17 Search Results for "Tang, Zhihao Gavin"


Document
Beating Competitive Ratio 4 for Graphic Matroid Secretary

Authors: Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
One of the classic problems in online decision-making is the secretary problem, where the goal is to hire the best secretary out of n rankable applicants or, in a natural extension, to maximize the probability of selecting the largest number from a sequence arriving in random order. Many works have considered generalizations of this problem where one can accept multiple values subject to a combinatorial constraint. The seminal work of Babaioff, Immorlica, Kempe, and Kleinberg (SODA'07, JACM'18) proposed the matroid secretary conjecture, suggesting that there exists an O(1)-competitive algorithm for the matroid constraint, and many works since have attempted to obtain algorithms for both general matroids and specific classes of matroids. The ultimate goal of these results is to obtain an e-competitive algorithm, and the strong matroid secretary conjecture states that this is possible for general matroids. One of the most important classes of matroids is the graphic matroid, where a set of edges in a graph is deemed independent if it contains no cycle. Given the rich combinatorial structure of graphs, obtaining algorithms for these matroids is often seen as a good first step towards solving the problem for general matroids. For matroid secretary, Babaioff et al. (SODA'07, JACM'18) first studied graphic matroid case and obtained a 16-competitive algorithm. Subsequent works have improved the competitive ratio, most recently to 4 by Soto, Turkieltaub, and Verdugo (SODA'18). In this paper, we break the 4-competitive barrier for the problem, obtaining a new algorithm with a competitive ratio of 3.95. For the special case of simple graphs (i.e., graphs that do not contain parallel edges) we further improve this to 3.77. Intuitively, solving the problem for simple graphs is easier as they do not contain cycles of length two. A natural question that arises is whether we can obtain a ratio arbitrarily close to e by assuming the graph has a large enough girth. We answer this question affirmatively, proving that one can obtain a competitive ratio arbitrarily close to e even for constant values of girth, providing further evidence for the strong matroid secretary conjecture. We further show that this bound is tight: for any constant g, one cannot obtain a competitive ratio better than e even if we assume that the input graph has girth at least g. To our knowledge, such a bound was not previously known even for simple graphs.

Cite as

Kiarash Banihashem, MohammadTaghi Hajiaghayi, Dariusz R. Kowalski, Piotr Krysta, Danny Mittal, and Jan Olkowski. Beating Competitive Ratio 4 for Graphic Matroid Secretary. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 52:1-52:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ESA.2025.52,
  author =	{Banihashem, Kiarash and Hajiaghayi, MohammadTaghi and Kowalski, Dariusz R. and Krysta, Piotr and Mittal, Danny and Olkowski, Jan},
  title =	{{Beating Competitive Ratio 4 for Graphic Matroid Secretary}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{52:1--52:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.52},
  URN =		{urn:nbn:de:0030-drops-245205},
  doi =		{10.4230/LIPIcs.ESA.2025.52},
  annote =	{Keywords: online algorithms, graphic matroids, secretary problem}
}
Document
Track A: Algorithms, Complexity and Games
q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations

Authors: Kiril Bangachev and S. Matthew Weinberg

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For a set M of m elements, we define a decreasing chain of classes of normalized monotone-increasing valuation functions from 2^M to ℝ_{≥ 0}, parameterized by an integer q ∈ [2,m]. For a given q, we refer to the class as q-partitioning. A valuation function is subadditive if and only if it is 2-partitioning, and fractionally subadditive if and only if it is m-partitioning. Thus, our chain establishes an interpolation between subadditive and fractionally subadditive valuations. We show that this interpolation is smooth (q-partitioning valuations are "nearly" (q-1)-partitioning in a precise sense, Theorem 6), interpretable (the definition arises by analyzing the core of a cost-sharing game, à la the Bondareva-Shapley Theorem for fractionally subadditive valuations, Section 3.1), and non-trivial (the class of q-partitioning valuations is distinct for all q, Proposition 3). For domains where provable separations exist between subadditive and fractionally subadditive, we interpolate the stronger guarantees achievable for fractionally subadditive valuations to all q ∈ {2,…, m}. Two highlights are the following: 1) An Ω ((log log q)/(log log m))-competitive posted price mechanism for q-partitioning valuations. Note that this matches asymptotically the state-of-the-art for both subadditive (q = 2) [Paul Dütting et al., 2020], and fractionally subadditive (q = m) [Feldman et al., 2015]. 2) Two upper-tail concentration inequalities on 1-Lipschitz, q-partitioning valuations over independent items. One extends the state-of-the-art for q = m to q < m, the other improves the state-of-the-art for q = 2 for q > 2. Our concentration inequalities imply several corollaries that interpolate between subadditive and fractionally subadditive, for example: 𝔼[v(S)] ≤ (1 + 1/log q)Median[v(S)] + O(log q). To prove this, we develop a new isoperimetric inequality using Talagrand’s method of control by q points, which may be of independent interest. We also discuss other probabilistic inequalities and game-theoretic applications of q-partitioning valuations, and connections to subadditive MPH-k valuations [Tomer Ezra et al., 2019].

Cite as

Kiril Bangachev and S. Matthew Weinberg. q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bangachev_et_al:LIPIcs.ICALP.2025.18,
  author =	{Bangachev, Kiril and Weinberg, S. Matthew},
  title =	{{q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.18},
  URN =		{urn:nbn:de:0030-drops-233956},
  doi =		{10.4230/LIPIcs.ICALP.2025.18},
  annote =	{Keywords: Subadditive Functions, Fractionally Subadditive Functions, Posted Price Mechanisms, Concentration Inequalities}
}
Document
Track A: Algorithms, Complexity and Games
Submodular Hypergraph Partitioning: Metric Relaxations and Fast Algorithms via an Improved Cut-Matching Game

Authors: Antares Chen, Lorenzo Orecchia, and Erasmo Tani

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Despite there being significant work on developing spectral- [Chan et al., 2018; Lau et al., 2023; Kwok et al., 2022], and metric-embedding-based [Louis and Makarychev, 2016] approximation algorithms for hypergraph conductance, little is known regarding the approximability of other hypergraph partitioning objectives. This work proposes algorithms for a general model of hypergraph partitioning that unifies both undirected and directed versions of many well-studied partitioning objectives. The first contribution of this paper introduces polymatroidal cut functions, a large class of cut functions amenable to approximation algorithms via metric embeddings and routing multicommodity flows. We demonstrate a simple O(√{log n})-approximation, where n is the number of vertices in the hypergraph, for these problems by rounding relaxations to metrics of negative-type. The second contribution of this paper generalizes the cut-matching game framework of Khandekar et al. [Khandekar et al., 2007] to tackle polymatroidal cut functions. This yields an almost-linear time O(log n)-approximation algorithm for standard versions of undirected and directed hypergraph partitioning [Kwok et al., 2022]. A technical contribution of our construction is a novel cut-matching game, which greatly relaxes the set of allowed actions by the cut player and allows for the use of approximate s-t maximum flows by the matching player. We believe this to be of independent interest.

Cite as

Antares Chen, Lorenzo Orecchia, and Erasmo Tani. Submodular Hypergraph Partitioning: Metric Relaxations and Fast Algorithms via an Improved Cut-Matching Game. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 49:1-49:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ICALP.2025.49,
  author =	{Chen, Antares and Orecchia, Lorenzo and Tani, Erasmo},
  title =	{{Submodular Hypergraph Partitioning: Metric Relaxations and Fast Algorithms via an Improved Cut-Matching Game}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{49:1--49:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.49},
  URN =		{urn:nbn:de:0030-drops-234261},
  doi =		{10.4230/LIPIcs.ICALP.2025.49},
  annote =	{Keywords: Hypergraph Partitioning, Cut Improvement, Cut-Matching Game}
}
Document
Track A: Algorithms, Complexity and Games
A Theory of Spectral CSP Sparsification

Authors: Sanjeev Khanna, Aaron Putterman, and Madhu Sudan

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We initiate the study of spectral sparsification for instances of Constraint Satisfaction Problems (CSPs). In particular, we introduce a notion of the spectral energy of a fractional assignment for a Boolean CSP instance, and define a spectral sparsifier as a weighted subset of constraints that approximately preserves this energy for all fractional assignments. Our definition not only strengthens the combinatorial notion of a CSP sparsifier but also extends well-studied concepts such as spectral sparsifiers for graphs and hypergraphs. Recent work by Khanna, Putterman, and Sudan [SODA 2024] demonstrated near-linear sized combinatorial sparsifiers for a broad class of CSPs, which they term field-affine CSPs. Our main result is a polynomial-time algorithm that constructs a spectral CSP sparsifier of near-quadratic size for all field-affine CSPs. This class of CSPs includes graph (and hypergraph) cuts, XORs, and more generally, any predicate which can be written as P(x₁, … x_r) = 𝟏[∑ a_i x_i ≠ b mod p]. Based on our notion of the spectral energy of a fractional assignment, we also define an analog of the second eigenvalue of a CSP instance. We then show an extension of Cheeger’s inequality for all even-arity XOR CSPs, showing that this second eigenvalue loosely captures the "expansion" of the underlying CSP. This extension specializes to the case of Cheeger’s inequality when all constraints are even XORs and thus gives a new generalization of this powerful inequality which converts the combinatorial notion of expansion to an analytic property. Perhaps the most important effect of spectral sparsification is that it has led to certifiable sparsifiers for graphs and hypergraphs. This aspect remains open in our case even for XOR CSPs since the eigenvalues we describe in our Cheeger inequality are not known to be efficiently computable. Computing this efficiently, and/or finding other ways to certifiably sparsify CSPs are open questions emerging from our work. Another important open question is determining which classes of CSPs have near-linear size spectral sparsifiers.

Cite as

Sanjeev Khanna, Aaron Putterman, and Madhu Sudan. A Theory of Spectral CSP Sparsification. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 107:1-107:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{khanna_et_al:LIPIcs.ICALP.2025.107,
  author =	{Khanna, Sanjeev and Putterman, Aaron and Sudan, Madhu},
  title =	{{A Theory of Spectral CSP Sparsification}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{107:1--107:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.107},
  URN =		{urn:nbn:de:0030-drops-234840},
  doi =		{10.4230/LIPIcs.ICALP.2025.107},
  annote =	{Keywords: Sparsification, sketching, hypergraphs}
}
Document
Track A: Algorithms, Complexity and Games
Universal Online Contention Resolution with Preselected Order

Authors: Junyao Zhao

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Online contention resolution scheme (OCRS) is a powerful technique for online decision making, which - in the case of matroids - given a matroid and a prior distribution of active elements, selects a subset of active elements that satisfies the matroid constraint in an online fashion. OCRS has been studied mostly for product distributions in the literature. Recently, universal OCRS, that works even for correlated distributions, has gained interest, because it naturally generalizes the classic notion, and its existence in the random-order arrival model turns out to be equivalent to the matroid secretary conjecture. However, currently very little is known about how to design universal OCRSs for any arrival model. In this work, we consider a natural and relatively flexible arrival model, where the OCRS is allowed to preselect (i.e., non-adaptively select) the arrival order of the elements, and within this model, we design simple and optimal universal OCRSs that are computationally efficient. In the course of deriving our OCRSs, we also discover an efficient reduction from universal online contention resolution to the matroid secretary problem for any arrival model, answering a question posed in [Dughmi, 2020].

Cite as

Junyao Zhao. Universal Online Contention Resolution with Preselected Order. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 137:1-137:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zhao:LIPIcs.ICALP.2025.137,
  author =	{Zhao, Junyao},
  title =	{{Universal Online Contention Resolution with Preselected Order}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{137:1--137:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.137},
  URN =		{urn:nbn:de:0030-drops-235147},
  doi =		{10.4230/LIPIcs.ICALP.2025.137},
  annote =	{Keywords: Matroids, online contention resolution schemes, secretary problems}
}
Document
Track A: Algorithms, Complexity and Games
A New Impossibility Result for Online Bipartite Matching Problems

Authors: Flavio Chierichetti, Mirko Giacchini, Alessandro Panconesi, and Andrea Vattani

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
Online Bipartite Matching with random user arrival is a fundamental problem in the online advertisement ecosystem. Over the last 30 years, many algorithms and impossibility results have been developed for this problem. In particular, the latest impossibility result was established by Manshadi, Oveis Gharan and Saberi [Manshadi et al., 2011] in 2011. Since then, several algorithms have been published in an effort to narrow the gap between the upper and the lower bounds on the competitive ratio. In this paper we show that no algorithm can achieve a competitive ratio better than 1- e/(e^e) = 0.82062…, improving upon the 0.823 upper bound presented in [Manshadi et al., 2011]. Our construction is simple to state, accompanied by a fully analytic proof, and yields a competitive ratio bound intriguingly similar to 1 - 1/e, the optimal competitive ratio for the fully adversarial Online Bipartite Matching problem. Although the tightness of our upper bound remains an open question, we show that our construction is extremal in a natural class of instances.

Cite as

Flavio Chierichetti, Mirko Giacchini, Alessandro Panconesi, and Andrea Vattani. A New Impossibility Result for Online Bipartite Matching Problems. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 58:1-58:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chierichetti_et_al:LIPIcs.ICALP.2025.58,
  author =	{Chierichetti, Flavio and Giacchini, Mirko and Panconesi, Alessandro and Vattani, Andrea},
  title =	{{A New Impossibility Result for Online Bipartite Matching Problems}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{58:1--58:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.58},
  URN =		{urn:nbn:de:0030-drops-234354},
  doi =		{10.4230/LIPIcs.ICALP.2025.58},
  annote =	{Keywords: Bipartite Matching, Random Graphs, Competitive Ratio}
}
Document
Track A: Algorithms, Complexity and Games
Query Efficient Weighted Stochastic Matching

Authors: Mahsa Derakhshan and Mohammad Saneian

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
In this paper, we study the weighted stochastic matching problem. Let G = (V, E) be a given edge-weighted graph, and let its realization 𝒢 be a random subgraph of G that includes each edge e ∈ E independently with a known probability p_e. The goal in this problem is to pick a sparse subgraph Q of G without prior knowledge of 𝒢, such that the maximum weight matching among the realized edges of Q (i.e., the subgraph Q ∩ 𝒢) in expectation approximates the maximum weight matching of the entire realization 𝒢. It is established by previous work that attaining any constant approximation ratio for this problem requires selecting a subgraph of max-degree Ω(1/p), where p = min_{e ∈ E} p_e. On the positive side, there exists a (1-ε)-approximation algorithm by Behnezhad and Derakhshan [FOCS'20], albeit at the cost of a max-degree having exponential dependence on 1/p. Within the O(1/p) query regime, however, the best-known algorithm achieves a 0.536 approximation ratio due to Dughmi, Kalayci, and Patel [ICALP'23], improving over the 0.501 approximation algorithm by Behnezhad, Farhadi, Hajiaghayi, and Reyhani [SODA'19]. In this work, we present a 0.68-approximation algorithm with the asymptotically optimal O(1/p) queries per vertex. Our result not only substantially improves the approximation ratio for weighted graphs, but also breaks the well-known 2/3 barrier with the optimal number of queries - even for unweighted graphs. Our analysis involves reducing the problem to designing a randomized matching algorithm on a given stochastic graph with some variance-bounding properties. To achieve these properties, we leverage a randomized algorithm by MacRury and Ma [STOC'24] for a variant of online stochastic matching.

Cite as

Mahsa Derakhshan and Mohammad Saneian. Query Efficient Weighted Stochastic Matching. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 67:1-67:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{derakhshan_et_al:LIPIcs.ICALP.2025.67,
  author =	{Derakhshan, Mahsa and Saneian, Mohammad},
  title =	{{Query Efficient Weighted Stochastic Matching}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{67:1--67:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.67},
  URN =		{urn:nbn:de:0030-drops-234445},
  doi =		{10.4230/LIPIcs.ICALP.2025.67},
  annote =	{Keywords: Sublinear algorithms, Stochastic, Matching}
}
Document
Track A: Algorithms, Complexity and Games
The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization

Authors: Zhiyi Huang, Chui Shan Lee, Xinkai Shu, and Zhaozi Wang

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We study the online allocation of divisible items to n agents with additive valuations for p-mean welfare maximization, a problem introduced by Barman, Khan, and Maiti (2022). Our algorithmic and hardness results characterize the optimal competitive ratios for the entire spectrum of -∞ ≤ p ≤ 1. Surprisingly, our improved algorithms for all p ≤ (1)/(log n) are simply the greedy algorithm for the Nash welfare, supplemented with two auxiliary components to ensure all agents have non-zero utilities and to help a small number of agents with low utilities. In this sense, the long arm of Nashian allocation achieves near-optimal competitive ratios not only for Nash welfare but also all the way to egalitarian welfare.

Cite as

Zhiyi Huang, Chui Shan Lee, Xinkai Shu, and Zhaozi Wang. The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 98:1-98:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.ICALP.2025.98,
  author =	{Huang, Zhiyi and Lee, Chui Shan and Shu, Xinkai and Wang, Zhaozi},
  title =	{{The Long Arm of Nashian Allocation in Online p-Mean Welfare Maximization}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{98:1--98:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.98},
  URN =		{urn:nbn:de:0030-drops-234754},
  doi =		{10.4230/LIPIcs.ICALP.2025.98},
  annote =	{Keywords: Online Algorithms, Fair Division, Nash Welfare}
}
Document
On Approximability of 𝓁₂² Min-Sum Clustering

Authors: Karthik C. S., Euiwoong Lee, Yuval Rabani, Chris Schwiegelshohn, and Samson Zhou

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
The 𝓁₂² min-sum k-clustering problem is to partition an input set into clusters C_1,…,C_k to minimize ∑_{i=1}^k ∑_{p,q ∈ C_i} ‖p-q‖₂². Although 𝓁₂² min-sum k-clustering is NP-hard, it is not known whether it is NP-hard to approximate 𝓁₂² min-sum k-clustering beyond a certain factor. In this paper, we give the first hardness-of-approximation result for the 𝓁₂² min-sum k-clustering problem. We show that it is NP-hard to approximate the objective to a factor better than 1.056 and moreover, assuming a balanced variant of the Johnson Coverage Hypothesis, it is NP-hard to approximate the objective to a factor better than 1.327. We then complement our hardness result by giving a fast PTAS for 𝓁₂² min-sum k-clustering. Specifically, our algorithm runs in time O(n^{1+o(1)}d⋅ 2^{(k/ε)^O(1)}), which is the first nearly linear time algorithm for this problem. We also consider a learning-augmented setting, where the algorithm has access to an oracle that outputs a label i ∈ [k] for input point, thereby implicitly partitioning the input dataset into k clusters that induce an approximately optimal solution, up to some amount of adversarial error α ∈ [0,1/2). We give a polynomial-time algorithm that outputs a (1+γα)/(1-α)²-approximation to 𝓁₂² min-sum k-clustering, for a fixed constant γ > 0.

Cite as

Karthik C. S., Euiwoong Lee, Yuval Rabani, Chris Schwiegelshohn, and Samson Zhou. On Approximability of 𝓁₂² Min-Sum Clustering. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 62:1-62:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{karthikc.s._et_al:LIPIcs.SoCG.2025.62,
  author =	{Karthik C. S. and Lee, Euiwoong and Rabani, Yuval and Schwiegelshohn, Chris and Zhou, Samson},
  title =	{{On Approximability of 𝓁₂² Min-Sum Clustering}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{62:1--62:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.62},
  URN =		{urn:nbn:de:0030-drops-232142},
  doi =		{10.4230/LIPIcs.SoCG.2025.62},
  annote =	{Keywords: Clustering, hardness of approximation, polynomial-time approximation schemes, learning-augmented algorithms}
}
Document
Unraveling Universally Closest Refinements via Symmetric Density Decomposition and Fisher Market Equilibrium

Authors: T-H. Hubert Chan and Quan Xue

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
We investigate the closest distribution refinements problem, which involves a vertex-weighted bipartite graph as input, where the vertex weights on each side sum to 1 and represent a probability distribution. A refinement of one side’s distribution is an edge distribution that corresponds to distributing the weight of each vertex from that side to its incident edges. The objective is to identify a pair of distribution refinements for both sides of the bipartite graph such that the two edge distributions are as close as possible with respect to a specific divergence notion. This problem is a generalization of transportation, in which the special case occurs when the two closest distributions are identical. The problem has recently emerged in the context of composing differentially oblivious mechanisms. Our main result demonstrates that a universal refinement pair exists, which is simultaneously closest under all divergence notions that satisfy the data processing inequality. Since differential obliviousness can be examined using various divergence notions, such a universally closest refinement pair offers a powerful tool in relation to such applications. We discover that this pair can be achieved via locally verifiable optimality conditions. Specifically, we observe that it is equivalent to the following problems, which have been traditionally studied in distinct research communities: (1) hypergraph density decomposition, and (2) symmetric Fisher Market equilibrium. We adopt a symmetric perspective of hypergraph density decomposition, in which hyperedges and nodes play equivalent roles. This symmetric decomposition serves as a tool for deriving precise characterizations of optimal solutions for other problems and enables the application of algorithms from one problem to another. This connection allows existing algorithms for computing or approximating the Fisher market equilibrium to be adapted for all the aforementioned problems. For example, this approach allows the well-known iterative proportional response process to provide approximations for the corresponding problems with multiplicative error in distributed settings, whereas previously, only absolute error had been achieved in these contexts. Our study contributes to the understanding of various problems within a unified framework, which may serve as a foundation for connecting other problems in the future.

Cite as

T-H. Hubert Chan and Quan Xue. Unraveling Universally Closest Refinements via Symmetric Density Decomposition and Fisher Market Equilibrium. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 35:1-35:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ITCS.2025.35,
  author =	{Chan, T-H. Hubert and Xue, Quan},
  title =	{{Unraveling Universally Closest Refinements via Symmetric Density Decomposition and Fisher Market Equilibrium}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{35:1--35:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.35},
  URN =		{urn:nbn:de:0030-drops-226633},
  doi =		{10.4230/LIPIcs.ITCS.2025.35},
  annote =	{Keywords: closest distribution refinements, density decomposition, Fisher market equilibrium}
}
Document
On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching

Authors: Jingxun Liang, Zhihao Gavin Tang, Yixuan Even Xu, Yuhao Zhang, and Renfei Zhou

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
Ranking and Balance are arguably the two most important algorithms in the online matching literature. They achieve the same optimal competitive ratio of 1-1/e for the integral version and fractional version of online bipartite matching by Karp, Vazirani, and Vazirani (STOC 1990) respectively. The two algorithms have been generalized to weighted online bipartite matching problems, including vertex-weighted online bipartite matching and AdWords, by utilizing a perturbation function. The canonical choice of the perturbation function is f(x) = 1-e^{x-1} as it leads to the optimal competitive ratio of 1-1/e in both settings. We advance the understanding of the weighted generalizations of Ranking and Balance in this paper, with a focus on studying the effect of different perturbation functions. First, we prove that the canonical perturbation function is the unique optimal perturbation function for vertex-weighted online bipartite matching. In stark contrast, all perturbation functions achieve the optimal competitive ratio of 1-1/e in the unweighted setting. Second, we prove that the generalization of Ranking to AdWords with unknown budgets using the canonical perturbation function is at most 0.624 competitive, refuting a conjecture of Vazirani (2021). More generally, as an application of the first result, we prove that no perturbation function leads to the prominent competitive ratio of 1-1/e by establishing an upper bound of 1-1/e-0.0003. Finally, we propose the online budget-additive welfare maximization problem that is intermediate between AdWords and AdWords with unknown budgets, and we design an optimal 1-1/e competitive algorithm by generalizing Balance.

Cite as

Jingxun Liang, Zhihao Gavin Tang, Yixuan Even Xu, Yuhao Zhang, and Renfei Zhou. On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 80:1-80:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{liang_et_al:LIPIcs.ESA.2023.80,
  author =	{Liang, Jingxun and Tang, Zhihao Gavin and Xu, Yixuan Even and Zhang, Yuhao and Zhou, Renfei},
  title =	{{On the Perturbation Function of Ranking and Balance for Weighted Online Bipartite Matching}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{80:1--80:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.80},
  URN =		{urn:nbn:de:0030-drops-187334},
  doi =		{10.4230/LIPIcs.ESA.2023.80},
  annote =	{Keywords: Online Matching, AdWords, Ranking, Water-Filling}
}
Document
Track A: Algorithms, Complexity and Games
Random Order Vertex Arrival Contention Resolution Schemes for Matching, with Applications

Authors: Hu Fu, Zhihao Gavin Tang, Hongxun Wu, Jinzhao Wu, and Qianfan Zhang

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
With a wide range of applications, stochastic matching problems have been studied in different models, including prophet inequality, Query-Commit, and Price-of-Information. While there have been recent breakthroughs in all these settings for bipartite graphs, few non-trivial results are known for general graphs. In this paper, we study the random order vertex arrival contention resolution scheme for matching in general graphs, which is inspired by the recent work of Ezra et al. (EC 2020). We design an 8/15-selectable batched RCRS for matching and apply it to achieve 8/15-competitive/approximate algorithms for all the three models. Our results are the first non-trivial results for random order prophet matching and Price-of-Information matching in general graphs. For the Query-Commit model, our result substantially improves upon the 0.501 approximation ratio by Tang et al. (STOC 2020). We also show that no batched RCRS for matching can be better than 1/2+1/(2e²) ≈ 0.567-selectable.

Cite as

Hu Fu, Zhihao Gavin Tang, Hongxun Wu, Jinzhao Wu, and Qianfan Zhang. Random Order Vertex Arrival Contention Resolution Schemes for Matching, with Applications. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 68:1-68:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.ICALP.2021.68,
  author =	{Fu, Hu and Tang, Zhihao Gavin and Wu, Hongxun and Wu, Jinzhao and Zhang, Qianfan},
  title =	{{Random Order Vertex Arrival Contention Resolution Schemes for Matching, with Applications}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{68:1--68:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.68},
  URN =		{urn:nbn:de:0030-drops-141376},
  doi =		{10.4230/LIPIcs.ICALP.2021.68},
  annote =	{Keywords: Matching, Contention Resolution Scheme, Price of Information, Query-Commit}
}
Document
Track A: Algorithms, Complexity and Games
Online Stochastic Matching with Edge Arrivals

Authors: Nick Gravin, Zhihao Gavin Tang, and Kangning Wang

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by Gamlath et al., who showed that no online policy is better than the straightforward greedy algorithm, i.e., no online algorithm has a worst-case competitive ratio better than 0.5. In this work, we consider the bipartite matching problem with edge arrivals in a natural stochastic framework, i.e., Bayesian setting where each edge of the graph is independently realized according to a known probability distribution. We focus on a natural class of prune & greedy online policies motivated by practical considerations from a multitude of online matching platforms. Any prune & greedy algorithm consists of two stages: first, it decreases the probabilities of some edges in the stochastic instance and then runs greedy algorithm on the pruned graph. We propose prune & greedy algorithms that are 0.552-competitive on the instances that can be pruned to a 2-regular stochastic bipartite graph, and 0.503-competitive on arbitrary stochastic bipartite graphs. The algorithms and our analysis significantly deviate from the prior work. We first obtain analytically manageable lower bound on the size of the matching, which leads to a non-linear optimization problem. We further reduce this problem to a continuous optimization with a constant number of parameters that can be solved using standard software tools.

Cite as

Nick Gravin, Zhihao Gavin Tang, and Kangning Wang. Online Stochastic Matching with Edge Arrivals. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 74:1-74:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{gravin_et_al:LIPIcs.ICALP.2021.74,
  author =	{Gravin, Nick and Tang, Zhihao Gavin and Wang, Kangning},
  title =	{{Online Stochastic Matching with Edge Arrivals}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{74:1--74:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.74},
  URN =		{urn:nbn:de:0030-drops-141438},
  doi =		{10.4230/LIPIcs.ICALP.2021.74},
  annote =	{Keywords: online matching, graph algorithms, prophet inequality}
}
Document
Online Makespan Minimization: The Power of Restart

Authors: Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang

Published in: LIPIcs, Volume 116, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)


Abstract
We consider the online makespan minimization problem on identical machines. Chen and Vestjens (ORL 1997) show that the largest processing time first (LPT) algorithm is 1.5-competitive. For the special case of two machines, Noga and Seiden (TCS 2001) introduce the SLEEPY algorithm that achieves a competitive ratio of (5 - sqrt{5})/2 ~~ 1.382, matching the lower bound by Chen and Vestjens (ORL 1997). Furthermore, Noga and Seiden note that in many applications one can kill a job and restart it later, and they leave an open problem whether algorithms with restart can obtain better competitive ratios. We resolve this long-standing open problem on the positive end. Our algorithm has a natural rule for killing a processing job: a newly-arrived job replaces the smallest processing job if 1) the new job is larger than other pending jobs, 2) the new job is much larger than the processing one, and 3) the processed portion is small relative to the size of the new job. With appropriate choice of parameters, we show that our algorithm improves the 1.5 competitive ratio for the general case, and the 1.382 competitive ratio for the two-machine case.

Cite as

Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online Makespan Minimization: The Power of Restart. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 116, pp. 14:1-14:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.APPROX-RANDOM.2018.14,
  author =	{Huang, Zhiyi and Kang, Ning and Tang, Zhihao Gavin and Wu, Xiaowei and Zhang, Yuhao},
  title =	{{Online Makespan Minimization: The Power of Restart}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018)},
  pages =	{14:1--14:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-085-9},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{116},
  editor =	{Blais, Eric and Jansen, Klaus and D. P. Rolim, Jos\'{e} and Steurer, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2018.14},
  URN =		{urn:nbn:de:0030-drops-94182},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2018.14},
  annote =	{Keywords: Online Scheduling, Makespan Minimization, Identical Machines}
}
Document
Online Vertex-Weighted Bipartite Matching: Beating 1-1/e with Random Arrivals

Authors: Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We introduce a weighted version of the ranking algorithm by Karp et al. (STOC 1990), and prove a competitive ratio of 0.6534 for the vertex-weighted online bipartite matching problem when online vertices arrive in random order. Our result shows that random arrivals help beating the 1-1/e barrier even in the vertex-weighted case. We build on the randomized primal-dual framework by Devanur et al. (SODA 2013) and design a two dimensional gain sharing function, which depends not only on the rank of the offline vertex, but also on the arrival time of the online vertex. To our knowledge, this is the first competitive ratio strictly larger than 1-1/e for an online bipartite matching problem achieved under the randomized primal-dual framework. Our algorithm has a natural interpretation that offline vertices offer a larger portion of their weights to the online vertices as time goes by, and each online vertex matches the neighbor with the highest offer at its arrival.

Cite as

Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Online Vertex-Weighted Bipartite Matching: Beating 1-1/e with Random Arrivals. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 79:1-79:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{huang_et_al:LIPIcs.ICALP.2018.79,
  author =	{Huang, Zhiyi and Tang, Zhihao Gavin and Wu, Xiaowei and Zhang, Yuhao},
  title =	{{Online Vertex-Weighted Bipartite Matching: Beating 1-1/e with Random Arrivals}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{79:1--79:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.79},
  URN =		{urn:nbn:de:0030-drops-90830},
  doi =		{10.4230/LIPIcs.ICALP.2018.79},
  annote =	{Keywords: Vertex Weighted, Online Bipartite Matching, Randomized Primal-Dual}
}
  • Refine by Type
  • 17 Document/PDF
  • 10 Document/HTML

  • Refine by Publication Year
  • 10 2025
  • 1 2023
  • 2 2021
  • 2 2018
  • 1 2017
  • Show More...

  • Refine by Author
  • 7 Tang, Zhihao Gavin
  • 4 Wu, Xiaowei
  • 3 Huang, Zhiyi
  • 3 Zhang, Yuhao
  • 2 Chan, T-H. Hubert
  • Show More...

  • Refine by Series/Journal
  • 17 LIPIcs

  • Refine by Classification
  • 8 Theory of computation → Online algorithms
  • 3 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Facility location and clustering
  • 2 Theory of computation → Mathematical optimization
  • 1 Mathematics of computing → Distribution functions
  • Show More...

  • Refine by Keyword
  • 2 Matching
  • 1 AdWords
  • 1 Bipartite Matching
  • 1 Clustering
  • 1 Competitive Ratio
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail