Search Results

Documents authored by Iwamasa, Yuni


Document
Basis Sequence Reconfiguration in the Union of Matroids

Authors: Tesshu Hanaka, Yuni Iwamasa, Yasuaki Kobayashi, Yuto Okada, and Rin Saito

Published in: LIPIcs, Volume 322, 35th International Symposium on Algorithms and Computation (ISAAC 2024)


Abstract
Given a graph G and two spanning trees T and T' in G, normalSpanning Tree Reconfiguration asks whether there is a step-by-step transformation from T to T' such that all intermediates are also spanning trees of G, by exchanging an edge in T with an edge outside T at a single step. This problem is naturally related to matroid theory, which shows that there always exists such a transformation for any pair of T and T'. Motivated by this example, we study the problem of transforming a sequence of spanning trees into another sequence of spanning trees. We formulate this problem in the language of matroid theory: Given two sequences of bases of matroids, the goal is to decide whether there is a transformation between these sequences. We design a polynomial-time algorithm for this problem, even if the matroids are given as basis oracles. To complement this algorithmic result, we show that the problem of finding a shortest transformation is NP-hard to approximate within a factor of c log n for some constant c > 0, where n is the total size of the ground sets of the input matroids.

Cite as

Tesshu Hanaka, Yuni Iwamasa, Yasuaki Kobayashi, Yuto Okada, and Rin Saito. Basis Sequence Reconfiguration in the Union of Matroids. In 35th International Symposium on Algorithms and Computation (ISAAC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 322, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hanaka_et_al:LIPIcs.ISAAC.2024.38,
  author =	{Hanaka, Tesshu and Iwamasa, Yuni and Kobayashi, Yasuaki and Okada, Yuto and Saito, Rin},
  title =	{{Basis Sequence Reconfiguration in the Union of Matroids}},
  booktitle =	{35th International Symposium on Algorithms and Computation (ISAAC 2024)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-354-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{322},
  editor =	{Mestre, Juli\'{a}n and Wirth, Anthony},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2024.38},
  URN =		{urn:nbn:de:0030-drops-221658},
  doi =		{10.4230/LIPIcs.ISAAC.2024.38},
  annote =	{Keywords: Combinatorial reconfiguration, Matroids, Polynomial-time algorithm, Inapproximability}
}
Document
Finding a Maximum Restricted t-Matching via Boolean Edge-CSP

Authors: Yuni Iwamasa, Yusuke Kobayashi, and Kenjiro Takazawa

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
The problem of finding a maximum 2-matching without short cycles has received significant attention due to its relevance to the Hamilton cycle problem. This problem is generalized to finding a maximum t-matching which excludes specified complete t-partite subgraphs, where t is a fixed positive integer. The polynomial solvability of this generalized problem remains an open question. In this paper, we present polynomial-time algorithms for the following two cases of this problem: in the first case the forbidden complete t-partite subgraphs are edge-disjoint; and in the second case the maximum degree of the input graph is at most 2t-1. Our result for the first case extends the previous work of Nam (1994) showing the polynomial solvability of the problem of finding a maximum 2-matching without cycles of length four, where the cycles of length four are vertex-disjoint. The second result expands upon the works of Bérczi and Végh (2010) and Kobayashi and Yin (2012), which focused on graphs with maximum degree at most t+1. Our algorithms are obtained from exploiting the discrete structure of restricted t-matchings and employing an algorithm for the Boolean edge-CSP.

Cite as

Yuni Iwamasa, Yusuke Kobayashi, and Kenjiro Takazawa. Finding a Maximum Restricted t-Matching via Boolean Edge-CSP. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 75:1-75:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{iwamasa_et_al:LIPIcs.ESA.2024.75,
  author =	{Iwamasa, Yuni and Kobayashi, Yusuke and Takazawa, Kenjiro},
  title =	{{Finding a Maximum Restricted t-Matching via Boolean Edge-CSP}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{75:1--75:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.75},
  URN =		{urn:nbn:de:0030-drops-211463},
  doi =		{10.4230/LIPIcs.ESA.2024.75},
  annote =	{Keywords: Polynomial algorithm, C\underlinek-free 2-matching, Jump system, Boolean edge-CSP}
}
Document
Track A: Algorithms, Complexity and Games
Rerouting Planar Curves and Disjoint Paths

Authors: Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
In this paper, we consider a transformation of k disjoint paths in a graph. For a graph and a pair of k disjoint paths 𝒫 and 𝒬 connecting the same set of terminal pairs, we aim to determine whether 𝒫 can be transformed to 𝒬 by repeatedly replacing one path with another path so that the intermediates are also k disjoint paths. The problem is called Disjoint Paths Reconfiguration. We first show that Disjoint Paths Reconfiguration is PSPACE-complete even when k = 2. On the other hand, we prove that, when the graph is embedded on a plane and all paths in 𝒫 and 𝒬 connect the boundaries of two faces, Disjoint Paths Reconfiguration can be solved in polynomial time. The algorithm is based on a topological characterization for rerouting curves on a plane using the algebraic intersection number. We also consider a transformation of disjoint s-t paths as a variant. We show that the disjoint s-t paths reconfiguration problem in planar graphs can be determined in polynomial time, while the problem is PSPACE-complete in general.

Cite as

Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki. Rerouting Planar Curves and Disjoint Paths. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 81:1-81:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ito_et_al:LIPIcs.ICALP.2023.81,
  author =	{Ito, Takehiro and Iwamasa, Yuni and Kakimura, Naonori and Kobayashi, Yusuke and Maezawa, Shun-ichi and Nozaki, Yuta and Okamoto, Yoshio and Ozeki, Kenta},
  title =	{{Rerouting Planar Curves and Disjoint Paths}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{81:1--81:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.81},
  URN =		{urn:nbn:de:0030-drops-181339},
  doi =		{10.4230/LIPIcs.ICALP.2023.81},
  annote =	{Keywords: Disjoint paths, combinatorial reconfiguration, planar graphs}
}
Document
Reconfiguration of Colorings in Triangulations of the Sphere

Authors: Takehiro Ito, Yuni Iwamasa, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
In 1973, Fisk proved that any 4-coloring of a 3-colorable triangulation of the 2-sphere can be obtained from any 3-coloring by a sequence of Kempe-changes. On the other hand, in the case where we are only allowed to recolor a single vertex in each step, which is a special case of a Kempe-change, there exists a 4-coloring that cannot be obtained from any 3-coloring. In this paper, we present a linear-time checkable characterization of a 4-coloring of a 3-colorable triangulation of the 2-sphere that can be obtained from a 3-coloring by a sequence of recoloring operations at single vertices. In addition, we develop a quadratic-time algorithm to find such a recoloring sequence if it exists; our proof implies that we can always obtain a quadratic length recoloring sequence. We also present a linear-time checkable criterion for a 3-colorable triangulation of the 2-sphere that all 4-colorings can be obtained from a 3-coloring by such a sequence. Moreover, we consider a high-dimensional setting. As a natural generalization of our first result, we obtain a polynomial-time checkable characterization of a k-coloring of a (k-1)-colorable triangulation of the (k-2)-sphere that can be obtained from a (k-1)-coloring by a sequence of recoloring operations at single vertices and the corresponding algorithmic result. Furthermore, we show that the problem of deciding whether, for given two (k+1)-colorings of a (k-1)-colorable triangulation of the (k-2)-sphere, one can be obtained from the other by such a sequence is PSPACE-complete for any fixed k ≥ 4. Our results above can be rephrased as new results on the computational problems named k-Recoloring and Connectedness of k-Coloring Reconfiguration Graph, which are fundamental problems in the field of combinatorial reconfiguration.

Cite as

Takehiro Ito, Yuni Iwamasa, Yusuke Kobayashi, Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki. Reconfiguration of Colorings in Triangulations of the Sphere. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ito_et_al:LIPIcs.SoCG.2023.43,
  author =	{Ito, Takehiro and Iwamasa, Yuni and Kobayashi, Yusuke and Maezawa, Shun-ichi and Nozaki, Yuta and Okamoto, Yoshio and Ozeki, Kenta},
  title =	{{Reconfiguration of Colorings in Triangulations of the Sphere}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.43},
  URN =		{urn:nbn:de:0030-drops-178936},
  doi =		{10.4230/LIPIcs.SoCG.2023.43},
  annote =	{Keywords: Graph coloring, Triangulation of the sphere, Combinatorial reconfiguration}
}
Document
Algorithms for Coloring Reconfiguration Under Recolorability Digraphs

Authors: Soichiro Fujii, Yuni Iwamasa, Kei Kimura, and Akira Suzuki

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
In the k-Recoloring problem, we are given two (vertex-)colorings of a graph using k colors, and asked to transform one into the other by recoloring only one vertex at a time, while at all times maintaining a proper k-coloring. This problem is known to be solvable in polynomial time if k ≤ 3, and is PSPACE-complete if k ≥ 4. In this paper, we consider a (directed) recolorability constraint on the k colors, which forbids some pairs of colors to be recolored directly. The recolorability constraint is given in terms of a digraph R, whose vertices correspond to the colors and whose arcs represent the pairs of colors that can be recolored directly. We provide algorithms for the problem based on the structure of recolorability constraints R, showing that the problem is solvable in linear time when R is a directed cycle or is in a class of multitrees.

Cite as

Soichiro Fujii, Yuni Iwamasa, Kei Kimura, and Akira Suzuki. Algorithms for Coloring Reconfiguration Under Recolorability Digraphs. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 4:1-4:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fujii_et_al:LIPIcs.ISAAC.2022.4,
  author =	{Fujii, Soichiro and Iwamasa, Yuni and Kimura, Kei and Suzuki, Akira},
  title =	{{Algorithms for Coloring Reconfiguration Under Recolorability Digraphs}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{4:1--4:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.4},
  URN =		{urn:nbn:de:0030-drops-172896},
  doi =		{10.4230/LIPIcs.ISAAC.2022.4},
  annote =	{Keywords: combinatorial reconfiguration, graph coloring, recolorability, recoloring}
}
Document
Independent Set Reconfiguration on Directed Graphs

Authors: Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, Masahiro Takahashi, and Kunihiro Wasa

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
Directed Token Sliding asks, given a directed graph and two sets of pairwise nonadjacent vertices, whether one can reach from one set to the other by repeatedly applying a local operation that exchanges a vertex in the current set with one of its out-neighbors, while keeping the nonadjacency. It can be seen as a reconfiguration process where a token is placed on each vertex in the current set, and the local operation slides a token along an arc respecting its direction. Previously, such a problem was extensively studied on undirected graphs, where the edges have no directions and thus the local operation is symmetric. Directed Token Sliding is a generalization of its undirected variant since an undirected edge can be simulated by two arcs of opposite directions. In this paper, we initiate the algorithmic study of Directed Token Sliding. We first observe that the problem is PSPACE-complete even if we forbid parallel arcs in opposite directions and that the problem on directed acyclic graphs is NP-complete and W[1]-hard parameterized by the size of the sets in consideration. We then show our main result: a linear-time algorithm for the problem on directed graphs whose underlying undirected graphs are trees, which are called polytrees. Such a result is also known for the undirected variant of the problem on trees [Demaine et al. TCS 2015], but the techniques used here are quite different because of the asymmetric nature of the directed problem. We present a characterization of yes-instances based on the existence of a certain set of directed paths, and then derive simple equivalent conditions from it by some observations, which yield an efficient algorithm. For the polytree case, we also present a quadratic-time algorithm that outputs, if the input is a yes-instance, one of the shortest reconfiguration sequences.

Cite as

Takehiro Ito, Yuni Iwamasa, Yasuaki Kobayashi, Yu Nakahata, Yota Otachi, Masahiro Takahashi, and Kunihiro Wasa. Independent Set Reconfiguration on Directed Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 58:1-58:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ito_et_al:LIPIcs.MFCS.2022.58,
  author =	{Ito, Takehiro and Iwamasa, Yuni and Kobayashi, Yasuaki and Nakahata, Yu and Otachi, Yota and Takahashi, Masahiro and Wasa, Kunihiro},
  title =	{{Independent Set Reconfiguration on Directed Graphs}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{58:1--58:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.58},
  URN =		{urn:nbn:de:0030-drops-168567},
  doi =		{10.4230/LIPIcs.MFCS.2022.58},
  annote =	{Keywords: Combinatorial reconfiguration, token sliding, directed graph, independent set, graph algorithm}
}
Document
Reconstructing Phylogenetic Tree From Multipartite Quartet System

Authors: Hiroshi Hirai and Yuni Iwamasa

Published in: LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)


Abstract
A phylogenetic tree is a graphical representation of an evolutionary history in a set of taxa in which the leaves correspond to taxa and the non-leaves correspond to speciations. One of important problems in phylogenetic analysis is to assemble a global phylogenetic tree from smaller pieces of phylogenetic trees, particularly, quartet trees. Quartet Compatibility is to decide whether there is a phylogenetic tree inducing a given collection of quartet trees, and to construct such a phylogenetic tree if it exists. It is known that Quartet Compatibility is NP-hard but there are only a few results known for polynomial-time solvable subclasses. In this paper, we introduce two novel classes of quartet systems, called complete multipartite quartet system and full multipartite quartet system, and present polynomial time algorithms for Quartet Compatibility for these systems. We also see that complete/full multipartite quartet systems naturally arise from a limited situation of block-restricted measurement.

Cite as

Hiroshi Hirai and Yuni Iwamasa. Reconstructing Phylogenetic Tree From Multipartite Quartet System. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 57:1-57:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{hirai_et_al:LIPIcs.ISAAC.2018.57,
  author =	{Hirai, Hiroshi and Iwamasa, Yuni},
  title =	{{Reconstructing Phylogenetic Tree From Multipartite Quartet System}},
  booktitle =	{29th International Symposium on Algorithms and Computation (ISAAC 2018)},
  pages =	{57:1--57:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-094-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{123},
  editor =	{Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.57},
  URN =		{urn:nbn:de:0030-drops-100056},
  doi =		{10.4230/LIPIcs.ISAAC.2018.57},
  annote =	{Keywords: phylogenetic tree, quartet system, reconstruction}
}
Document
Beyond JWP: A Tractable Class of Binary VCSPs via M-Convex Intersection

Authors: Hiroshi Hirai, Yuni Iwamasa, Kazuo Murota, and Stanislav Zivny

Published in: LIPIcs, Volume 96, 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)


Abstract
A binary VCSP is a general framework for the minimization problem of a function represented as the sum of unary and binary cost functions.An important line of VCSP research is to investigate what functions can be solved in polynomial time. Cooper-Zivny classified the tractability of binary VCSP instances according to the concept of "triangle," and showed that the only interesting tractable case is the one induced by the joint winner property (JWP). Recently, Iwamasa-Murota-Zivny made a link between VCSP and discrete convex analysis, showing that a function satisfying the JWP can be transformed into a function represented as the sum of two M-convex functions, which can be minimized in polynomial time via an M-convex intersection algorithm if the value oracle of each M-convex function is given. In this paper, we give an algorithmic answer to a natural question: What binary finite-valued CSP instances can be solved in polynomial time via an M-convex intersection algorithm? We solve this problem by devising a polynomial-time algorithm for obtaining a concrete form of the representation in the representable case. Our result presents a larger tractable class of binary finite-valued CSPs, which properly contains the JWP class.

Cite as

Hiroshi Hirai, Yuni Iwamasa, Kazuo Murota, and Stanislav Zivny. Beyond JWP: A Tractable Class of Binary VCSPs via M-Convex Intersection. In 35th Symposium on Theoretical Aspects of Computer Science (STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 96, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{hirai_et_al:LIPIcs.STACS.2018.39,
  author =	{Hirai, Hiroshi and Iwamasa, Yuni and Murota, Kazuo and Zivny, Stanislav},
  title =	{{Beyond JWP: A Tractable Class of Binary VCSPs via M-Convex Intersection}},
  booktitle =	{35th Symposium on Theoretical Aspects of Computer Science (STACS 2018)},
  pages =	{39:1--39:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-062-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{96},
  editor =	{Niedermeier, Rolf and Vall\'{e}e, Brigitte},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2018.39},
  URN =		{urn:nbn:de:0030-drops-85042},
  doi =		{10.4230/LIPIcs.STACS.2018.39},
  annote =	{Keywords: valued constraint satisfaction problems, discrete convex analysis, M-convexity}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail