorithm has an error of O(n^{1.5} + √C₄) = O(n²). In this paper, we introduce an algorithm with an expected 𝓁₂-error of O(δ^1.5 n^0.5 + δ^0.5 d_max^0.5 n^0.5), where δ is the degeneracy and d_{max} is the maximum degree of the graph. For degeneracy-bounded graphs (δ ∈ Θ(1)) commonly found in practical social networks, our algorithm achieves an expected 𝓁₂-error of O(d_{max}^{0.5} n^{0.5}) = O(n). Our algorithm’s core idea is a precise count of triangles following a preprocessing step that approximately sorts the degree of all nodes. This approach can be extended to approximate the number of cycles of length k, maintaining a similar 𝓁₂-error, namely O(δ^{(k-2)/2} d_max^0.5 n^{(k-2)/2} + δ^{k/2} n^{(k-2)/2}) or O(d_max^0.5 n^{(k-2)/2}) = O(n^{(k-1)/2}) for degeneracy-bounded graphs.

Cite as

Quentin Hillebrand, Vorapong Suppakitpaisarn, and Tetsuo Shibuya. Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 49:1-49:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hillebrand_et_al:LIPIcs.STACS.2025.49,
  author =	{Hillebrand, Quentin and Suppakitpaisarn, Vorapong and Shibuya, Tetsuo},
  title =	{{Cycle Counting Under Local Differential Privacy for Degeneracy-Bounded Graphs}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{49:1--49:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.49},
  URN =		{urn:nbn:de:0030-drops-228748},
  doi =		{10.4230/LIPIcs.STACS.2025.49},
  annote =	{Keywords: Differential privacy, triangle counting, degeneracy, arboricity, graph theory, parameterized accuracy}
}
Document
Completeness Theorems for k-SUM and Geometric Friends: Deciding Fragments of Linear Integer Arithmetic

Authors: Geri Gokaj and Marvin Künnemann

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
In the last three decades, the k-SUM hypothesis has emerged as a satisfying explanation of long-standing time barriers for a variety of algorithmic problems. Yet to this day, the literature knows of only few proven consequences of a refutation of this hypothesis. Taking a descriptive complexity viewpoint, we ask: What is the largest logically defined class of problems captured by the k-SUM problem? To this end, we introduce a class FOP_ℤ of problems corresponding to deciding sentences in Presburger arithmetic/linear integer arithmetic over finite subsets of integers. We establish two large fragments for which the k-SUM problem is complete under fine-grained reductions: 1) The k-SUM problem is complete for deciding the sentences with k existential quantifiers. 2) The 3-SUM problem is complete for all 3-quantifier sentences of FOP_ℤ expressible using at most 3 linear inequalities. Specifically, a faster-than-n^{⌈k/2⌉ ± o(1)} algorithm for k-SUM (or faster-than-n^{2 ± o(1)} algorithm for 3-SUM, respectively) directly translate to polynomial speedups of a general algorithm for all sentences in the respective fragment. Observing a barrier for proving completeness of 3-SUM for the entire class FOP_ℤ, we turn to the question which other - seemingly more general - problems are complete for FOP_ℤ. In this direction, we establish FOP_ℤ-completeness of the problem pair of Pareto Sum Verification and Hausdorff Distance under n Translations under the L_∞/L₁ norm in ℤ^d. In particular, our results invite to investigate Pareto Sum Verification as a high-dimensional generalization of 3-SUM.

Cite as

Geri Gokaj and Marvin Künnemann. Completeness Theorems for k-SUM and Geometric Friends: Deciding Fragments of Linear Integer Arithmetic. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 55:1-55:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gokaj_et_al:LIPIcs.ITCS.2025.55,
  author =	{Gokaj, Geri and K\"{u}nnemann, Marvin},
  title =	{{Completeness Theorems for k-SUM and Geometric Friends: Deciding Fragments of Linear Integer Arithmetic}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{55:1--55:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.55},
  URN =		{urn:nbn:de:0030-drops-226835},
  doi =		{10.4230/LIPIcs.ITCS.2025.55},
  annote =	{Keywords: fine-grained complexity theory, descriptive complexity, presburger arithmetic, completeness results, k-SUM}
}
Document
A Sweep-Plane Algorithm for Calculating the Isolation of Mountains

Authors: Daniel Funke, Nicolai Hüning, and Peter Sanders

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
One established metric to classify the significance of a mountain peak is its isolation. It specifies the distance between a peak and the closest point of higher elevation. Peaks with high isolation dominate their surroundings and provide a nice view from the top. With the availability of worldwide Digital Elevation Models (DEMs), the isolation of all mountain peaks can be computed automatically. Previous algorithms run in worst case time that is quadratic in the input size. We present a novel sweep-plane algorithm that runs in time 𝒪(nlog n+pT_NN) where n is the input size, p the number of considered peaks and T_NN the time for a 2D nearest-neighbor query in an appropriate geometric search tree. We refine this to a two-level approach that has high locality and good parallel scalability. Our implementation reduces the time for calculating the isolation of every peak on Earth from hours to minutes while improving precision.

Cite as

Daniel Funke, Nicolai Hüning, and Peter Sanders. A Sweep-Plane Algorithm for Calculating the Isolation of Mountains. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 51:1-51:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{funke_et_al:LIPIcs.ESA.2023.51,
  author =	{Funke, Daniel and H\"{u}ning, Nicolai and Sanders, Peter},
  title =	{{A Sweep-Plane Algorithm for Calculating the Isolation of Mountains}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{51:1--51:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.51},
  URN =		{urn:nbn:de:0030-drops-187040},
  doi =		{10.4230/LIPIcs.ESA.2023.51},
  annote =	{Keywords: computational geometry, Geo-information systems, sweepline algorithms}
}
Document
Efficient Yao Graph Construction

Authors: Daniel Funke and Peter Sanders

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
Yao graphs are geometric spanners that connect each point of a given point set to its nearest neighbor in each of k cones drawn around it. Yao graphs were introduced to construct minimum spanning trees in d dimensional spaces. Moreover, they are used for instance in topology control in wireless networks. An optimal 𝒪(n log n)-time algorithm to construct Yao graphs for a given point set has been proposed in the literature but - to the best of our knowledge - never been implemented. Instead, algorithms with a quadratic complexity are used in popular packages to construct these graphs. In this paper we present the first implementation of the optimal Yao graph algorithm. We engineer the data structures required to achieve the 𝒪(n log n) time bound and detail algorithmic adaptations necessary to take the original algorithm from theory to practice. We propose a priority queue data structure that separates static and dynamic events and might be of independent interest for other sweepline algorithms. Additionally, we propose a new Yao graph algorithm based on a uniform grid data structure that performs well for medium-sized inputs. We evaluate our implementations on a wide variety of synthetic and real-world datasets and show that our implementation outperforms current publicly available implementations by at least an order of magnitude.

Cite as

Daniel Funke and Peter Sanders. Efficient Yao Graph Construction. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{funke_et_al:LIPIcs.SEA.2023.20,
  author =	{Funke, Daniel and Sanders, Peter},
  title =	{{Efficient Yao Graph Construction}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.20},
  URN =		{urn:nbn:de:0030-drops-183706},
  doi =		{10.4230/LIPIcs.SEA.2023.20},
  annote =	{Keywords: computational geometry, geometric spanners, Yao graphs, sweepline algorithms, optimal algorithms}
}
  • Refine by Type
  • 9 Document/PDF
  • 7 Document/HTML

  • Refine by Publication Year
  • 7 2025
  • 2 2023

  • Refine by Author
  • 3 Sanders, Peter
  • 2 Funke, Daniel
  • 2 Gokaj, Geri
  • 2 Künnemann, Marvin
  • 2 Storandt, Sabine
  • Show More...

  • Refine by Series/Journal
  • 8 LIPIcs
  • 1 OASIcs

  • Refine by Classification
  • 2 Theory of computation → Computational geometry
  • 2 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation → Graph algorithms analysis
  • 1 Applied computing → Life and medical sciences
  • 1 Security and privacy → Privacy-preserving protocols
  • Show More...

  • Refine by Keyword
  • 3 computational geometry
  • 2 sweepline algorithms
  • 1 Cohesion
  • 1 Crew monitoring
  • 1 Differential privacy
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail