13 Search Results for "Olver, Neil"


Document
APPROX
Optimal Competitive Ratio for Optimization Problems with Congestion Effects

Authors: Miriam Fischer, Dario Paccagnan, and Cosimo Vinci

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
In this work we study online optimization problems with congestion effects. These are problems where tasks arrive online and a decision maker is required to allocate them on the fly to available resources in order to minimize the cost suffered, which grows with the amount of resources used. This class of problems corresponds to the online counterpart of well-known studied problems, including optimization problems with diseconomies of scale [Konstantin Makarychev and Maxim Sviridenko, 2018], minimum cost in congestion games [Gairing and Paccagnan, 2023], and load balancing problems [Baruch Awerbuch et al., 1995]. Within this setting, our work settles the problem of designing online algorithms with optimal competitive ratio, i.e., algorithms whose incurred cost is as close as possible to that of an oracle with complete knowledge of the future instance ahead of time. We provide three contributions underpinning this result. First, we show that no online algorithm can achieve a competitive ratio below a given factor depending solely on the resource costs. Second, we show that, when guided by carefully modified cost functions, the greedy algorithm achieves a competitive ratio matching this lower bound and thus is optimal. Finally, we show how to compute such modified cost functions in polynomial time.

Cite as

Miriam Fischer, Dario Paccagnan, and Cosimo Vinci. Optimal Competitive Ratio for Optimization Problems with Congestion Effects. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 9:1-9:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.APPROX/RANDOM.2025.9,
  author =	{Fischer, Miriam and Paccagnan, Dario and Vinci, Cosimo},
  title =	{{Optimal Competitive Ratio for Optimization Problems with Congestion Effects}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{9:1--9:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.9},
  URN =		{urn:nbn:de:0030-drops-243754},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.9},
  annote =	{Keywords: Online Algorithms, Competitive Ratio, Algorithmic Game Theory, Greedy Algorithms, Congestion Games}
}
Document
Track A: Algorithms, Complexity and Games
New Results on a General Class of Minimum Norm Optimization Problems

Authors: Kuowen Chen, Jian Li, Yuval Rabani, and Yiran Zhang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the general norm optimization for combinatorial problems, initiated by Chakrabarty and Swamy (STOC 2019). We propose a general formulation that captures a large class of combinatorial structures: we are given a set 𝒰 of n weighted elements and a family of feasible subsets ℱ. Each subset S ∈ ℱ is called a feasible solution/set of the problem. We denote the value vector by v = {v_i}_{i ∈ [n]}, where v_i ≥ 0 is the value of element i. For any subset S ⊆ 𝒰, we use v[S] to denote the n-dimensional vector {v_e⋅ 𝟏[e ∈ S]}_{e ∈ 𝒰} (i.e., we zero out all entries that are not in S). Let f: ℝⁿ → ℝ_+ be a symmetric monotone norm function. Our goal is to minimize the norm objective f(v[S]) over feasible subset S ∈ ℱ. The problem significantly generalizes the corresponding min-sum and min-max problems. We present a general equivalent reduction of the norm minimization problem to a multi-criteria optimization problem with logarithmic budget constraints, up to a constant approximation factor. Leveraging this reduction, we obtain constant factor approximation algorithms for the norm minimization versions of several covering problems, such as interval cover, multi-dimensional knapsack cover, and logarithmic factor approximation for set cover. We also study the norm minimization versions for perfect matching, s-t path and s-t cut. We show the natural linear programming relaxations for these problems have a large integrality gap. To complement the negative result, we show that, for perfect matching, it is possible to obtain a bi-criteria result: for any constant ε,δ > 0, we can find in polynomial time a nearly perfect matching (i.e., a matching that matches at least 1-ε proportion of vertices) and its cost is at most (8+δ) times of the optimum for perfect matching. Moreover, we establish the existence of a polynomial-time O(log log n)-approximation algorithm for the norm minimization variant of the s-t path problem. Specifically, our algorithm achieves an α-approximation with a time complexity of n^{O(log log n / α)}, where 9 ≤ α ≤ log log n.

Cite as

Kuowen Chen, Jian Li, Yuval Rabani, and Yiran Zhang. New Results on a General Class of Minimum Norm Optimization Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 50:1-50:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2025.50,
  author =	{Chen, Kuowen and Li, Jian and Rabani, Yuval and Zhang, Yiran},
  title =	{{New Results on a General Class of Minimum Norm Optimization Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{50:1--50:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.50},
  URN =		{urn:nbn:de:0030-drops-234276},
  doi =		{10.4230/LIPIcs.ICALP.2025.50},
  annote =	{Keywords: Approximation Algorithms, Minimum Norm Optimization, Linear Programming}
}
Document
Invited Talk
A Strongly Polynomial Algorithm for Linear Programs with at Most Two Non-Zero Entries per Row or Column (Invited Talk)

Authors: Daniel Dadush, Zhuan Khye Koh, Bento Natura, Neil Olver, and László A. Végh

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We give a strongly polynomial algorithm for minimum cost generalized flow, and hence for optimizing any linear program with at most two non-zero entries per row, or at most two non-zero entries per column. Primal and dual feasibility were shown by Végh (MOR '17) and Megiddo (SICOMP '83) respectively. Our result can be viewed as progress towards understanding whether all linear programs can be solved in strongly polynomial time, also referred to as Smale’s 9th problem. Our approach is based on the recent primal-dual interior point method (IPM) due to Allamigeon, Dadush, Loho, Natura and Végh (FOCS '22). The number of iterations needed by the IPM is bounded, up to a polynomial factor in the number of inequalities, by the straight line complexity of the central path. Roughly speaking, this is the minimum number of pieces of any piecewise linear curve that multiplicatively approximates the central path. As our main contribution, we show that the straight line complexity of any minimum cost generalized flow instance is polynomial in the number of arcs and vertices. By applying a reduction of Hochbaum (ORL '04), the same bound applies to any linear program with at most two non-zeros per column or per row. To be able to run the IPM, one requires a suitable initial point. For this purpose, we develop a novel multistage approach, where each stage can be solved in strongly polynomial time given the result of the previous stage. Beyond this, substantial work is needed to ensure that the bit complexity of each iterate remains bounded during the execution of the algorithm. For this purpose, we show that one can maintain a representation of the iterates as a low complexity convex combination of vertices and extreme rays. Our approach is black-box and can be applied to any log-barrier path following method.

Cite as

Daniel Dadush, Zhuan Khye Koh, Bento Natura, Neil Olver, and László A. Végh. A Strongly Polynomial Algorithm for Linear Programs with at Most Two Non-Zero Entries per Row or Column (Invited Talk). In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dadush_et_al:LIPIcs.STACS.2025.2,
  author =	{Dadush, Daniel and Koh, Zhuan Khye and Natura, Bento and Olver, Neil and V\'{e}gh, L\'{a}szl\'{o} A.},
  title =	{{A Strongly Polynomial Algorithm for Linear Programs with at Most Two Non-Zero Entries per Row or Column}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.2},
  URN =		{urn:nbn:de:0030-drops-228273},
  doi =		{10.4230/LIPIcs.STACS.2025.2},
  annote =	{Keywords: Linear Programming, Strongly Polynomial Algorithms, Interior Point Methods}
}
Document
Concentration of Submodular Functions and Read-k Families Under Negative Dependence

Authors: Sharmila Duppala, George Z. Li, Juan Luque, Aravind Srinivasan, and Renata Valieva

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We study the question of whether submodular functions of random variables satisfying various notions of negative dependence satisfy Chernoff-like concentration inequalities. We prove such a concentration inequality for the lower tail when the random variables satisfy negative association or negative regression, partially resolving an open problem raised in ([Frederick Qiu and Sahil Singla, 2022]). Previous work showed such concentration results for random variables that come from specific dependent-rounding algorithms ([Chandra Chekuri et al., 2010; Nicholas J. A. Harvey and Neil Olver, 2014]). We discuss some applications of our results to combinatorial optimization and beyond. We also show applications to the concentration of read-k families [Dmitry Gavinsky et al., 2015] under certain forms of negative dependence; we further show a simplified proof of the entropy-method approach of [Dmitry Gavinsky et al., 2015].

Cite as

Sharmila Duppala, George Z. Li, Juan Luque, Aravind Srinivasan, and Renata Valieva. Concentration of Submodular Functions and Read-k Families Under Negative Dependence. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 47:1-47:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{duppala_et_al:LIPIcs.ITCS.2025.47,
  author =	{Duppala, Sharmila and Li, George Z. and Luque, Juan and Srinivasan, Aravind and Valieva, Renata},
  title =	{{Concentration of Submodular Functions and Read-k Families Under Negative Dependence}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{47:1--47:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.47},
  URN =		{urn:nbn:de:0030-drops-226751},
  doi =		{10.4230/LIPIcs.ITCS.2025.47},
  annote =	{Keywords: Chernoff bounds, Submodular Functions, Negative Correlation}
}
Document
Hash & Adjust: Competitive Demand-Aware Consistent Hashing

Authors: Arash Pourdamghani, Chen Avin, Robert Sama, Maryam Shiran, and Stefan Schmid

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
Distributed systems often serve dynamic workloads and resource demands evolve over time. Such a temporal behavior stands in contrast to the static and demand-oblivious nature of most data structures used by these systems. In this paper, we are particularly interested in consistent hashing, a fundamental building block in many large distributed systems. Our work is motivated by the hypothesis that a more adaptive approach to consistent hashing can leverage structure in the demand, and hence improve storage utilization and reduce access time. We initiate the study of demand-aware consistent hashing. Our main contribution is H&A, a constant-competitive online algorithm (i.e., it comes with provable performance guarantees over time). H&A is demand-aware and optimizes its internal structure to enable faster access times, while offering a high utilization of storage. We further evaluate H&A empirically.

Cite as

Arash Pourdamghani, Chen Avin, Robert Sama, Maryam Shiran, and Stefan Schmid. Hash & Adjust: Competitive Demand-Aware Consistent Hashing. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 24:1-24:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{pourdamghani_et_al:LIPIcs.OPODIS.2024.24,
  author =	{Pourdamghani, Arash and Avin, Chen and Sama, Robert and Shiran, Maryam and Schmid, Stefan},
  title =	{{Hash \& Adjust: Competitive Demand-Aware Consistent Hashing}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{24:1--24:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.24},
  URN =		{urn:nbn:de:0030-drops-225607},
  doi =		{10.4230/LIPIcs.OPODIS.2024.24},
  annote =	{Keywords: Consistent hashing, demand-awareness, online algorithms}
}
Document
Efficient Algorithms for Demand-Aware Networks and a Connection to Virtual Network Embedding

Authors: Aleksander Figiel, Janne H. Korhonen, Neil Olver, and Stefan Schmid

Published in: LIPIcs, Volume 324, 28th International Conference on Principles of Distributed Systems (OPODIS 2024)


Abstract
Emerging optical switching technologies enable demand-aware datacenter networks, whose topology can be flexibly optimized toward the traffic they serve. This paper revisits the bounded-degree network design problem underlying such demand-aware networks. Namely, given a distribution over communicating node pairs (represented has a demand graph), we want to design a network with bounded maximum degree (called host graph) that minimizes the expected communication distance. We improve the understanding of this problem domain by filling several gaps in prior work. First, we present the first practical algorithm for solving this problem on arbitrary instances without violating the degree bound. Our algorithm is based on novel insights obtained from studying a new Steiner node version of the problem, and we report on an extensive empirical evaluation, using several real-world traffic traces from datacenters, finding that our approach results in improved demand-aware network designs. Second, we shed light on the complexity and hardness of the bounded-degree network design problem by formally establishing its NP-completeness for any degree. We use our techniques to improve prior upper bounds for sparse instances. Finally, we study an intriguing connection between demand-aware network design and the virtual networking embedding problem, and show that the latter cannot be used to approximate the former: there is no universal host graph which can provide a constant approximation for our problem.

Cite as

Aleksander Figiel, Janne H. Korhonen, Neil Olver, and Stefan Schmid. Efficient Algorithms for Demand-Aware Networks and a Connection to Virtual Network Embedding. In 28th International Conference on Principles of Distributed Systems (OPODIS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 324, pp. 38:1-38:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{figiel_et_al:LIPIcs.OPODIS.2024.38,
  author =	{Figiel, Aleksander and Korhonen, Janne H. and Olver, Neil and Schmid, Stefan},
  title =	{{Efficient Algorithms for Demand-Aware Networks and a Connection to Virtual Network Embedding}},
  booktitle =	{28th International Conference on Principles of Distributed Systems (OPODIS 2024)},
  pages =	{38:1--38:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-360-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{324},
  editor =	{Bonomi, Silvia and Galletta, Letterio and Rivi\`{e}re, Etienne and Schiavoni, Valerio},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2024.38},
  URN =		{urn:nbn:de:0030-drops-225742},
  doi =		{10.4230/LIPIcs.OPODIS.2024.38},
  annote =	{Keywords: demand-aware networks, algorithms, virtual network embedding}
}
Document
Track A: Algorithms, Complexity and Games
An O(loglog n)-Approximation for Submodular Facility Location

Authors: Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In the Submodular Facility Location problem (SFL) we are given a collection of n clients and m facilities in a metric space. A feasible solution consists of an assignment of each client to some facility. For each client, one has to pay the distance to the associated facility. Furthermore, for each facility f to which we assign the subset of clients S^f, one has to pay the opening cost g(S^f), where g() is a monotone submodular function with g(emptyset)=0. SFL is APX-hard since it includes the classical (metric uncapacitated) Facility Location problem (with uniform facility costs) as a special case. Svitkina and Tardos [SODA'06] gave the current-best O(log n) approximation algorithm for SFL. The same authors pose the open problem whether SFL admits a constant approximation and provide such an approximation for a very restricted special case of the problem. We make some progress towards the solution of the above open problem by presenting an O(loglog n) approximation. Our approach is rather flexible and can be easily extended to generalizations and variants of SFL. In more detail, we achieve the same approximation factor for the natural generalizations of SFL where the opening cost of each facility f is of the form p_f + g(S^f) or w_f * g(S^f), where p_f, w_f >= 0 are input values. We also obtain an improved approximation algorithm for the related Universal Stochastic Facility Location problem. In this problem one is given a classical (metric) facility location instance and has to a priori assign each client to some facility. Then a subset of active clients is sampled from some given distribution, and one has to pay (a posteriori) only the connection and opening costs induced by the active clients. The expected opening cost of each facility f can be modelled with a submodular function of the set of clients assigned to f.

Cite as

Fateme Abbasi, Marek Adamczyk, Miguel Bosch-Calvo, Jarosław Byrka, Fabrizio Grandoni, Krzysztof Sornat, and Antoine Tinguely. An O(loglog n)-Approximation for Submodular Facility Location. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{abbasi_et_al:LIPIcs.ICALP.2024.5,
  author =	{Abbasi, Fateme and Adamczyk, Marek and Bosch-Calvo, Miguel and Byrka, Jaros{\l}aw and Grandoni, Fabrizio and Sornat, Krzysztof and Tinguely, Antoine},
  title =	{{An O(loglog n)-Approximation for Submodular Facility Location}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.5},
  URN =		{urn:nbn:de:0030-drops-201488},
  doi =		{10.4230/LIPIcs.ICALP.2024.5},
  annote =	{Keywords: approximation algorithms, facility location, submodular facility location, universal stochastic facility location}
}
Document
An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement

Authors: Marcin Bienkowski and Guy Even

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
The dynamic offline linear arrangement problem deals with reordering n elements subject to a sequence of edge requests. The input consists of a sequence of m edges (i.e., unordered pairs of elements). The output is a sequence of permutations (i.e., bijective mapping of the elements to n equidistant points). In step t, the order of the elements is changed to the t-th permutation, and then the t-th request is served. The cost of the output consists of two parts per step: request cost and rearrangement cost. The former is the current distance between the endpoints of the request, while the latter is proportional to the number of adjacent element swaps required to move from one permutation to the consecutive permutation. The goal is to find a minimum cost solution. We present a deterministic O(log n log log n)-approximation algorithm for this problem, improving over a randomized O(log² n)-approximation by Olver et al. [Neil Olver et al., 2018]. Our algorithm is based on first solving spreading-metric LP relaxation on a time-expanded graph, applying a tree decomposition on the basis of the LP solution, and finally converting the tree decomposition to a sequence of permutations. The techniques we employ are general and have the potential to be useful for other dynamic graph optimization problems.

Cite as

Marcin Bienkowski and Guy Even. An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 15:1-15:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bienkowski_et_al:LIPIcs.STACS.2024.15,
  author =	{Bienkowski, Marcin and Even, Guy},
  title =	{{An Improved Approximation Algorithm for Dynamic Minimum Linear Arrangement}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{15:1--15:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.15},
  URN =		{urn:nbn:de:0030-drops-197252},
  doi =		{10.4230/LIPIcs.STACS.2024.15},
  annote =	{Keywords: Minimum Linear Arrangement, dynamic Variant, Optimization Problems, Graph Problems, approximation Algorithms}
}
Document
An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems

Authors: Daniel Dadush, Zhuan Khye Koh, Bento Natura, and László A. Végh

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We present an accelerated, or "look-ahead" version of the Newton-Dinkelbach method, a well-known technique for solving fractional and parametric optimization problems. This acceleration halves the Bregman divergence between the current iterate and the optimal solution within every two iterations. Using the Bregman divergence as a potential in conjunction with combinatorial arguments, we obtain strongly polynomial algorithms in three applications domains: (i) For linear fractional combinatorial optimization, we show a convergence bound of O(mlog m) iterations; the previous best bound was O(m²log m) by Wang et al. (2006). (ii) We obtain a strongly polynomial label-correcting algorithm for solving linear feasibility systems with two variables per inequality (2VPI). For a 2VPI system with n variables and m constraints, our algorithm runs in O(mn) iterations. Every iteration takes O(mn) time for general 2VPI systems, and O(m + nlog n) time for the special case of deterministic Markov Decision Processes (DMDPs). This extends and strengthens a previous result by Madani (2002) that showed a weakly polynomial bound for a variant of the Newton–Dinkelbach method for solving DMDPs. (iii) We give a simplified variant of the parametric submodular function minimization result by Goemans et al. (2017).

Cite as

Daniel Dadush, Zhuan Khye Koh, Bento Natura, and László A. Végh. An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 36:1-36:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dadush_et_al:LIPIcs.ESA.2021.36,
  author =	{Dadush, Daniel and Koh, Zhuan Khye and Natura, Bento and V\'{e}gh, L\'{a}szl\'{o} A.},
  title =	{{An Accelerated Newton-Dinkelbach Method and Its Application to Two Variables per Inequality Systems}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{36:1--36:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.36},
  URN =		{urn:nbn:de:0030-drops-146172},
  doi =		{10.4230/LIPIcs.ESA.2021.36},
  annote =	{Keywords: Newton-Dinkelbach method, fractional optimization, parametric optimization, strongly polynomial algorithms, two variables per inequality systems, Markov decision processes, submodular function minimization}
}
Document
Majorizing Measures for the Optimizer

Authors: Sander Borst, Daniel Dadush, Neil Olver, and Makrand Sinha

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
The theory of majorizing measures, extensively developed by Fernique, Talagrand and many others, provides one of the most general frameworks for controlling the behavior of stochastic processes. In particular, it can be applied to derive quantitative bounds on the expected suprema and the degree of continuity of sample paths for many processes. One of the crowning achievements of the theory is Talagrand’s tight alternative characterization of the suprema of Gaussian processes in terms of majorizing measures. The proof of this theorem was difficult, and thus considerable effort was put into the task of developing both shorter and easier to understand proofs. A major reason for this difficulty was considered to be theory of majorizing measures itself, which had the reputation of being opaque and mysterious. As a consequence, most recent treatments of the theory (including by Talagrand himself) have eschewed the use of majorizing measures in favor of a purely combinatorial approach (the generic chaining) where objects based on sequences of partitions provide roughly matching upper and lower bounds on the desired expected supremum. In this paper, we return to majorizing measures as a primary object of study, and give a viewpoint that we think is natural and clarifying from an optimization perspective. As our main contribution, we give an algorithmic proof of the majorizing measures theorem based on two parts: - We make the simple (but apparently new) observation that finding the best majorizing measure can be cast as a convex program. This also allows for efficiently computing the measure using off-the-shelf methods from convex optimization. - We obtain tree-based upper and lower bound certificates by rounding, in a series of steps, the primal and dual solutions to this convex program. While duality has conceptually been part of the theory since its beginnings, as far as we are aware no explicit link to convex optimization has been previously made.

Cite as

Sander Borst, Daniel Dadush, Neil Olver, and Makrand Sinha. Majorizing Measures for the Optimizer. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 73:1-73:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{borst_et_al:LIPIcs.ITCS.2021.73,
  author =	{Borst, Sander and Dadush, Daniel and Olver, Neil and Sinha, Makrand},
  title =	{{Majorizing Measures for the Optimizer}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{73:1--73:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.73},
  URN =		{urn:nbn:de:0030-drops-136120},
  doi =		{10.4230/LIPIcs.ITCS.2021.73},
  annote =	{Keywords: Majorizing measures, Generic chaining, Gaussian processes, Convex optimization, Dimensionality Reduction}
}
Document
Exploring the Tractability of the Capped Hose Model

Authors: Thomas Bosman and Neil Olver

Published in: LIPIcs, Volume 87, 25th Annual European Symposium on Algorithms (ESA 2017)


Abstract
Robust network design concerns the design of networks to support uncertain or varying traffic patterns. An especially important case is the VPN problem, where the total traffic emanating from any node is bounded, but there are no further constraints on the traffic pattern. Recently, Fréchette et al. [INFOCOM, 2013] studied a generalization of the VPN problem where in addition to these so-called hose constraints, there are individual upper bounds on the demands between pairs of nodes. They motivate their model, give some theoretical results, and propose a heuristic algorithm that performs well on real-world instances. Our theoretical understanding of this model is limited; it is APX-hard in general, but tractable when either the hose constraints or the individual demand bounds are redundant. In this work, we uncover further tractable cases of this model; our main result concerns the case where each terminal needs to communicate only with two others. Our algorithms all involve optimally embedding a certain auxiliary graph into the network, and have a connection to a heuristic suggested by Fréchette et al. for the capped hose model in general.

Cite as

Thomas Bosman and Neil Olver. Exploring the Tractability of the Capped Hose Model. In 25th Annual European Symposium on Algorithms (ESA 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 87, pp. 19:1-19:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{bosman_et_al:LIPIcs.ESA.2017.19,
  author =	{Bosman, Thomas and Olver, Neil},
  title =	{{Exploring the Tractability of the Capped Hose Model}},
  booktitle =	{25th Annual European Symposium on Algorithms (ESA 2017)},
  pages =	{19:1--19:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-049-1},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{87},
  editor =	{Pruhs, Kirk and Sohler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2017.19},
  URN =		{urn:nbn:de:0030-drops-78663},
  doi =		{10.4230/LIPIcs.ESA.2017.19},
  annote =	{Keywords: robust network design, VPN problem}
}
Document
On the Integrality Gap of the Prize-Collecting Steiner Forest LP

Authors: Jochen Könemann, Neil Olver, Kanstantsin Pashkovich, R. Ravi, Chaitanya Swamy, and Jens Vygen

Published in: LIPIcs, Volume 81, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)


Abstract
In the prize-collecting Steiner forest (PCSF) problem, we are given an undirected graph G=(V,E), nonnegative edge costs {c_e} for e in E, terminal pairs {(s_i,t_i)} for i=1,...,k, and penalties {pi_i} for i=1,...,k for each terminal pair; the goal is to find a forest F to minimize c(F) + sum{ pi_i: (s_i,t_i) is not connected in F }. The Steiner forest problem can be viewed as the special case where pi_i are infinite for all i. It was widely believed that the integrality gap of the natural (and well-studied) linear-programming (LP) relaxation for PCSF (PCSF-LP) is at most 2. We dispel this belief by showing that the integrality gap of this LP is at least 9/4 even if the input instance is planar. We also show that using this LP, one cannot devise a Lagrangian-multiplier-preserving (LMP) algorithm with approximation guarantee better than 4. Our results thus show a separation between the integrality gaps of the LP-relaxations for prize-collecting and non-prize-collecting (i.e., standard) Steiner forest, as well as the approximation ratios achievable relative to the optimal LP solution by LMP- and non-LMP-approximation algorithms for PCSF. For the special case of prize-collecting Steiner tree (PCST), we prove that the natural LP relaxation admits basic feasible solutions with all coordinates of value at most 1/3 and all edge variables positive. Thus, we rule out the possibility of approximating PCST with guarantee better than 3 using a direct iterative rounding method.

Cite as

Jochen Könemann, Neil Olver, Kanstantsin Pashkovich, R. Ravi, Chaitanya Swamy, and Jens Vygen. On the Integrality Gap of the Prize-Collecting Steiner Forest LP. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 81, pp. 17:1-17:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{konemann_et_al:LIPIcs.APPROX-RANDOM.2017.17,
  author =	{K\"{o}nemann, Jochen and Olver, Neil and Pashkovich, Kanstantsin and Ravi, R. and Swamy, Chaitanya and Vygen, Jens},
  title =	{{On the Integrality Gap of the Prize-Collecting Steiner Forest LP}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2017)},
  pages =	{17:1--17:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-044-6},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{81},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} D. P. and Williamson, David P. and Vempala, Santosh S.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2017.17},
  URN =		{urn:nbn:de:0030-drops-75665},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2017.17},
  annote =	{Keywords: Integrality gap, Steiner tree, Steiner forest, prize-collecting, Lagrangianmultiplier- preserving}
}
Document
On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree

Authors: Andreas Emil Feldmann, Jochen Könemann, Neil Olver, and Laura Sanità

Published in: LIPIcs, Volume 28, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)


Abstract
The bottleneck of the currently best (ln(4) + epsilon)-approximation algorithm for the NP-hard Steiner tree problem is the solution of its large, so called hypergraphic, linear programming relaxation (HYP). Hypergraphic LPs are NP-hard to solve exactly, and it is a formidable computational task to even approximate them sufficiently well. We focus on another well-studied but poorly understood LP relaxation of the problem: the bidirected cut relaxation (BCR). This LP is compact, and can therefore be solved efficiently. Its integrality gap is known to be greater than 1.16, and while this is widely conjectured to be close to the real answer, only a (trivial) upper bound of 2 is known. In this paper, we give an efficient constructive proof that BCR and HYP are polyhedrally equivalent in instances that do not have an (edge-induced) claw on Steiner vertices, i.e., they do not contain a Steiner vertex with 3 Steiner neighbors. This implies faster ln(4)-approximations for these graphs, and is a significant step forward from the previously known equivalence for (so called quasi-bipartite) instances in which Steiner vertices form an independent set. We complement our results by showing that even restricting to instances where Steiner vertices induce one single star, determining whether the two relaxations are equivalent is NP-hard.

Cite as

Andreas Emil Feldmann, Jochen Könemann, Neil Olver, and Laura Sanità. On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 28, pp. 176-191, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{feldmann_et_al:LIPIcs.APPROX-RANDOM.2014.176,
  author =	{Feldmann, Andreas Emil and K\"{o}nemann, Jochen and Olver, Neil and Sanit\`{a}, Laura},
  title =	{{On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014)},
  pages =	{176--191},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-74-3},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{28},
  editor =	{Jansen, Klaus and Rolim, Jos\'{e} and Devanur, Nikhil R. and Moore, Cristopher},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2014.176},
  URN =		{urn:nbn:de:0030-drops-46962},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2014.176},
  annote =	{Keywords: Steiner tree, bidirected cut relaxation, hypergraphic relaxation, polyhedral equivalence, approximation algorithms}
}
  • Refine by Type
  • 13 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 2 2024
  • 2 2021
  • 2 2017
  • 1 2014

  • Refine by Author
  • 6 Olver, Neil
  • 3 Dadush, Daniel
  • 2 Koh, Zhuan Khye
  • 2 Könemann, Jochen
  • 2 Natura, Bento
  • Show More...

  • Refine by Series/Journal
  • 13 LIPIcs

  • Refine by Classification
  • 3 Theory of computation → Online algorithms
  • 2 Mathematics of computing → Mathematical optimization
  • 2 Theory of computation → Approximation algorithms analysis
  • 1 Mathematics of computing → Approximation algorithms
  • 1 Mathematics of computing → Combinatorial optimization
  • Show More...

  • Refine by Keyword
  • 2 Linear Programming
  • 2 Steiner tree
  • 2 approximation algorithms
  • 1 Algorithmic Game Theory
  • 1 Approximation Algorithms
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail