49 Search Results for "Place, Thomas"


Document
Efficiency of Learned Indexes on Genome Spectra

Authors: Md. Hasin Abrar, Paul Medvedev, and Giorgio Vinciguerra

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Data structures on a multiset of genomic k-mers are at the heart of many bioinformatic tools. As genomic datasets grow in scale, the efficiency of these data structures increasingly depends on how well they leverage the inherent patterns in the data. One recent and effective approach is the use of learned indexes that approximate the rank function of a multiset using a piecewise linear function with very few segments. However, theoretical worst-case analysis struggles to predict the practical performance of these indexes. We address this limitation by developing a novel measure of piecewise-linear approximability of the data, called CaPLa (Canonical Piecewise Linear approximability). CaPLa builds on the empirical observation that a power-law model often serves as a reasonable proxy for piecewise linear-approximability, while explicitly accounting for deviations from a true power-law fit. We prove basic properties of CaPLa and present an efficient algorithm to compute it. We then demonstrate that CaPLa can accurately predict space bounds for data structures on real data. Empirically, we analyze over 500 genomes through the lens of CaPLa, revealing that it varies widely across the tree of life and even within individual genomes. Finally, we study the robustness of CaPLa as a measure and the factors that make genomic k-mer multisets different from random ones.

Cite as

Md. Hasin Abrar, Paul Medvedev, and Giorgio Vinciguerra. Efficiency of Learned Indexes on Genome Spectra. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{abrar_et_al:LIPIcs.ESA.2025.18,
  author =	{Abrar, Md. Hasin and Medvedev, Paul and Vinciguerra, Giorgio},
  title =	{{Efficiency of Learned Indexes on Genome Spectra}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.18},
  URN =		{urn:nbn:de:0030-drops-244865},
  doi =		{10.4230/LIPIcs.ESA.2025.18},
  annote =	{Keywords: Genome spectra, piecewise linear approximation, learned index, k-mers}
}
Document
Exploring the Symbiotic Collaboration Paradigm in Virtual Reality and Its Potential Applications to Human Spaceflight

Authors: Florian Dufresne, Geoffrey Gorisse, and Olivier Christmann

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
As the quest to go back to the Moon and beyond continues, preparation for such critical missions relies in part on the use of immersive technologies. Especially, Virtual Reality (VR) unique affordances allow to simulate scenarios in a convincing digitally recreated space. But the potential of VR is not limited to solely emulating real-world environments. Indeed, some works from the Human-Computer Interaction (HCI) community explored new ways to collaborate virtually by inhabiting the same virtual representation, namely an avatar. Taking this paradigm further, one could offer new ways to collaborate between an immersed VR user and an external supervisor being granted access to the virtual environment by way of non-immersive devices like a computer or a smartphone. The non-immersed user could for instance inhabit some body parts of the VR user’s avatar to benefit from unique viewpoints and leverage mutual spatial awareness, as well as social interactions, alike a symbiotic relationship that benefits both actors. Therefore, this paper introduces our on-going research project exploring this new paradigm of symbiotic co-embodiment as a tool leveraging social presence during supervised embodied sessions in VR. It especially discusses how this paradigm could benefit human spaceflight, both in mission preparation and during spaceflight.

Cite as

Florian Dufresne, Geoffrey Gorisse, and Olivier Christmann. Exploring the Symbiotic Collaboration Paradigm in Virtual Reality and Its Potential Applications to Human Spaceflight. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 13:1-13:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dufresne_et_al:OASIcs.SpaceCHI.2025.13,
  author =	{Dufresne, Florian and Gorisse, Geoffrey and Christmann, Olivier},
  title =	{{Exploring the Symbiotic Collaboration Paradigm in Virtual Reality and Its Potential Applications to Human Spaceflight}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{13:1--13:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.13},
  URN =		{urn:nbn:de:0030-drops-240034},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.13},
  annote =	{Keywords: Virtual Reality, Co-Embodiment, Human Spaceflight, Supervised Training, On-field Activities}
}
Document
Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks

Authors: David Andrew Green

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
The Artemis programme seeks to develop and test concepts, hardware and approaches to support long term habitation of the Lunar surface, and future missions to Mars. In preparation for the Artemis missions determination of tasks to be performed, the functional requirements of such tasks and as mission duration extends whether physiological deconditioning becomes functionally significant, compromising the crew member’s ability to perform critical tasks on the surface, and/or upon return to earth [MoLo-LUNA – leveraging the Molo programme (and several other activities) - could become a key supporting activity for LUNA incl. validation of the Puppeteer offloading system itself via creation of a complementary MoLo-LUNA-LAB. Furthermore, the MoLo-LUNA programme could become a key facilitator of simulator suit instrumentation/definition, broader astronaut training activities and mission architecture development – including Artemis mission simulations. By employing a Puppeteer system external to the LUNA chamber hall it will optimise utilisation and cost-effectiveness of LUNA, and as such represents a critical service to future LUNA stakeholders. Furthermore, MoLo-LUNA would generate a unique data set that can be leveraged to predict de-conditioning on the Lunar surface - and thereby optimise functionality, and minimise mission risk – including informing the need for, and prescription of exercise countermeasures on the Lunar Surface and in transit. Thus, MoLo-LUNA offers a unique opportunity to place LUNA, and ESA as a key ongoing provider of evidence to define, optimise and support crew Artemis surface missions.

Cite as

David Andrew Green. Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 26:1-26:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{green:OASIcs.SpaceCHI.2025.26,
  author =	{Green, David Andrew},
  title =	{{Movement in Low Gravity (MoLo) – LUNA: Biomechanical Modelling to Mitigate Lunar Surface Operation Risks}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{26:1--26:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.26},
  URN =		{urn:nbn:de:0030-drops-240166},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.26},
  annote =	{Keywords: Locomotion, hypogravity, modelling, Lunar}
}
Document
Extended Abstract
Towards a Java Virtual Machine for Processing-In-Memory (Extended Abstract)

Authors: Kazuki Ichinose, Shigeyuki Sato, and Tomoharu Ugawa

Published in: OASIcs, Volume 134, Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)


Abstract
Processing-in-Memory (PIM) is a computing paradigm in which computation takes place in or near memory devices, offering high-bandwidth yet energy-efficient data-parallel processing. Real-world PIM systems have recently emerged, and SPMD-style programming in C is supported there. However, high-level object-oriented programming in managed languages has never been studied. Pursuing high-level programming for offloading Java applications to PIM processors, we are developing a Java framework to support it. As a status report on our project, we present our prototype Java VM built upon a real-world PIM system and experimentally demonstrate its scalability. The experimental results showed the potential of our Java VM on the PIM system with thousands of PIM processors.

Cite as

Kazuki Ichinose, Shigeyuki Sato, and Tomoharu Ugawa. Towards a Java Virtual Machine for Processing-In-Memory (Extended Abstract). In Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025). Open Access Series in Informatics (OASIcs), Volume 134, pp. 2:1-2:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ichinose_et_al:OASIcs.Programming.2025.2,
  author =	{Ichinose, Kazuki and Sato, Shigeyuki and Ugawa, Tomoharu},
  title =	{{Towards a Java Virtual Machine for Processing-In-Memory}},
  booktitle =	{Companion Proceedings of the 9th International Conference on the Art, Science, and Engineering of Programming (Programming 2025)},
  pages =	{2:1--2:5},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-382-9},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{134},
  editor =	{Edwards, Jonathan and Perera, Roly and Petricek, Tomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Programming.2025.2},
  URN =		{urn:nbn:de:0030-drops-242862},
  doi =		{10.4230/OASIcs.Programming.2025.2},
  annote =	{Keywords: Java VM, Processing-in-Memory, Offloading, Data parallelism}
}
Document
Quantum Search with In-Place Queries

Authors: Blake Holman, Ronak Ramachandran, and Justin Yirka

Published in: LIPIcs, Volume 350, 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)


Abstract
Quantum query complexity is typically characterized in terms of xor queries |x,y⟩ ↦ |x,y⊕ f(x)⟩ or phase queries, which ensure that even queries to non-invertible functions are unitary. When querying a permutation, another natural model is unitary: in-place queries |x⟩↦ |f(x)⟩. Some problems are known to require exponentially fewer in-place queries than xor queries, but no separation has been shown in the opposite direction. A candidate for such a separation was the problem of inverting a permutation over N elements. This task, equivalent to unstructured search in the context of permutations, is solvable with O(√N) xor queries but was conjectured to require Ω(N) in-place queries. We refute this conjecture by designing a quantum algorithm for Permutation Inversion using O(√N) in-place queries. Our algorithm achieves the same speedup as Grover’s algorithm despite the inability to efficiently uncompute queries or perform straightforward oracle-controlled reflections. Nonetheless, we show that there are indeed problems which require fewer xor queries than in-place queries. We introduce a subspace-conversion problem called Function Erasure that requires 1 xor query and Θ(√N) in-place queries. Then, we build on a recent extension of the quantum adversary method to characterize exact conditions for a decision problem to exhibit such a separation, and we propose a candidate problem.

Cite as

Blake Holman, Ronak Ramachandran, and Justin Yirka. Quantum Search with In-Place Queries. In 20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 350, pp. 1:1-1:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{holman_et_al:LIPIcs.TQC.2025.1,
  author =	{Holman, Blake and Ramachandran, Ronak and Yirka, Justin},
  title =	{{Quantum Search with In-Place Queries}},
  booktitle =	{20th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2025)},
  pages =	{1:1--1:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-392-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{350},
  editor =	{Fefferman, Bill},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2025.1},
  URN =		{urn:nbn:de:0030-drops-240502},
  doi =		{10.4230/LIPIcs.TQC.2025.1},
  annote =	{Keywords: Quantum algorithms, query complexity, quantum complexity theory, quantum search, Grover’s algorithm, permutation inversion}
}
Document
On Expansions of Monadic Second-Order Logic with Dynamical Predicates

Authors: Joris Nieuwveld and Joël Ouaknine

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Expansions of the monadic second-order (MSO) theory of the structure ⟨ℕ;<⟩ have been a fertile and active area of research ever since the publication of the seminal papers of Büchi and Elgot & Rabin on the subject in the 1960s. In the present paper, we establish decidability of the MSO theory of ⟨ℕ;<,P⟩, where P ranges over a large class of unary "dynamical" predicates, i.e., sets of non-negative values assumed by certain integer linear recurrence sequences. One of our key technical tools is the novel concept of (effective) prodisjunctivity, which we expect may also find independent applications further afield.

Cite as

Joris Nieuwveld and Joël Ouaknine. On Expansions of Monadic Second-Order Logic with Dynamical Predicates. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 80:1-80:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nieuwveld_et_al:LIPIcs.MFCS.2025.80,
  author =	{Nieuwveld, Joris and Ouaknine, Jo\"{e}l},
  title =	{{On Expansions of Monadic Second-Order Logic with Dynamical Predicates}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{80:1--80:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.80},
  URN =		{urn:nbn:de:0030-drops-241879},
  doi =		{10.4230/LIPIcs.MFCS.2025.80},
  annote =	{Keywords: Monadic second-order logic, linear recurrence sequences, decidability, Baker’s theorem}
}
Document
Cops and Robbers for Graphs on Surfaces with Crossings

Authors: Prosenjit Bose, Pat Morin, and Karthik Murali

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Cops and Robbers is a game played on a graph where a set of cops attempt to capture a single robber. The game proceeds in rounds, where each round first consists of the cops' turn, followed by the robber’s turn. In the first round, the cops place themselves on a subset of vertices, after which the robber chooses a vertex to place himself. From the next round onwards, in the cops' turn, every cop can choose to either stay on the same vertex or move to an adjacent vertex, and likewise the robber in his turn. The robber is considered to be captured if, at any point in time, there is some cop on the same vertex as the robber. The cops win if they can capture the robber within a finite number of rounds; else the robber wins. A natural question in this game concerns the cop-number of a graph - the minimum number of cops needed to capture a robber. It has long been known that graphs embeddable (without crossings) on surfaces of bounded genus have bounded cop-number. In contrast, it was shown recently that the class of 1-planar graphs - graphs that can be drawn on the plane with at most one crossing per edge - does not have bounded cop-number. This paper initiates an investigation into how the distance between crossing pairs of edges influences a graph’s cop number. In particular, we look at Distance d Cops and Robbers, a variant of the classical game, where the robber is considered to be captured if there is a cop within distance d of the robber. Let c_d(G) denote the minimum number of cops required in the graph G to capture a robber within distance d. We look at various classes of graphs, such as 1-plane graphs, k-plane graphs (graphs where each edge is crossed at most k times), and even general graph drawings, and show that if every crossing pair of edges can be connected by a path of small length, then c_d(G) is bounded, for small values of d. For example, we show that if a graph G admits a drawing in which every pair of crossing edges is contained in a path of length at most 3, then c₄(G) ≤ 21. And if the drawing permits a stronger assumption that the endpoints of every crossing induce the complete graph K₄, then c₃(G) ≤ 9. The tools and techniques that we develop in this paper are sufficiently general, enabling us to examine graphs drawn not only on the sphere but also on orientable and non-orientable surfaces.

Cite as

Prosenjit Bose, Pat Morin, and Karthik Murali. Cops and Robbers for Graphs on Surfaces with Crossings. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 27:1-27:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.MFCS.2025.27,
  author =	{Bose, Prosenjit and Morin, Pat and Murali, Karthik},
  title =	{{Cops and Robbers for Graphs on Surfaces with Crossings}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{27:1--27:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.27},
  URN =		{urn:nbn:de:0030-drops-241349},
  doi =		{10.4230/LIPIcs.MFCS.2025.27},
  annote =	{Keywords: Cops and Robbers, Crossings, 1-Planar, Surfaces}
}
Document
A Coupled Reconfiguration Mechanism That Enables Powerful, Pseudoknot-Robust DNA Strand Displacement Devices with 2-Stranded Inputs

Authors: Hope Amber Johnson and Anne Condon

Published in: LIPIcs, Volume 347, 31st International Conference on DNA Computing and Molecular Programming (DNA 31) (2025)


Abstract
DNA strand displacement, a collective name for certain behaviors of short strands of DNA, has been used to build many interesting molecular devices over the past few decades. Among those devices are general implementation schemes for Chemical Reaction Networks, suggesting a place in an abstraction hierarchy for complex molecular programming. However, the possibilities of DNA strand displacement are far from fully explored. On a theoretical level, most DNA strand displacement systems are built out of a few simple motifs, with the space of possible motifs otherwise unexplored. On a practical level, the desire for general, large-scale DNA strand displacement systems is not fulfilled. Those systems that are scalable are not general, and those that are general don't scale up well. We have recently been exploring the space of possibilities for DNA strand displacement systems where all input complexes are made out of at most two strands of DNA. As a test case, we've had an open question of whether such systems can implement general Chemical Reaction Networks, in a way that has a certain set of other desirable properties - reversible, systematic, O(1) toeholds, bimolecular reactions, and correct according to CRN bisimulation - that the state-of-the-art implementations with more than 2-stranded inputs have. Until now we've had a few results that have all but one of those desirable properties, including one based on a novel mechanism we called coupled reconfiguration, but that depended on the physically questionable assumption that pseudoknots cannot occur. We wondered whether the same type of mechanism could be done in a pseudoknot-robust way. In this work we show that in fact, coupled reconfiguration can be done in a pseudoknot-robust way, and this mechanism can implement general Chemical Reaction Networks with all inputs being single strands of DNA. Going further, the same motifs used in this mechanism can implement stacks and surface-based bimolecular reactions. Those have been previously studied as part of polymer extensions of the Chemical Reaction Network model, and on an abstract model level, the resulting extensions are Turing-complete in ways the base Chemical Reaction Network model is not. Our mechanisms are significantly different from previously tested DNA strand displacement systems, which raises questions about their ability to be implemented experimentally, but we have some reasons to believe the challenges are solvable. So we present the pseudoknot-robust coupled reconfiguration mechanism and its use for general Chemical Reaction Network implementations; we present the extensions of the mechanism to stack and surface reactions; and we discuss the possible obstacles and solutions to experimental implementation, as well as the theoretical implications of this mechanism.

Cite as

Hope Amber Johnson and Anne Condon. A Coupled Reconfiguration Mechanism That Enables Powerful, Pseudoknot-Robust DNA Strand Displacement Devices with 2-Stranded Inputs. In 31st International Conference on DNA Computing and Molecular Programming (DNA 31). Leibniz International Proceedings in Informatics (LIPIcs), Volume 347, pp. 2:1-2:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{johnson_et_al:LIPIcs.DNA.31.2,
  author =	{Johnson, Hope Amber and Condon, Anne},
  title =	{{A Coupled Reconfiguration Mechanism That Enables Powerful, Pseudoknot-Robust DNA Strand Displacement Devices with 2-Stranded Inputs}},
  booktitle =	{31st International Conference on DNA Computing and Molecular Programming (DNA 31)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-399-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{347},
  editor =	{Schaeffer, Josie and Zhang, Fei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.31.2},
  URN =		{urn:nbn:de:0030-drops-238514},
  doi =		{10.4230/LIPIcs.DNA.31.2},
  annote =	{Keywords: Molecular programming, DNA strand displacement, Chemical Reaction Networks}
}
Document
Multi-League Sports Scheduling with Team Interdependencies: An Optimization Model

Authors: Nils Weidmann

Published in: LIPIcs, Volume 340, 31st International Conference on Principles and Practice of Constraint Programming (CP 2025)


Abstract
Every year, a large number of matches must be scheduled for professional and amateur sports teams. Several constraints have to be considered, including the overall capacity of venues and interdependencies between teams of the same club. As interdependent teams of a club play in different leagues, finding an optimal solution is very challenging for practitioners. While the problem of respecting capacity restrictions is well-addressed in prior work, interdependencies between teams are widely neglected, despite being a problem of major importance in practice. This paper enhances the formal definition of the multi-league-sports scheduling problem to take team interdependencies into account. We create an optimization problem to be solved by means of integer linear programming, and prove the corresponding decision problem to be NP-complete by a polynomial reduction from 3-SAT. An implementation which was used to schedule German table tennis leagues of a certain district demonstrates the practical applicability of the approach.

Cite as

Nils Weidmann. Multi-League Sports Scheduling with Team Interdependencies: An Optimization Model. In 31st International Conference on Principles and Practice of Constraint Programming (CP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 340, pp. 37:1-37:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{weidmann:LIPIcs.CP.2025.37,
  author =	{Weidmann, Nils},
  title =	{{Multi-League Sports Scheduling with Team Interdependencies: An Optimization Model}},
  booktitle =	{31st International Conference on Principles and Practice of Constraint Programming (CP 2025)},
  pages =	{37:1--37:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-380-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{340},
  editor =	{de la Banda, Maria Garcia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2025.37},
  URN =		{urn:nbn:de:0030-drops-238986},
  doi =		{10.4230/LIPIcs.CP.2025.37},
  annote =	{Keywords: sports scheduling, linear optimization, constraint programming}
}
Document
A Survey of the Bijective Burrows-Wheeler Transform

Authors: Hideo Bannai, Dominik Köppl, and Zsuzsanna Lipták

Published in: OASIcs, Volume 131, The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday (2025)


Abstract
The Bijective BWT (BBWT), conceived by Scott in 2007, later summarized in a preprint by Gil and Scott in 2009 (arXiv 2012), is a variant of the Burrows-Wheeler Transform which is bijective: every string is the BBWT of some string. Indeed, the BBWT of a string is the extended BWT [Mantaci et al., 2007] of the factors of its Lyndon factorization. The BBWT has been receiving increasing interest in recent years. In this paper, we survey existing research on the BBWT, starting with its history and motivation. We then present algorithmic topics including construction algorithms with various complexities and an index on top of the BBWT for pattern matching. We subsequently address some properties of the BBWT as a compressor, discussing robustness to operations such as reversal, edits, rotation, as well as compression power. We close with listing other bijective variants of the BWT and open problems concerning the BBWT.

Cite as

Hideo Bannai, Dominik Köppl, and Zsuzsanna Lipták. A Survey of the Bijective Burrows-Wheeler Transform. In The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 131, pp. 2:1-2:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bannai_et_al:OASIcs.Manzini.2,
  author =	{Bannai, Hideo and K\"{o}ppl, Dominik and Lipt\'{a}k, Zsuzsanna},
  title =	{{A Survey of the Bijective Burrows-Wheeler Transform}},
  booktitle =	{The Expanding World of Compressed Data: A Festschrift for Giovanni Manzini's 60th Birthday},
  pages =	{2:1--2:26},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-390-4},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{131},
  editor =	{Ferragina, Paolo and Gagie, Travis and Navarro, Gonzalo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Manzini.2},
  URN =		{urn:nbn:de:0030-drops-239100},
  doi =		{10.4230/OASIcs.Manzini.2},
  annote =	{Keywords: Burrows-Wheeler Transform, compression, text indexing, repetitiveness measure, Lyndon words, index construction algorithms, bijective string transformation}
}
Document
Quantum LDPC Codes of Almost Linear Distance via Iterated Homological Products

Authors: Louis Golowich and Venkatesan Guruswami

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
The first linear-distance quantum LDPC codes were recently constructed by a line of breakthrough works (culminating in the result of Panteleev & Kalachev, 2021). All such constructions, even when allowing for almost-linear distance, are based on an operation called a balanced (or lifted) product, which is used in a one-shot manner to combine a pair of large classical codes possessing a group symmetry. We present a new construction of almost-linear distance quantum LDPC codes that is iterative in nature. Our construction is based on a more basic and widely used product, namely the homological product (i.e. the tensor product of chain complexes). Specifically, for every ε > 0, we obtain a family of [[N,N^{1-ε},N^{1-ε}]] (subsystem) quantum LDPC codes via repeated homological products of a constant-sized quantum locally testable code. Our key idea is to remove certain low-weight codewords using subsystem codes (while still maintaining constant stabilizer weight), in order to circumvent a particular obstruction that limited the distance of many prior homological product code constructions to at most Õ(√N).

Cite as

Louis Golowich and Venkatesan Guruswami. Quantum LDPC Codes of Almost Linear Distance via Iterated Homological Products. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 25:1-25:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{golowich_et_al:LIPIcs.CCC.2025.25,
  author =	{Golowich, Louis and Guruswami, Venkatesan},
  title =	{{Quantum LDPC Codes of Almost Linear Distance via Iterated Homological Products}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{25:1--25:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.25},
  URN =		{urn:nbn:de:0030-drops-237196},
  doi =		{10.4230/LIPIcs.CCC.2025.25},
  annote =	{Keywords: Quantum Error Correction, Quantum LDPC Code, Homological Product, Iterative Construction}
}
Document
Substructural Parametricity

Authors: C. B. Aberlé, Karl Crary, Chris Martens, and Frank Pfenning

Published in: LIPIcs, Volume 337, 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)


Abstract
Ordered, linear, and other substructural type systems allow us to expose deep properties of programs at the syntactic level of types. In this paper, we develop a family of unary logical relations that allow us to prove consequences of parametricity for a range of substructural type systems. A key idea is to parameterize the relation by an algebra, which we exemplify with a monoid and commutative monoid to interpret ordered and linear type systems, respectively. We prove the fundamental theorem of logical relations and apply it to deduce extensional properties of inhabitants of certain types. Examples include demonstrating that the ordered types for list append and reversal are inhabited by exactly one function, as are types of some tree traversals. Similarly, the linear type of the identity function on lists is inhabited only by permutations of the input. Our most advanced example shows that the ordered type of the list fold function is inhabited only by the fold function.

Cite as

C. B. Aberlé, Karl Crary, Chris Martens, and Frank Pfenning. Substructural Parametricity. In 10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 337, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{aberle_et_al:LIPIcs.FSCD.2025.4,
  author =	{Aberl\'{e}, C. B. and Crary, Karl and Martens, Chris and Pfenning, Frank},
  title =	{{Substructural Parametricity}},
  booktitle =	{10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-374-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{337},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2025.4},
  URN =		{urn:nbn:de:0030-drops-236193},
  doi =		{10.4230/LIPIcs.FSCD.2025.4},
  annote =	{Keywords: Substructural type systems, logical relations, ordered logic}
}
Document
Modal Separation of Fixpoint Formulae

Authors: Jean Christoph Jung and Jędrzej Kołodziejski

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
Modal separability for modal fixpoint formulae is the problem to decide for two given modal fixpoint formulae φ,φ' whether there is a modal formula ψ that separates them, in the sense that φ ⊧ ψ and ψ ⊧ ¬φ'. We study modal separability and its special case modal definability over various classes of models, such as arbitrary models, finite models, trees, and models of bounded outdegree. Our main results are that modal separability is PSpace-complete over words, that is, models of outdegree ≤ 1, ExpTime-complete over unrestricted and over binary models, and 2-ExpTime-complete over models of outdegree bounded by some d ≥ 3. Interestingly, this latter case behaves fundamentally different from the other cases also in that modal logic does not enjoy the Craig interpolation property over this class. Motivated by this we study also the induced interpolant existence problem as a special case of modal separability, and show that it is coNExpTime-complete and thus harder than validity in the logic. Besides deciding separability, we also investigate the problem of efficient construction of separators. Finally, we consider in a case study the extension of modal fixpoint formulae by graded modalities and investigate separability by modal formulae and graded modal formulae.

Cite as

Jean Christoph Jung and Jędrzej Kołodziejski. Modal Separation of Fixpoint Formulae. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 55:1-55:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{jung_et_al:LIPIcs.STACS.2025.55,
  author =	{Jung, Jean Christoph and Ko{\l}odziejski, J\k{e}drzej},
  title =	{{Modal Separation of Fixpoint Formulae}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{55:1--55:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.55},
  URN =		{urn:nbn:de:0030-drops-228804},
  doi =		{10.4230/LIPIcs.STACS.2025.55},
  annote =	{Keywords: Modal Logic, Fixpoint Logic, Separability, Interpolation}
}
Document
Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

Authors: Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We describe a generic construction of non-wellfounded syntax involving variable binding and its monadic substitution operation. Our construction of the syntax and its substitution takes place in category theory, notably by using monoidal categories and strong functors between them. A language is specified by a multi-sorted binding signature, say Σ. First, we provide sufficient criteria for Σ to generate a language of possibly infinite terms, through ω-continuity. Second, we construct a monadic substitution operation for the language generated by Σ. A cornerstone in this construction is a mild generalization of the notion of heterogeneous substitution systems developed by Matthes and Uustalu; such a system encapsulates the necessary corecursion scheme for implementing substitution. The results are formalized in the Coq proof assistant, through the UniMath library of univalent mathematics.

Cite as

Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens. Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 25:1-25:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{matthes_et_al:LIPIcs.FSCD.2024.25,
  author =	{Matthes, Ralph and Wullaert, Kobe and Ahrens, Benedikt},
  title =	{{Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{25:1--25:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.25},
  URN =		{urn:nbn:de:0030-drops-203540},
  doi =		{10.4230/LIPIcs.FSCD.2024.25},
  annote =	{Keywords: Non-wellfounded syntax, Substitution, Monoidal categories, Actegories, Tensorial strength, Proof assistant Coq, UniMath library}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
  • Refine by Type
  • 49 Document/PDF
  • 14 Document/HTML

  • Refine by Publication Year
  • 13 2025
  • 4 2024
  • 1 2023
  • 2 2022
  • 2 2021
  • Show More...

  • Refine by Author
  • 8 Place, Thomas
  • 8 Zeitoun, Marc
  • 2 Bose, Prosenjit
  • 2 Slavik, Pavel
  • 1 Aberlé, C. B.
  • Show More...

  • Refine by Series/Journal
  • 28 LIPIcs
  • 6 OASIcs
  • 1 LITES
  • 1 TGDK
  • 1 DagMan
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Formal languages and automata theory
  • 2 Mathematics of computing → Graph theory
  • 2 Theory of computation → Data structures design and analysis
  • 2 Theory of computation → Logic and verification
  • 2 Theory of computation → Modal and temporal logics
  • Show More...

  • Refine by Keyword
  • 4 separation problem
  • 3 Regular languages
  • 3 Separation
  • 3 decidable characterizations
  • 2 Automata
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail