Search Results

Documents authored by Milanic, Martin


Document
Track A: Algorithms, Complexity and Games
Computing Tree Decompositions with Small Independence Number

Authors: Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The independence number of a tree decomposition is the maximum of the independence numbers of the subgraphs induced by its bags. The tree-independence number of a graph is the minimum independence number of a tree decomposition of it. Several NP-hard graph problems, like maximum weight independent set, can be solved in time n^𝒪(k) if the input n-vertex graph is given together with a tree decomposition of independence number k. Yolov in [SODA 2018] gave an algorithm that given an n-vertex graph G and an integer k, in time n^𝒪(k³) either constructs a tree decomposition of G whose independence number is 𝒪(k³) or correctly reports that the tree-independence number of G is larger than k. In this paper, we first give an algorithm for computing the tree-independence number with a better approximation ratio and running time and then prove that our algorithm is, in some sense, the best one can hope for. More precisely, our algorithm runs in time 2^𝒪(k²) n^𝒪(k) and either outputs a tree decomposition of G with independence number at most 8k, or determines that the tree-independence number of G is larger than k. This implies 2^𝒪(k²) n^𝒪(k)-time algorithms for various problems, like maximum weight independent set, parameterized by the tree-independence number k without needing the decomposition as an input. Assuming Gap-ETH, an n^Ω(k) factor in the running time is unavoidable for any approximation algorithm for the tree-independence number. Our second result is that the exact computation of the tree-independence number is para-NP-hard: We show that for every constant k ≥ 4 it is NP-hard to decide if a given graph has the tree-independence number at most k.

Cite as

Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin Milanič. Computing Tree Decompositions with Small Independence Number. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 51:1-51:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dallard_et_al:LIPIcs.ICALP.2024.51,
  author =	{Dallard, Cl\'{e}ment and Fomin, Fedor V. and Golovach, Petr A. and Korhonen, Tuukka and Milani\v{c}, Martin},
  title =	{{Computing Tree Decompositions with Small Independence Number}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{51:1--51:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.51},
  URN =		{urn:nbn:de:0030-drops-201945},
  doi =		{10.4230/LIPIcs.ICALP.2024.51},
  annote =	{Keywords: tree-independence number, approximation, parameterized algorithms}
}
Document
The Simultaneous Interval Number: A New Width Parameter that Measures the Similarity to Interval Graphs

Authors: Jesse Beisegel, Nina Chiarelli, Ekkehard Köhler, Martin Milanič, Peter Muršič, and Robert Scheffler

Published in: LIPIcs, Volume 294, 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)


Abstract
We propose a novel way of generalizing the class of interval graphs, via a graph width parameter called simultaneous interval number. This parameter is related to the simultaneous representation problem for interval graphs and defined as the smallest number d of labels such that the graph admits a d-simultaneous interval representation, that is, an assignment of intervals and label sets to the vertices such that two vertices are adjacent if and only if the corresponding intervals, as well as their label sets, intersect. We show that this parameter is NP-hard to compute and give several bounds for the parameter, showing in particular that it is sandwiched between pathwidth and linear mim-width. For classes of graphs with bounded parameter values, assuming that the graph is equipped with a simultaneous interval representation with a constant number of labels, we give FPT algorithms for the clique, independent set, and dominating set problems, and hardness results for the independent dominating set and coloring problems. The FPT results for independent set and dominating set are for the simultaneous interval number plus solution size. In contrast, both problems are known to be 𝖶[1]-hard for linear mim-width plus solution size.

Cite as

Jesse Beisegel, Nina Chiarelli, Ekkehard Köhler, Martin Milanič, Peter Muršič, and Robert Scheffler. The Simultaneous Interval Number: A New Width Parameter that Measures the Similarity to Interval Graphs. In 19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 294, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{beisegel_et_al:LIPIcs.SWAT.2024.7,
  author =	{Beisegel, Jesse and Chiarelli, Nina and K\"{o}hler, Ekkehard and Milani\v{c}, Martin and Mur\v{s}i\v{c}, Peter and Scheffler, Robert},
  title =	{{The Simultaneous Interval Number: A New Width Parameter that Measures the Similarity to Interval Graphs}},
  booktitle =	{19th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2024)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-318-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{294},
  editor =	{Bodlaender, Hans L.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2024.7},
  URN =		{urn:nbn:de:0030-drops-200470},
  doi =		{10.4230/LIPIcs.SWAT.2024.7},
  annote =	{Keywords: Interval graph, simultaneous representation, width parameter, algorithm, parameterized complexity}
}
Document
Treewidth Is NP-Complete on Cubic Graphs

Authors: Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý

Published in: LIPIcs, Volume 285, 18th International Symposium on Parameterized and Exact Computation (IPEC 2023)


Abstract
In this paper, we show that Treewidth is NP-complete for cubic graphs, thereby improving the result by Bodlaender and Thilikos from 1997 that Treewidth is NP-complete on graphs with maximum degree at most 9. We add a new and simpler proof of the NP-completeness of treewidth, and show that Treewidth remains NP-complete on subcubic induced subgraphs of the infinite 3-dimensional grid.

Cite as

Hans L. Bodlaender, Édouard Bonnet, Lars Jaffke, Dušan Knop, Paloma T. Lima, Martin Milanič, Sebastian Ordyniak, Sukanya Pandey, and Ondřej Suchý. Treewidth Is NP-Complete on Cubic Graphs. In 18th International Symposium on Parameterized and Exact Computation (IPEC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 285, pp. 7:1-7:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bodlaender_et_al:LIPIcs.IPEC.2023.7,
  author =	{Bodlaender, Hans L. and Bonnet, \'{E}douard and Jaffke, Lars and Knop, Du\v{s}an and Lima, Paloma T. and Milani\v{c}, Martin and Ordyniak, Sebastian and Pandey, Sukanya and Such\'{y}, Ond\v{r}ej},
  title =	{{Treewidth Is NP-Complete on Cubic Graphs}},
  booktitle =	{18th International Symposium on Parameterized and Exact Computation (IPEC 2023)},
  pages =	{7:1--7:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-305-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{285},
  editor =	{Misra, Neeldhara and Wahlstr\"{o}m, Magnus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2023.7},
  URN =		{urn:nbn:de:0030-drops-194263},
  doi =		{10.4230/LIPIcs.IPEC.2023.7},
  annote =	{Keywords: Treewidth, cubic graphs, degree, NP-completeness}
}
Document
On Constrained Intersection Representations of Graphs and Digraphs

Authors: Ferdinando Cicalese, Clément Dallard, and Martin Milanič

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We study the problem of determining minimal directed intersection representations of DAGs in a model introduced by [Kostochka, Liu, Machado, and Milenkovic, ISIT2019]: vertices are assigned color sets, two vertices are connected by an arc if and only if they share at least one color and the tail vertex has a strictly smaller color set than the head, and the goal is to minimize the total number of colors. We show that the problem is polynomially solvable in the class of triangle-free and Hamiltonian DAGs and also disclose the relationship of this problem with several other models of intersection representations of graphs and digraphs.

Cite as

Ferdinando Cicalese, Clément Dallard, and Martin Milanič. On Constrained Intersection Representations of Graphs and Digraphs. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 38:1-38:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cicalese_et_al:LIPIcs.ISAAC.2022.38,
  author =	{Cicalese, Ferdinando and Dallard, Cl\'{e}ment and Milani\v{c}, Martin},
  title =	{{On Constrained Intersection Representations of Graphs and Digraphs}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{38:1--38:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.38},
  URN =		{urn:nbn:de:0030-drops-173239},
  doi =		{10.4230/LIPIcs.ISAAC.2022.38},
  annote =	{Keywords: Directed intersection representation, intersection number}
}
Document
Induced Embeddings into Hamming Graphs

Authors: Martin Milanic, Peter Mursic, and Marcelo Mydlarz

Published in: LIPIcs, Volume 83, 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)


Abstract
Let d be a positive integer. Can a given graph G be realized in R^d so that vertices are mapped to distinct points, two vertices being adjacent if and only if the corresponding points lie on a common line that is parallel to some axis? Graphs admitting such realizations have been studied in the literature for decades under different names. Peterson asked in [Discrete Appl. Math., 2003] about the complexity of the recognition problem. While the two-dimensional case corresponds to the class of line graphs of bipartite graphs and is well-understood, the complexity question has remained open for all higher dimensions. In this paper, we answer this question. We establish the NP-completeness of the recognition problem for any fixed dimension, even in the class of bipartite graphs. To do this, we strengthen a characterization of induced subgraphs of 3-dimensional Hamming graphs due to Klavžar and Peterin. We complement the hardness result by showing that for some important classes of perfect graphs –including chordal graphs and distance-hereditary graphs– the minimum dimension of the Euclidean space in which the graph can be realized, or the impossibility of doing so, can be determined in linear time.

Cite as

Martin Milanic, Peter Mursic, and Marcelo Mydlarz. Induced Embeddings into Hamming Graphs. In 42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 83, pp. 28:1-28:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{milanic_et_al:LIPIcs.MFCS.2017.28,
  author =	{Milanic, Martin and Mursic, Peter and Mydlarz, Marcelo},
  title =	{{Induced Embeddings into Hamming Graphs}},
  booktitle =	{42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017)},
  pages =	{28:1--28:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-046-0},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{83},
  editor =	{Larsen, Kim G. and Bodlaender, Hans L. and Raskin, Jean-Francois},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2017.28},
  URN =		{urn:nbn:de:0030-drops-81289},
  doi =		{10.4230/LIPIcs.MFCS.2017.28},
  annote =	{Keywords: gridline graph, Hamming graph, induced embedding, NP-completeness, chordal graph}
}