Search Results

Documents authored by Fink, Simon D.


Document
The Parameterized Complexity Of Extending Stack Layouts

Authors: Thomas Depian, Simon D. Fink, Robert Ganian, and Martin Nöllenburg

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
An 𝓁-page stack layout (also known as an 𝓁-page book embedding) of a graph is a linear order of the vertex set together with a partition of the edge set into 𝓁 stacks (or pages), such that the endpoints of no two edges on the same stack alternate. We study the problem of extending a given partial 𝓁-page stack layout into a complete one, which can be seen as a natural generalization of the classical NP-hard problem of computing a stack layout of an input graph from scratch. Given the inherent intractability of the problem, we focus on identifying tractable fragments through the refined lens of parameterized complexity analysis. Our results paint a detailed and surprisingly rich complexity-theoretic landscape of the problem which includes the identification of paraNP-hard, W[1]-hard and XP-tractable, as well as fixed-parameter tractable fragments of stack layout extension via a natural sequence of parameterizations.

Cite as

Thomas Depian, Simon D. Fink, Robert Ganian, and Martin Nöllenburg. The Parameterized Complexity Of Extending Stack Layouts. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{depian_et_al:LIPIcs.GD.2024.12,
  author =	{Depian, Thomas and Fink, Simon D. and Ganian, Robert and N\"{o}llenburg, Martin},
  title =	{{The Parameterized Complexity Of Extending Stack Layouts}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.12},
  URN =		{urn:nbn:de:0030-drops-212960},
  doi =		{10.4230/LIPIcs.GD.2024.12},
  annote =	{Keywords: Stack Layout, Drawing Extension, Parameterized Complexity, Book Embedding}
}
Document
Poster Abstract
Level Planarity Is More Difficult Than We Thought (Poster Abstract)

Authors: Simon D. Fink, Matthias Pfretzschner, Ignaz Rutter, and Peter Stumpf

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
We consider three simple quadratic-time algorithms for Level Planarity and give a level-planar instance that they either falsely classify as negative or for which they output a non-planar drawing.

Cite as

Simon D. Fink, Matthias Pfretzschner, Ignaz Rutter, and Peter Stumpf. Level Planarity Is More Difficult Than We Thought (Poster Abstract). In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 50:1-50:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fink_et_al:LIPIcs.GD.2024.50,
  author =	{Fink, Simon D. and Pfretzschner, Matthias and Rutter, Ignaz and Stumpf, Peter},
  title =	{{Level Planarity Is More Difficult Than We Thought}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{50:1--50:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.50},
  URN =		{urn:nbn:de:0030-drops-213341},
  doi =		{10.4230/LIPIcs.GD.2024.50},
  annote =	{Keywords: level planarity, 2-SAT, simple algorithm, counterexample}
}
Document
Synchronized Planarity with Applications to Constrained Planarity Problems

Authors: Thomas Bläsius, Simon D. Fink, and Ignaz Rutter

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
We introduce the problem Synchronized Planarity. Roughly speaking, its input is a loop-free multi-graph together with synchronization constraints that, e.g., match pairs of vertices of equal degree by providing a bijection between their edges. Synchronized Planarity then asks whether the graph admits a crossing-free embedding into the plane such that the orders of edges around synchronized vertices are consistent. We show, on the one hand, that Synchronized Planarity can be solved in quadratic time, and, on the other hand, that it serves as a powerful modeling language that lets us easily formulate several constrained planarity problems as instances of Synchronized Planarity. In particular, this lets us solve Clustered Planarity in quadratic time, where the most efficient previously known algorithm has an upper bound of O(n⁸).

Cite as

Thomas Bläsius, Simon D. Fink, and Ignaz Rutter. Synchronized Planarity with Applications to Constrained Planarity Problems. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 19:1-19:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blasius_et_al:LIPIcs.ESA.2021.19,
  author =	{Bl\"{a}sius, Thomas and Fink, Simon D. and Rutter, Ignaz},
  title =	{{Synchronized Planarity with Applications to Constrained Planarity Problems}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{19:1--19:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.19},
  URN =		{urn:nbn:de:0030-drops-146009},
  doi =		{10.4230/LIPIcs.ESA.2021.19},
  annote =	{Keywords: Planarity Testing, Constrained Planarity, Cluster Planarity, Atomic Embeddability}
}
Document
Experimental Comparison of PC-Trees and PQ-Trees

Authors: Simon D. Fink, Matthias Pfretzschner, and Ignaz Rutter

Published in: LIPIcs, Volume 204, 29th Annual European Symposium on Algorithms (ESA 2021)


Abstract
PQ-trees and PC-trees are data structures that represent sets of linear and circular orders, respectively, subject to constraints that specific subsets of elements have to be consecutive. While equivalent to each other, PC-trees are conceptually much simpler than PQ-trees; updating a PC-tree so that a set of elements becomes consecutive requires only a single operation, whereas PQ-trees use an update procedure that is described in terms of nine transformation templates that have to be recursively matched and applied. Despite these theoretical advantages, to date no practical PC-tree implementation is available. This might be due to the original description by Hsu and McConnell [Hsu et al., 2003] in some places only sketching the details of the implementation. In this paper, we describe two alternative implementations of PC-trees. For the first one, we follow the approach by Hsu and McConnell, filling in the necessary details and also proposing improvements on the original algorithm. For the second one, we use a different technique for efficiently representing the tree using a Union-Find data structure. In an extensive experimental evaluation we compare our implementations to a variety of other implementations of PQ-trees that are available on the web as part of academic and other software libraries. Our results show that both PC-tree implementations beat their closest fully correct competitor, the PQ-tree implementation from the OGDF library [Markus Chimani et al., 2014; Leipert, 1997], by a factor of 2 to 4, showing that PC-trees are not only conceptually simpler but also fast in practice. Moreover, we find the Union-Find-based implementation, while having a slightly worse asymptotic runtime, to be twice as fast as the one based on the description by Hsu and McConnell.

Cite as

Simon D. Fink, Matthias Pfretzschner, and Ignaz Rutter. Experimental Comparison of PC-Trees and PQ-Trees. In 29th Annual European Symposium on Algorithms (ESA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 204, pp. 43:1-43:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{fink_et_al:LIPIcs.ESA.2021.43,
  author =	{Fink, Simon D. and Pfretzschner, Matthias and Rutter, Ignaz},
  title =	{{Experimental Comparison of PC-Trees and PQ-Trees}},
  booktitle =	{29th Annual European Symposium on Algorithms (ESA 2021)},
  pages =	{43:1--43:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-204-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{204},
  editor =	{Mutzel, Petra and Pagh, Rasmus and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2021.43},
  URN =		{urn:nbn:de:0030-drops-146245},
  doi =		{10.4230/LIPIcs.ESA.2021.43},
  annote =	{Keywords: PQ-Tree, PC-Tree, circular consecutive ones, implementation, experimental evaluation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail