11 Search Results for "Mählmann, Nikolas"


Document
Solving Partial Dominating Set and Related Problems Using Twin-Width

Authors: Jakub Balabán, Daniel Mock, and Peter Rossmanith

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Partial vertex cover and partial dominating set are two well-investigated optimization problems. While they are W[1]-hard on general graphs, they have been shown to be fixed-parameter tractable on many sparse graph classes, including nowhere-dense classes. In this paper, we demonstrate that these problems are also fixed-parameter tractable with respect to the twin-width of a graph. Indeed, we establish a more general result: every graph property that can be expressed by a logical formula of the form ϕ≡∃ x₁⋯ ∃ x_k ∑_{α ∈ I} #y ψ_α(x₁,…,x_k,y) ≥ t, where ψ_α is a quantifier-free formula for each α ∈ I, t is an arbitrary number, and #y is a counting quantifier, can be evaluated in time f(d,k)n, where n is the number of vertices and d is the width of a contraction sequence that is part of the input. In addition to the aforementioned problems, this includes also connected partial dominating set and independent partial dominating set.

Cite as

Jakub Balabán, Daniel Mock, and Peter Rossmanith. Solving Partial Dominating Set and Related Problems Using Twin-Width. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{balaban_et_al:LIPIcs.MFCS.2025.13,
  author =	{Balab\'{a}n, Jakub and Mock, Daniel and Rossmanith, Peter},
  title =	{{Solving Partial Dominating Set and Related Problems Using Twin-Width}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.13},
  URN =		{urn:nbn:de:0030-drops-241203},
  doi =		{10.4230/LIPIcs.MFCS.2025.13},
  annote =	{Keywords: Partial Dominating Set, Partial Vertex Cover, meta-algorithm, counting logic, twin-width}
}
Document
Elimination Distance to Dominated Clusters

Authors: Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
In the Dominated Cluster Deletion problem, we are given an undirected graph G and integers k and d and the question is to decide whether there exists a set of at most k vertices whose removal results in a graph in which each connected component has a dominating set of size at most d. In the Elimination Distance to Dominated Clusters problem, we are again given an undirected graph G and integers k and d and the question is to decide whether we can recursively delete vertices up to depth k such that each remaining connected component has a dominating set of size at most d. Bentert et al. [Bentert et al., MFCS 2024] recently provided an almost complete classification of the parameterized complexity of Dominated Cluster Deletion with respect to the parameters k, d, c, and Δ, where c and Δ are the degeneracy, and the maximum degree of the input graph, respectively. In particular, they provided a non-uniform algorithm with running time f(k,d)⋅ n^{𝒪(d)}. They left as an open problem whether the problem is fixed-parameter tractable with respect to the parameter k + d + c. We provide a uniform algorithm running in time f(k,d)⋅ n^{𝒪(d)} for both Dominated Cluster Deletion and Elimination Distance to Dominated Clusters. We furthermore show that both problems are FPT when parameterized by k+d+𝓁, where 𝓁 is the semi-ladder index of the input graph, a parameter that is upper bounded and may be much smaller than the degeneracy c, positively answering the open question of Bentert et al. We further complete the picture by providing an almost full classification for the parameterized complexity and kernelization complexity of Elimination Distance to Dominated Clusters. The one difficult base case that remains open is whether Treedepth (the case d = 0) is NP-hard on graphs of bounded maximum degree.

Cite as

Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. Elimination Distance to Dominated Clusters. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 90:1-90:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schirrmacher_et_al:LIPIcs.MFCS.2025.90,
  author =	{Schirrmacher, Nicole and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Elimination Distance to Dominated Clusters}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{90:1--90:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.90},
  URN =		{urn:nbn:de:0030-drops-241978},
  doi =		{10.4230/LIPIcs.MFCS.2025.90},
  annote =	{Keywords: Graph theory, Fixed-parameter algorithms, Dominated cluster, Elimination distance}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Separability Properties of Monadically Dependent Graph Classes

Authors: Édouard Bonnet, Samuel Braunfeld, Ioannis Eleftheriadis, Colin Geniet, Nikolas Mählmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
A graph class 𝒞 is monadically dependent if one cannot interpret all graphs in colored graphs from 𝒞 using a fixed first-order interpretation. We prove that monadically dependent classes can be exactly characterized by the following property, which we call flip-separability: for every r ∈ ℕ, ε > 0, and every graph G ∈ 𝒞 equipped with a weight function on vertices, one can apply a bounded (in terms of 𝒞,r,ε) number of flips (complementations of the adjacency relation on a subset of vertices) to G so that in the resulting graph, every radius-r ball contains at most an ε-fraction of the total weight. On the way to this result, we introduce a robust toolbox for working with various notions of local separations in monadically dependent classes.

Cite as

Édouard Bonnet, Samuel Braunfeld, Ioannis Eleftheriadis, Colin Geniet, Nikolas Mählmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk. Separability Properties of Monadically Dependent Graph Classes. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 147:1-147:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ICALP.2025.147,
  author =	{Bonnet, \'{E}douard and Braunfeld, Samuel and Eleftheriadis, Ioannis and Geniet, Colin and M\"{a}hlmann, Nikolas and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Toru\'{n}czyk, Szymon},
  title =	{{Separability Properties of Monadically Dependent Graph Classes}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{147:1--147:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.147},
  URN =		{urn:nbn:de:0030-drops-235246},
  doi =		{10.4230/LIPIcs.ICALP.2025.147},
  annote =	{Keywords: Structural graph theory, Monadic dependence}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Forbidden Induced Subgraphs for Bounded Shrub-Depth and the Expressive Power of MSO

Authors: Nikolas Mählmann

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The graph parameter shrub-depth is a dense analog of tree-depth. We characterize classes of bounded shrub-depth by forbidden induced subgraphs. The obstructions are well-controlled flips of large half-graphs and of disjoint unions of many long paths. Applying this characterization, we show that on every hereditary class of unbounded shrub-depth, MSO is more expressive than FO. This confirms a conjecture of [Gajarský and Hliněný; LMCS 2015] who proved that on classes of bounded shrub-depth FO and MSO have the same expressive power. Combined, the two results fully characterize the hereditary classes on which FO and MSO coincide, answering an open question by [Elberfeld, Grohe, and Tantau; LICS 2012]. Our work is inspired by the notion of stability from model theory. A graph class 𝒞 is MSO-stable, if no MSO-formula can define arbitrarily long linear orders in graphs from 𝒞. We show that a hereditary graph class is MSO-stable if and only if it has bounded shrub-depth. As a key ingredient, we prove that every hereditary class of unbounded shrub-depth FO-interprets the class of all paths. This improves upon a result of [Ossona de Mendez, Pilipczuk, and Siebertz; Eur. J. Comb. 2025] who showed the same statement for FO-transductions instead of FO-interpretations.

Cite as

Nikolas Mählmann. Forbidden Induced Subgraphs for Bounded Shrub-Depth and the Expressive Power of MSO. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 167:1-167:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mahlmann:LIPIcs.ICALP.2025.167,
  author =	{M\"{a}hlmann, Nikolas},
  title =	{{Forbidden Induced Subgraphs for Bounded Shrub-Depth and the Expressive Power of MSO}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{167:1--167:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.167},
  URN =		{urn:nbn:de:0030-drops-235444},
  doi =		{10.4230/LIPIcs.ICALP.2025.167},
  annote =	{Keywords: Shrub-Depth, Forbidden Induced Subgraphs, MSO, Stability Theory}
}
Document
Invited Talk
Evaluating First-Order Formulas in Structured Graphs (Invited Talk)

Authors: Szymon Toruńczyk

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
A central problem in database theory concerns the complexity of the query evaluation problem, also called the model-checking problem in finite model theory: the problem of evaluating a given formula in a given structure. Here, I will focus on formulas of first-order logic, and the data complexity (or parameterized complexity) of their evaluation. Leveraging tools from structural graph theory, I will assume that the input structure is a graph which comes from a fixed class of well-structured graphs, such as the class of planar graphs, classes of bounded treewidth or clique-width, or much more general "tame" graph classes, such as the nowhere dense graph classes introduced by Ossona de Mendez and Nešetřil, or classes of bounded twin-width studied by Bonnet, Thomassé, and coauthors. I will survey the recent progress in this area, which connects tools from structural graph theory, from model theory - such as stability and dependence - and from statistical learning theory and computational geometry - such as VC-dimension and ε-nets.

Cite as

Szymon Toruńczyk. Evaluating First-Order Formulas in Structured Graphs (Invited Talk). In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 3:1-3:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{torunczyk:LIPIcs.ICDT.2025.3,
  author =	{Toru\'{n}czyk, Szymon},
  title =	{{Evaluating First-Order Formulas in Structured Graphs}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{3:1--3:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.3},
  URN =		{urn:nbn:de:0030-drops-229449},
  doi =		{10.4230/LIPIcs.ICDT.2025.3},
  annote =	{Keywords: Finite model theory, first-order model checking, graph parameters}
}
Document
Adjacency Labeling Schemes for Small Classes

Authors: Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
A graph class admits an implicit representation if, for every positive integer n, its n-vertex graphs have a O(log n)-bit (adjacency) labeling scheme, i.e., their vertices can be labeled by binary strings of length O(log n) such that the presence of an edge between any pair of vertices can be deduced solely from their labels. The famous Implicit Graph Conjecture posited that every hereditary (i.e., closed under taking induced subgraphs) factorial (i.e., containing 2^O(n log n) n-vertex graphs) class admits an implicit representation. The conjecture was recently refuted [Hatami and Hatami, FOCS '22], and does not even hold among monotone (i.e., closed under taking subgraphs) factorial classes [Bonnet et al., ICALP '24]. However, monotone small (i.e., containing at most n! cⁿ many n-vertex graphs for some constant c) classes do admit implicit representations. This motivates the Small Implicit Graph Conjecture: Every hereditary small class admits an O(log n)-bit labeling scheme. We provide evidence supporting the Small Implicit Graph Conjecture. First, we show that every small weakly sparse (i.e., excluding some fixed bipartite complete graph as a subgraph) class has an implicit representation. This is a consequence of the following fact of independent interest proved in the paper: Every weakly sparse small class has bounded expansion (hence, in particular, bounded degeneracy). Second, we show that every hereditary small class admits an O(log³ n)-bit labeling scheme, which provides a substantial improvement of the best-known polynomial upper bound of n^(1-ε) on the size of adjacency labeling schemes for such classes. This is a consequence of another fact of independent interest proved in the paper: Every small class has neighborhood complexity O(n log n).

Cite as

Édouard Bonnet, Julien Duron, John Sylvester, and Viktor Zamaraev. Adjacency Labeling Schemes for Small Classes. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 21:1-21:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bonnet_et_al:LIPIcs.ITCS.2025.21,
  author =	{Bonnet, \'{E}douard and Duron, Julien and Sylvester, John and Zamaraev, Viktor},
  title =	{{Adjacency Labeling Schemes for Small Classes}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{21:1--21:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.21},
  URN =		{urn:nbn:de:0030-drops-226493},
  doi =		{10.4230/LIPIcs.ITCS.2025.21},
  annote =	{Keywords: Adjacency labeling, degeneracy, weakly sparse classes, small classes, implicit graph conjecture}
}
Document
Extension Preservation on Dense Graph Classes

Authors: Ioannis Eleftheriadis

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
Preservation theorems provide a direct correspondence between the syntactic structure of first-order sentences and the closure properties of their respective classes of models. A line of work has explored preservation theorems relativised to combinatorially tame classes of sparse structures [Atserias et al., JACM 2006; Atserias et al., SiCOMP 2008; Dawar, JCSS 2010; Dawar and Eleftheriadis, MFCS 2024]. In this article we initiate the study of preservation theorems for dense classes of graphs. In contrast to the sparse setting, we show that extension preservation fails on most natural dense classes of low complexity. Nonetheless, we isolate a technical condition which is sufficient for extension preservation to hold, providing a dense analogue to a result of [Atserias et al., SiCOMP 2008].

Cite as

Ioannis Eleftheriadis. Extension Preservation on Dense Graph Classes. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 7:1-7:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{eleftheriadis:LIPIcs.CSL.2025.7,
  author =	{Eleftheriadis, Ioannis},
  title =	{{Extension Preservation on Dense Graph Classes}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{7:1--7:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.7},
  URN =		{urn:nbn:de:0030-drops-227640},
  doi =		{10.4230/LIPIcs.CSL.2025.7},
  annote =	{Keywords: Extension preservation, finite model theory, dense graphs, cliquewidth}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

Authors: Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Monadically stable and monadically NIP classes of structures were initially studied in the context of model theory and defined in logical terms. They have recently attracted attention in the area of structural graph theory, as they generalize notions such as nowhere denseness, bounded cliquewidth, and bounded twinwidth. Our main result is the - to the best of our knowledge first - purely combinatorial characterization of monadically stable classes of graphs, in terms of a property dubbed flip-flatness. A class C of graphs is flip-flat if for every fixed radius r, every sufficiently large set of vertices of a graph G ∈ C contains a large subset of vertices with mutual distance larger than r, where the distance is measured in some graph G' that can be obtained from G by performing a bounded number of flips that swap edges and non-edges within a subset of vertices. Flip-flatness generalizes the notion of uniform quasi-wideness, which characterizes nowhere dense classes and had a key impact on the combinatorial and algorithmic treatment of nowhere dense classes. To obtain this result, we develop tools that also apply to the more general monadically NIP classes, based on the notion of indiscernible sequences from model theory. We show that in monadically stable and monadically NIP classes indiscernible sequences impose a strong combinatorial structure on their definable neighborhoods. All our proofs are constructive and yield efficient algorithms.

Cite as

Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 125:1-125:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.ICALP.2023.125,
  author =	{Dreier, Jan and M\"{a}hlmann, Nikolas and Siebertz, Sebastian and Toru\'{n}czyk, Szymon},
  title =	{{Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{125:1--125:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.125},
  URN =		{urn:nbn:de:0030-drops-181779},
  doi =		{10.4230/LIPIcs.ICALP.2023.125},
  annote =	{Keywords: stability, NIP, combinatorial characterization, first-order model checking}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Flipper Games for Monadically Stable Graph Classes

Authors: Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode - using first-order transductions - arbitrarily long linear orders in graphs from C. It is known that nowhere dense graph classes are monadically stable; these include classes of bounded maximum degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a property expressed in purely model-theoretic terms that is also suited for capturing structure in dense graphs. In this work we provide a characterization of monadic stability in terms of the Flipper game: a game on a graph played by Flipper, who in each round can complement the edge relation between any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes of graphs (Grohe, Kreutzer, and Siebertz, J. ACM '17). We give two different proofs of our main result. The first proof is based on tools borrowed from model theory, and it exposes an additional property of monadically stable graph classes that is close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for graph classes coincides with monadic stability of existential formulas with two free variables, and we provide another combinatorial characterization of monadic stability via forbidden patterns. The second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz, and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves in a winning strategy.

Cite as

Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk. Flipper Games for Monadically Stable Graph Classes. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 128:1-128:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{gajarsky_et_al:LIPIcs.ICALP.2023.128,
  author =	{Gajarsk\'{y}, Jakub and M\"{a}hlmann, Nikolas and McCarty, Rose and Ohlmann, Pierre and Pilipczuk, Micha{\l} and Przybyszewski, Wojciech and Siebertz, Sebastian and Soko{\l}owski, Marek and Toru\'{n}czyk, Szymon},
  title =	{{Flipper Games for Monadically Stable Graph Classes}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{128:1--128:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.128},
  URN =		{urn:nbn:de:0030-drops-181804},
  doi =		{10.4230/LIPIcs.ICALP.2023.128},
  annote =	{Keywords: Stability theory, structural graph theory, games}
}
Document
Combinatorial and Algorithmic Aspects of Monadic Stability

Authors: Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Nowhere dense classes of graphs are classes of sparse graphs with rich structural and algorithmic properties, however, they fail to capture even simple classes of dense graphs. Monadically stable classes, originating from model theory, generalize nowhere dense classes and close them under transductions, i.e. transformations defined by colorings and simple first-order interpretations. In this work we aim to extend some combinatorial and algorithmic properties of nowhere dense classes to monadically stable classes of finite graphs. We prove the following results. - For every monadically stable class C and fixed integer s ≥ 3, the Ramsey numbers R_C(s,t) are bounded from above by 𝒪(t^{s-1-δ}) for some δ > 0, improving the bound R(s,t) ∈ 𝒪(t^{s-1}/(log t)^{s-1}) known for the class of all graphs and the bounds known for k-stable graphs when s ≤ k. - For every monadically stable class C and every integer r, there exists δ > 0 such that every graph G ∈ C that contains an r-subdivision of the biclique K_{t,t} as a subgraph also contains K_{t^δ,t^δ} as a subgraph. This generalizes earlier results for nowhere dense graph classes. - We obtain a stronger regularity lemma for monadically stable classes of graphs. - Finally, we show that we can compute polynomial kernels for the independent set and dominating set problems in powers of nowhere dense classes. Formerly, only fixed-parameter tractable algorithms were known for these problems on powers of nowhere dense classes.

Cite as

Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre Vigny. Combinatorial and Algorithmic Aspects of Monadic Stability. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dreier_et_al:LIPIcs.ISAAC.2022.11,
  author =	{Dreier, Jan and M\"{a}hlmann, Nikolas and Mouawad, Amer E. and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Combinatorial and Algorithmic Aspects of Monadic Stability}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.11},
  URN =		{urn:nbn:de:0030-drops-172961},
  doi =		{10.4230/LIPIcs.ISAAC.2022.11},
  annote =	{Keywords: Monadic Stability, Structural Graph Theory, Ramsey Numbers, Regularity, Kernels}
}
Document
Recursive Backdoors for SAT

Authors: Nikolas Mählmann, Sebastian Siebertz, and Alexandre Vigny

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
A strong backdoor in a formula φ of propositional logic to a tractable class C of formulas is a set B of variables of φ such that every assignment of the variables in B results in a formula from C. Strong backdoors of small size or with a good structure, e.g. with small backdoor treewidth, lead to efficient solutions for the propositional satisfiability problem SAT. In this paper we propose the new notion of recursive backdoors, which is inspired by the observation that in order to solve SAT we can independently recurse into the components that are created by partial assignments of variables. The quality of a recursive backdoor is measured by its recursive backdoor depth. Similar to the concept of backdoor treewidth, recursive backdoors of bounded depth include backdoors of unbounded size that have a certain treelike structure. However, the two concepts are incomparable and our results yield new tractability results for SAT.

Cite as

Nikolas Mählmann, Sebastian Siebertz, and Alexandre Vigny. Recursive Backdoors for SAT. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 73:1-73:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{mahlmann_et_al:LIPIcs.MFCS.2021.73,
  author =	{M\"{a}hlmann, Nikolas and Siebertz, Sebastian and Vigny, Alexandre},
  title =	{{Recursive Backdoors for SAT}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{73:1--73:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.73},
  URN =		{urn:nbn:de:0030-drops-145138},
  doi =		{10.4230/LIPIcs.MFCS.2021.73},
  annote =	{Keywords: Propositional satisfiability SAT, Backdoors, Parameterized Algorithms}
}
  • Refine by Type
  • 11 Document/PDF
  • 7 Document/HTML

  • Refine by Publication Year
  • 7 2025
  • 2 2023
  • 1 2022
  • 1 2021

  • Refine by Author
  • 6 Mählmann, Nikolas
  • 5 Siebertz, Sebastian
  • 4 Toruńczyk, Szymon
  • 3 Vigny, Alexandre
  • 2 Bonnet, Édouard
  • Show More...

  • Refine by Series/Journal
  • 11 LIPIcs

  • Refine by Classification
  • 6 Theory of computation → Finite Model Theory
  • 4 Mathematics of computing → Graph theory
  • 2 Mathematics of computing → Combinatorics
  • 2 Mathematics of computing → Graph algorithms
  • 2 Theory of computation → Logic
  • Show More...

  • Refine by Keyword
  • 2 first-order model checking
  • 1 Adjacency labeling
  • 1 Backdoors
  • 1 Dominated cluster
  • 1 Elimination distance
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail