2 Search Results for "Großmann, Ernestine"


Document
Arc-Flags Meet Trip-Based Public Transit Routing

Authors: Ernestine Großmann, Jonas Sauer, Christian Schulz, and Patrick Steil

Published in: LIPIcs, Volume 265, 21st International Symposium on Experimental Algorithms (SEA 2023)


Abstract
We present Arc-Flag TB, a journey planning algorithm for public transit networks which combines Trip-Based Public Transit Routing (TB) with the Arc-Flags speedup technique. Compared to previous attempts to apply Arc-Flags to public transit networks, which saw limited success, our approach uses stronger pruning rules to reduce the search space. Our experiments show that Arc-Flag TB achieves a speedup of up to two orders of magnitude over TB, offering query times of less than a millisecond even on large countrywide networks. Compared to the state-of-the-art speedup technique Trip-Based Public Transit Routing Using Condensed Search Trees (TB-CST), our algorithm achieves similar query times but requires significantly less additional memory. Other state-of-the-art algorithms which achieve even faster query times, e.g., Public Transit Labeling, require enormous memory usage. In contrast, Arc-Flag TB offers a tradeoff between query performance and memory usage due to the fact that the number of regions in the network partition required by our algorithm is a configurable parameter. We also identify a previously undiscovered issue in the transfer precomputation of TB, which causes both TB-CST and Arc-Flag TB to answer some queries incorrectly. We provide discussion on how to resolve this issue in the future. Currently, Arc-Flag TB answers 1-6% of queries incorrectly, compared to over 20% for TB-CST on some networks.

Cite as

Ernestine Großmann, Jonas Sauer, Christian Schulz, and Patrick Steil. Arc-Flags Meet Trip-Based Public Transit Routing. In 21st International Symposium on Experimental Algorithms (SEA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 265, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gromann_et_al:LIPIcs.SEA.2023.16,
  author =	{Gro{\ss}mann, Ernestine and Sauer, Jonas and Schulz, Christian and Steil, Patrick},
  title =	{{Arc-Flags Meet Trip-Based Public Transit Routing}},
  booktitle =	{21st International Symposium on Experimental Algorithms (SEA 2023)},
  pages =	{16:1--16:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-279-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{265},
  editor =	{Georgiadis, Loukas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2023.16},
  URN =		{urn:nbn:de:0030-drops-183664},
  doi =		{10.4230/LIPIcs.SEA.2023.16},
  annote =	{Keywords: Public transit routing, graph algorithms, algorithm engineering}
}
Document
The PACE 2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feedback Vertex Set

Authors: Ernestine Großmann, Tobias Heuer, Christian Schulz, and Darren Strash

Published in: LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)


Abstract
The Parameterized Algorithms and Computational Experiments challenge (PACE) 2022 was devoted to engineer algorithms solving the NP-hard Directed Feedback Vertex Set (DFVS) problem. The DFVS problem is to find a minimum subset X ⊆ V in a given directed graph G = (V,E) such that, when all vertices of X and their adjacent edges are deleted from G, the remainder is acyclic. Overall, the challenge had 90 participants from 26 teams, 12 countries, and 3 continents that submitted their implementations to this year’s competition. In this report, we briefly describe the setup of the challenge, the selection of benchmark instances, as well as the ranking of the participating teams. We also briefly outline the approaches used in the submitted solvers.

Cite as

Ernestine Großmann, Tobias Heuer, Christian Schulz, and Darren Strash. The PACE 2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feedback Vertex Set. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{gromann_et_al:LIPIcs.IPEC.2022.26,
  author =	{Gro{\ss}mann, Ernestine and Heuer, Tobias and Schulz, Christian and Strash, Darren},
  title =	{{The PACE 2022 Parameterized Algorithms and Computational Experiments Challenge: Directed Feedback Vertex Set}},
  booktitle =	{17th International Symposium on Parameterized and Exact Computation (IPEC 2022)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-260-0},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{249},
  editor =	{Dell, Holger and Nederlof, Jesper},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.26},
  URN =		{urn:nbn:de:0030-drops-173826},
  doi =		{10.4230/LIPIcs.IPEC.2022.26},
  annote =	{Keywords: Feedback Vertex Set, Algorithm Engineering, FPT, Kernelization, Heuristics}
}
  • Refine by Author
  • 2 Großmann, Ernestine
  • 2 Schulz, Christian
  • 1 Heuer, Tobias
  • 1 Sauer, Jonas
  • 1 Steil, Patrick
  • Show More...

  • Refine by Classification
  • 1 Applied computing → Transportation
  • 1 Mathematics of computing → Graph algorithms
  • 1 Theory of computation → Graph algorithms analysis
  • 1 Theory of computation → Parameterized complexity and exact algorithms
  • 1 Theory of computation → Shortest paths

  • Refine by Keyword
  • 1 Algorithm Engineering
  • 1 FPT
  • 1 Feedback Vertex Set
  • 1 Heuristics
  • 1 Kernelization
  • Show More...

  • Refine by Type
  • 2 document

  • Refine by Publication Year
  • 1 2022
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail