7 Search Results for "Sivan, Balasubramanian"


Document
Beating Competitive Ratio 4 for Graphic Matroid Secretary

Authors: Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
One of the classic problems in online decision-making is the secretary problem, where the goal is to hire the best secretary out of n rankable applicants or, in a natural extension, to maximize the probability of selecting the largest number from a sequence arriving in random order. Many works have considered generalizations of this problem where one can accept multiple values subject to a combinatorial constraint. The seminal work of Babaioff, Immorlica, Kempe, and Kleinberg (SODA'07, JACM'18) proposed the matroid secretary conjecture, suggesting that there exists an O(1)-competitive algorithm for the matroid constraint, and many works since have attempted to obtain algorithms for both general matroids and specific classes of matroids. The ultimate goal of these results is to obtain an e-competitive algorithm, and the strong matroid secretary conjecture states that this is possible for general matroids. One of the most important classes of matroids is the graphic matroid, where a set of edges in a graph is deemed independent if it contains no cycle. Given the rich combinatorial structure of graphs, obtaining algorithms for these matroids is often seen as a good first step towards solving the problem for general matroids. For matroid secretary, Babaioff et al. (SODA'07, JACM'18) first studied graphic matroid case and obtained a 16-competitive algorithm. Subsequent works have improved the competitive ratio, most recently to 4 by Soto, Turkieltaub, and Verdugo (SODA'18). In this paper, we break the 4-competitive barrier for the problem, obtaining a new algorithm with a competitive ratio of 3.95. For the special case of simple graphs (i.e., graphs that do not contain parallel edges) we further improve this to 3.77. Intuitively, solving the problem for simple graphs is easier as they do not contain cycles of length two. A natural question that arises is whether we can obtain a ratio arbitrarily close to e by assuming the graph has a large enough girth. We answer this question affirmatively, proving that one can obtain a competitive ratio arbitrarily close to e even for constant values of girth, providing further evidence for the strong matroid secretary conjecture. We further show that this bound is tight: for any constant g, one cannot obtain a competitive ratio better than e even if we assume that the input graph has girth at least g. To our knowledge, such a bound was not previously known even for simple graphs.

Cite as

Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski. Beating Competitive Ratio 4 for Graphic Matroid Secretary. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 52:1-52:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ESA.2025.52,
  author =	{Banihashem, Kiarash and Hajiaghayi, MohammadTaghi and Kowalski, Dariusz R. and Krysta, Piotr and Mittal, Danny and Olkowski, Jan},
  title =	{{Beating Competitive Ratio 4 for Graphic Matroid Secretary}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{52:1--52:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.52},
  URN =		{urn:nbn:de:0030-drops-245205},
  doi =		{10.4230/LIPIcs.ESA.2025.52},
  annote =	{Keywords: online algorithms, graphic matroids, secretary problem}
}
Document
Track A: Algorithms, Complexity and Games
q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations

Authors: Kiril Bangachev and S. Matthew Weinberg

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For a set M of m elements, we define a decreasing chain of classes of normalized monotone-increasing valuation functions from 2^M to ℝ_{≥ 0}, parameterized by an integer q ∈ [2,m]. For a given q, we refer to the class as q-partitioning. A valuation function is subadditive if and only if it is 2-partitioning, and fractionally subadditive if and only if it is m-partitioning. Thus, our chain establishes an interpolation between subadditive and fractionally subadditive valuations. We show that this interpolation is smooth (q-partitioning valuations are "nearly" (q-1)-partitioning in a precise sense, Theorem 6), interpretable (the definition arises by analyzing the core of a cost-sharing game, à la the Bondareva-Shapley Theorem for fractionally subadditive valuations, Section 3.1), and non-trivial (the class of q-partitioning valuations is distinct for all q, Proposition 3). For domains where provable separations exist between subadditive and fractionally subadditive, we interpolate the stronger guarantees achievable for fractionally subadditive valuations to all q ∈ {2,…, m}. Two highlights are the following: 1) An Ω ((log log q)/(log log m))-competitive posted price mechanism for q-partitioning valuations. Note that this matches asymptotically the state-of-the-art for both subadditive (q = 2) [Paul Dütting et al., 2020], and fractionally subadditive (q = m) [Feldman et al., 2015]. 2) Two upper-tail concentration inequalities on 1-Lipschitz, q-partitioning valuations over independent items. One extends the state-of-the-art for q = m to q < m, the other improves the state-of-the-art for q = 2 for q > 2. Our concentration inequalities imply several corollaries that interpolate between subadditive and fractionally subadditive, for example: 𝔼[v(S)] ≤ (1 + 1/log q)Median[v(S)] + O(log q). To prove this, we develop a new isoperimetric inequality using Talagrand’s method of control by q points, which may be of independent interest. We also discuss other probabilistic inequalities and game-theoretic applications of q-partitioning valuations, and connections to subadditive MPH-k valuations [Tomer Ezra et al., 2019].

Cite as

Kiril Bangachev and S. Matthew Weinberg. q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bangachev_et_al:LIPIcs.ICALP.2025.18,
  author =	{Bangachev, Kiril and Weinberg, S. Matthew},
  title =	{{q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.18},
  URN =		{urn:nbn:de:0030-drops-233956},
  doi =		{10.4230/LIPIcs.ICALP.2025.18},
  annote =	{Keywords: Subadditive Functions, Fractionally Subadditive Functions, Posted Price Mechanisms, Concentration Inequalities}
}
Document
Track A: Algorithms, Complexity and Games
Universal Online Contention Resolution with Preselected Order

Authors: Junyao Zhao

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Online contention resolution scheme (OCRS) is a powerful technique for online decision making, which - in the case of matroids - given a matroid and a prior distribution of active elements, selects a subset of active elements that satisfies the matroid constraint in an online fashion. OCRS has been studied mostly for product distributions in the literature. Recently, universal OCRS, that works even for correlated distributions, has gained interest, because it naturally generalizes the classic notion, and its existence in the random-order arrival model turns out to be equivalent to the matroid secretary conjecture. However, currently very little is known about how to design universal OCRSs for any arrival model. In this work, we consider a natural and relatively flexible arrival model, where the OCRS is allowed to preselect (i.e., non-adaptively select) the arrival order of the elements, and within this model, we design simple and optimal universal OCRSs that are computationally efficient. In the course of deriving our OCRSs, we also discover an efficient reduction from universal online contention resolution to the matroid secretary problem for any arrival model, answering a question posed in [Dughmi, 2020].

Cite as

Junyao Zhao. Universal Online Contention Resolution with Preselected Order. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 137:1-137:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zhao:LIPIcs.ICALP.2025.137,
  author =	{Zhao, Junyao},
  title =	{{Universal Online Contention Resolution with Preselected Order}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{137:1--137:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.137},
  URN =		{urn:nbn:de:0030-drops-235147},
  doi =		{10.4230/LIPIcs.ICALP.2025.137},
  annote =	{Keywords: Matroids, online contention resolution schemes, secretary problems}
}
Document
A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions

Authors: Noga Alon, Nick Gravin, Tristan Pollner, Aviad Rubinstein, Hongao Wang, S. Matthew Weinberg, and Qianfan Zhang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We investigate prophet inequalities with competitive ratios approaching 1, seeking to generalize k-uniform matroids. We first show that large girth does not suffice: for all k, there exists a matroid of girth ≥ k and a prophet inequality instance on that matroid whose optimal competitive ratio is 1/2. Next, we show k-fold matroid unions do suffice: we provide a prophet inequality with competitive ratio 1-O(√{(log k)/k}) for any k-fold matroid union. Our prophet inequality follows from an online contention resolution scheme. The key technical ingredient in our online contention resolution scheme is a novel bicriterion concentration inequality for arbitrary monotone 1-Lipschitz functions over independent items which may be of independent interest. Applied to our particular setting, our bicriterion concentration inequality yields "Chernoff-strength" concentration for a 1-Lipschitz function that is not (approximately) self-bounding.

Cite as

Noga Alon, Nick Gravin, Tristan Pollner, Aviad Rubinstein, Hongao Wang, S. Matthew Weinberg, and Qianfan Zhang. A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 4:1-4:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alon_et_al:LIPIcs.ITCS.2025.4,
  author =	{Alon, Noga and Gravin, Nick and Pollner, Tristan and Rubinstein, Aviad and Wang, Hongao and Weinberg, S. Matthew and Zhang, Qianfan},
  title =	{{A Bicriterion Concentration Inequality and Prophet Inequalities for k-Fold Matroid Unions}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{4:1--4:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.4},
  URN =		{urn:nbn:de:0030-drops-226329},
  doi =		{10.4230/LIPIcs.ITCS.2025.4},
  annote =	{Keywords: Prophet Inequalities, Online Contention Resolution Schemes, Concentration Inequalities}
}
Document
Algorithmic Collusion Without Threats

Authors: Eshwar Ram Arunachaleswaran, Natalie Collina, Sampath Kannan, Aaron Roth, and Juba Ziani

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
There has been substantial recent concern that automated pricing algorithms might learn to "collude." Supra-competitive prices can emerge as a Nash equilibrium of repeated pricing games, in which sellers play strategies which threaten to punish their competitors if they ever "defect" from a set of supra-competitive prices, and these strategies can be automatically learned. But threats are anti-competitive on their face. In fact, a standard economic intuition is that supra-competitive prices emerge from either the use of threats, or a failure of one party to correctly optimize their payoff. Is this intuition correct? Would explicitly preventing threats in algorithmic decision-making prevent supra-competitive prices when sellers are optimizing for their own revenue? No. We show that supra-competitive prices can robustly emerge even when both players are using algorithms which do not explicitly encode threats, and which optimize for their own revenue. Since deploying an algorithm is a form of commitment, we study sequential Bertrand pricing games (and a continuous variant) in which a first mover deploys an algorithm and then a second mover optimizes within the resulting environment. We show that if the first mover deploys any algorithm with a no-regret guarantee, and then the second mover even approximately optimizes within this now static environment, monopoly-like prices arise. The result holds for any no-regret learning algorithm deployed by the first mover and for any pricing policy of the second mover that obtains them profit at least as high as a random pricing would - and hence the result applies even when the second mover is optimizing only within a space of non-responsive pricing distributions which are incapable of encoding threats. In fact, there exists a set of strategies, neither of which explicitly encode threats that form a Nash equilibrium of the simultaneous pricing game in algorithm space, and lead to near monopoly prices. This suggests that the definition of "algorithmic collusion" may need to be expanded, to include strategies without explicitly encoded threats.

Cite as

Eshwar Ram Arunachaleswaran, Natalie Collina, Sampath Kannan, Aaron Roth, and Juba Ziani. Algorithmic Collusion Without Threats. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 10:1-10:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{arunachaleswaran_et_al:LIPIcs.ITCS.2025.10,
  author =	{Arunachaleswaran, Eshwar Ram and Collina, Natalie and Kannan, Sampath and Roth, Aaron and Ziani, Juba},
  title =	{{Algorithmic Collusion Without Threats}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{10:1--10:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.10},
  URN =		{urn:nbn:de:0030-drops-226386},
  doi =		{10.4230/LIPIcs.ITCS.2025.10},
  annote =	{Keywords: Algorithmic Game Theory, Algorithmic Collusion, No-Regret Dynamics}
}
Document
Combinatorial Pen Testing (Or Consumer Surplus of Deferred-Acceptance Auctions)

Authors: Aadityan Ganesh and Jason Hartline

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
Pen testing is the problem of selecting high-capacity resources when the only way to measure the capacity of a resource expends its capacity. We have a set of n pens with unknown amounts of ink and our goal is to select a feasible subset of pens maximizing the total ink in them. We are allowed to learn about the ink levels by writing with them, but this uses up ink that was previously in the pens. We identify optimal and near optimal pen testing algorithms by drawing analogues to auction theoretic frameworks of deferred-acceptance auctions and virtual values. Our framework allows the conversion of any near optimal deferred-acceptance mechanism into a near optimal pen testing algorithm. Moreover, these algorithms guarantee an additional overhead of at most (1+o(1)) ln n in the approximation factor to the omniscient algorithm that has access to the ink levels in the pens. We use this framework to give pen testing algorithms for various combinatorial constraints like matroid, knapsack, and general downward-closed constraints, and also for online environments.

Cite as

Aadityan Ganesh and Jason Hartline. Combinatorial Pen Testing (Or Consumer Surplus of Deferred-Acceptance Auctions). In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 52:1-52:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ganesh_et_al:LIPIcs.ITCS.2025.52,
  author =	{Ganesh, Aadityan and Hartline, Jason},
  title =	{{Combinatorial Pen Testing (Or Consumer Surplus of Deferred-Acceptance Auctions)}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{52:1--52:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.52},
  URN =		{urn:nbn:de:0030-drops-226808},
  doi =		{10.4230/LIPIcs.ITCS.2025.52},
  annote =	{Keywords: Pen testing, consumer surplus, money-burning, deferred-acceptance auctions}
}
Document
Tight Lower Bounds for Multiplicative Weights Algorithmic Families

Authors: Nick Gravin, Yuval Peres, and Balasubramanian Sivan

Published in: LIPIcs, Volume 80, 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)


Abstract
We study the fundamental problem of prediction with expert advice and develop regret lower bounds for a large family of algorithms for this problem. We develop simple adversarial primitives, that lend themselves to various combinations leading to sharp lower bounds for many algorithmic families. We use these primitives to show that the classic Multiplicative Weights Algorithm (MWA) has a regret of (T*ln(k)/2)^{0.5} (where T is the time horizon and k is the number of experts), there by completely closing the gap between upper and lower bounds. We further show a regret lower bound of (2/3)* (T*ln(k)/2)^{0.5} for a much more general family of algorithms than MWA, where the learning rate can be arbitrarily varied over time, or even picked from arbitrary distributions over time. We also use our primitives to construct adversaries in the geometric horizon setting for MWA to precisely characterize the regret at 0.391/(\delta)^{0.5} for the case of 2 experts and a lower bound of (1/2)*(ln(k)/(2*\delta))^{0.5}, for the case of arbitrary number of experts k (here \delta is the probability that the game ends in any given round).

Cite as

Nick Gravin, Yuval Peres, and Balasubramanian Sivan. Tight Lower Bounds for Multiplicative Weights Algorithmic Families. In 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 80, pp. 48:1-48:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{gravin_et_al:LIPIcs.ICALP.2017.48,
  author =	{Gravin, Nick and Peres, Yuval and Sivan, Balasubramanian},
  title =	{{Tight Lower Bounds for Multiplicative Weights Algorithmic Families}},
  booktitle =	{44th International Colloquium on Automata, Languages, and Programming (ICALP 2017)},
  pages =	{48:1--48:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-041-5},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{80},
  editor =	{Chatzigiannakis, Ioannis and Indyk, Piotr and Kuhn, Fabian and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2017.48},
  URN =		{urn:nbn:de:0030-drops-74997},
  doi =		{10.4230/LIPIcs.ICALP.2017.48},
  annote =	{Keywords: Multiplicative Weights, Lower Bounds, Adversarial Primitives}
}
  • Refine by Type
  • 7 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2017

  • Refine by Author
  • 2 Gravin, Nick
  • 2 Weinberg, S. Matthew
  • 1 Alon, Noga
  • 1 Arunachaleswaran, Eshwar Ram
  • 1 Bangachev, Kiril
  • Show More...

  • Refine by Series/Journal
  • 7 LIPIcs

  • Refine by Classification
  • 2 Theory of computation → Online algorithms
  • 1 Mathematics of computing → Probability and statistics
  • 1 Theory of computation → Algorithm design techniques
  • 1 Theory of computation → Algorithmic game theory
  • 1 Theory of computation → Algorithmic mechanism design
  • Show More...

  • Refine by Keyword
  • 2 Concentration Inequalities
  • 1 Adversarial Primitives
  • 1 Algorithmic Collusion
  • 1 Algorithmic Game Theory
  • 1 Fractionally Subadditive Functions
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail