17 Search Results for "Fernández-Baca, David"


Document
Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Authors: Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Microcontrollers (MCUs) are steadily embracing multi-core technology to meet growing performance demands. This trend marks a shift from their traditionally simple, deterministic designs to more complex and inherently less predictable architectures. While shared resource contention is well-studied in mid to high-end embedded systems, the emergence of multi-core architectures in MCUs introduces unique challenges and characteristics that existing research has not fully explored. In this paper, we conduct an in-depth investigation of both mainstream and next-generation MCU-based platforms, aiming to identify the sources of contention on systems typically lacking these problems. We empirically demonstrate substantial contention effects across different MCU architectures (i.e., from single- to multi-core configurations), highlighting significant application slowdowns. Notably, we observe that slowdowns can reach several orders of magnitude, with the most extreme cases showing up to a 3800x (times, not percent) increase in execution time. To address these issues, we propose and evaluate muTPArtc, a novel mechanism designed for Timely Progress Assessment (TPA) and TPA-based runtime control specifically tailored to MCUs. muTPArtc is an MCU-specialized TPA-based mechanism that leverages hardware facilities widely available in commercial off-the-shelf MCUs (i.e., hardware breakpoints and cycle counters) to successfully monitor applications' progress, detect, and mitigate timing violations. Our results demonstrate that muTPArtc effectively manages performance degradation due to interference, requiring only minimal modifications to the build pipeline and no changes to the source code of the target application, while incurring minor overheads.

Cite as

Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 5:1-5:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{oliveira_et_al:LIPIcs.ECRTS.2024.5,
  author =	{Oliveira, Daniel and Chen, Weifan and Pinto, Sandro and Mancuso, Renato},
  title =	{{Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{5:1--5:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.5},
  URN =		{urn:nbn:de:0030-drops-203088},
  doi =		{10.4230/LIPIcs.ECRTS.2024.5},
  annote =	{Keywords: multi-core microcontrollers, shared resources contention, progress-aware regulation}
}
Document
The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs

Authors: Daniele Ottaviano, Francesco Ciraolo, Renato Mancuso, and Marcello Cinque

Published in: LIPIcs, Volume 298, 36th Euromicro Conference on Real-Time Systems (ECRTS 2024)


Abstract
Following the needs of industrial applications, virtualization has emerged as one of the most effective approaches for the consolidation of mixed-criticality systems while meeting tight constraints in terms of space, weight, power, and cost (SWaP-C). In embedded platforms with homogeneous processors, a wealth of works have proposed designs and techniques to enforce spatio-temporal isolation by leveraging well-understood virtualization support. Unfortunately, achieving the same goal on heterogeneous MultiProcessor Systems-on-Chip (MPSoCs) has been largely overlooked. Modern hypervisors are designed to operate exclusively on main cores, with little or no consideration given to other co-processors within the system, such as small microcontroller-level CPUs or soft-cores deployed on programmable logic (FPGA). Typically, hypervisors consider co-processors as I/O devices allocated to virtual machines that run on primary cores, yielding full control and responsibility over them. Nevertheless, inadequate management of these resources can lead to spatio-temporal isolation issues within the system. In this paper, we propose the Omnivisor model as a paradigm for the holistic management of heterogeneous platforms. The model generalizes the features of real-time static partitioning hypervisors to enable the execution of virtual machines on processors with different Instruction Set Architectures (ISAs) within the same MPSoC. Moreover, the Omnivisor ensures temporal and spatial isolation between virtual machines by integrating and leveraging a variety of hardware and software protection mechanisms. The presented approach not only expands the scope of virtualization in MPSoCs but also enhances the overall system reliability and real-time performance for mixed-criticality applications. A full open-source reference implementation of the Omnivisor based on the Jailhouse hypervisor is provided, targeting ARM real-time processing units and RISC-V soft-cores on FPGA. Experimental results on real hardware show the benefits of the solution, including enabling the seamless launch of virtual machines on different ISAs and extending spatial/temporal isolation to heterogenous cores with enhanced regulation policies.

Cite as

Daniele Ottaviano, Francesco Ciraolo, Renato Mancuso, and Marcello Cinque. The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs. In 36th Euromicro Conference on Real-Time Systems (ECRTS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 298, pp. 7:1-7:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ottaviano_et_al:LIPIcs.ECRTS.2024.7,
  author =	{Ottaviano, Daniele and Ciraolo, Francesco and Mancuso, Renato and Cinque, Marcello},
  title =	{{The Omnivisor: A Real-Time Static Partitioning Hypervisor Extension for Heterogeneous Core Virtualization over MPSoCs}},
  booktitle =	{36th Euromicro Conference on Real-Time Systems (ECRTS 2024)},
  pages =	{7:1--7:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-324-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{298},
  editor =	{Pellizzoni, Rodolfo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2024.7},
  URN =		{urn:nbn:de:0030-drops-203107},
  doi =		{10.4230/LIPIcs.ECRTS.2024.7},
  annote =	{Keywords: Mixed-Criticality, Embedded Virtualization, Real-Time Systems, MPSoCs}
}
Document
Track A: Algorithms, Complexity and Games
Learning Low-Degree Quantum Objects

Authors: Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of learning low-degree quantum objects up to ε-error in 𝓁₂-distance. We show the following results: (i) unknown n-qubit degree-d (in the Pauli basis) quantum channels and unitaries can be learned using O(1/ε^d) queries (which is independent of n), (ii) polynomials p:{-1,1}ⁿ → [-1,1] arising from d-query quantum algorithms can be learned from O((1/ε)^d ⋅ log n) many random examples (x,p(x)) (which implies learnability even for d = O(log n)), and (iii) degree-d polynomials p:{-1,1}ⁿ → [-1,1] can be learned through O(1/ε^d) queries to a quantum unitary U_p that block-encodes p. Our main technical contributions are new Bohnenblust-Hille inequalities for quantum channels and completely bounded polynomials.

Cite as

Srinivasan Arunachalam, Arkopal Dutt, Francisco Escudero Gutiérrez, and Carlos Palazuelos. Learning Low-Degree Quantum Objects. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 13:1-13:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{arunachalam_et_al:LIPIcs.ICALP.2024.13,
  author =	{Arunachalam, Srinivasan and Dutt, Arkopal and Escudero Guti\'{e}rrez, Francisco and Palazuelos, Carlos},
  title =	{{Learning Low-Degree Quantum Objects}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{13:1--13:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.13},
  URN =		{urn:nbn:de:0030-drops-201563},
  doi =		{10.4230/LIPIcs.ICALP.2024.13},
  annote =	{Keywords: Tomography}
}
Document
Track A: Algorithms, Complexity and Games
A Tight Subexponential-Time Algorithm for Two-Page Book Embedding

Authors: Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A book embedding of a graph is a drawing that maps vertices onto a line and edges to simple pairwise non-crossing curves drawn into "pages", which are half-planes bounded by that line. Two-page book embeddings, i.e., book embeddings into 2 pages, are of special importance as they are both NP-hard to compute and have specific applications. We obtain a 2^𝒪(√n) algorithm for computing a book embedding of an n-vertex graph on two pages - a result which is asymptotically tight under the Exponential Time Hypothesis. As a key tool in our approach, we obtain a single-exponential fixed-parameter algorithm for the same problem when parameterized by the treewidth of the input graph. We conclude by establishing the fixed-parameter tractability of computing minimum-page book embeddings when parameterized by the feedback edge number, settling an open question arising from previous work on the problem.

Cite as

Robert Ganian, Haiko Müller, Sebastian Ordyniak, Giacomo Paesani, and Mateusz Rychlicki. A Tight Subexponential-Time Algorithm for Two-Page Book Embedding. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 68:1-68:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ganian_et_al:LIPIcs.ICALP.2024.68,
  author =	{Ganian, Robert and M\"{u}ller, Haiko and Ordyniak, Sebastian and Paesani, Giacomo and Rychlicki, Mateusz},
  title =	{{A Tight Subexponential-Time Algorithm for Two-Page Book Embedding}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{68:1--68:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.68},
  URN =		{urn:nbn:de:0030-drops-202114},
  doi =		{10.4230/LIPIcs.ICALP.2024.68},
  annote =	{Keywords: book embedding, page number, subexponential algorithms, subhamiltonicity, feedback edge number}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Algorithms for Connectivity Augmentation

Authors: Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the k-connectivity augmentation problem (k-CAP) in the single-pass streaming model. Given a (k-1)-edge connected graph G = (V,E) that is stored in memory, and a stream of weighted edges (also called links) L with weights in {0,1,… ,W}, the goal is to choose a minimum weight subset L' ⊆ L of the links such that G' = (V,E∪ L') is k-edge connected. We give a (2+ε)-approximation algorithm for this problem which requires to store O(ε^{-1} nlog n) words. Moreover, we show the tightness of our result: Any algorithm with better than 2-approximation for the problem requires Ω(n²) bits of space even when k = 2. This establishes a gap between the optimal approximation factor one can obtain in the streaming vs the offline setting for k-CAP. We further consider a natural generalization to the fully streaming model where both E and L arrive in the stream in an arbitrary order. We show that this problem has a space lower bound that matches the best possible size of a spanner of the same approximation ratio. Following this, we give improved results for spanners on weighted graphs: We show a streaming algorithm that finds a (2t-1+ε)-approximate weighted spanner of size at most O(ε^{-1} n^{1+1/t}log n) for integer t, whereas the best prior streaming algorithm for spanner on weighted graphs had size depending on log W. We believe that this result is of independent interest. Using our spanner result, we provide an optimal O(t)-approximation for k-CAP in the fully streaming model with O(nk + n^{1+1/t}) words of space. Finally we apply our results to network design problems such as Steiner tree augmentation problem (STAP), k-edge connected spanning subgraph (k-ECSS) and the general Survivable Network Design problem (SNDP). In particular, we show a single-pass O(tlog k)-approximation for SNDP using O(kn^{1+1/t}) words of space, where k is the maximum connectivity requirement.

Cite as

Ce Jin, Michael Kapralov, Sepideh Mahabadi, and Ali Vakilian. Streaming Algorithms for Connectivity Augmentation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 93:1-93:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{jin_et_al:LIPIcs.ICALP.2024.93,
  author =	{Jin, Ce and Kapralov, Michael and Mahabadi, Sepideh and Vakilian, Ali},
  title =	{{Streaming Algorithms for Connectivity Augmentation}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{93:1--93:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.93},
  URN =		{urn:nbn:de:0030-drops-202367},
  doi =		{10.4230/LIPIcs.ICALP.2024.93},
  annote =	{Keywords: streaming algorithms, connectivity augmentation}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Forcing, Transition Algebras, and Calculi

Authors: Go Hashimoto, Daniel Găină, and Ionuţ Ţuţu

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We bring forward a logical system of transition algebras that enhances many-sorted first-order logic using features from dynamic logics. The sentences we consider include compositions, unions, and transitive closures of transition relations, which are treated similarly to the actions used in dynamic logics in order to define necessity and possibility operators. This leads to a higher degree of expressivity than that of many-sorted first-order logic. For example, one can finitely axiomatize both the finiteness and the reachability of models, neither of which are ordinarily possible in many-sorted first-order logic. We introduce syntactic entailment and study basic properties such as compactness and completeness, showing that the latter does not hold when standard finitary proof rules are used. Consequently, we define proof rules having both finite and countably infinite premises, and we provide conditions under which completeness can be proved. To that end, we generalize the forcing method introduced in model theory by Robinson from a single signature to a category of signatures, and we apply it to obtain a completeness result for signatures that are at most countable.

Cite as

Go Hashimoto, Daniel Găină, and Ionuţ Ţuţu. Forcing, Transition Algebras, and Calculi. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 143:1-143:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hashimoto_et_al:LIPIcs.ICALP.2024.143,
  author =	{Hashimoto, Go and G\u{a}in\u{a}, Daniel and \c{T}u\c{t}u, Ionu\c{t}},
  title =	{{Forcing, Transition Algebras, and Calculi}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{143:1--143:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.143},
  URN =		{urn:nbn:de:0030-drops-202868},
  doi =		{10.4230/LIPIcs.ICALP.2024.143},
  annote =	{Keywords: Forcing, institution theory, calculi, algebraic specification, transition systems}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Position
Standardizing Knowledge Engineering Practices with a Reference Architecture

Authors: Bradley P. Allen and Filip Ilievski

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best, however, this direction has not been explored to date. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, consisting of scope definition, selection of information sources, architectural analysis, synthesis of an architecture based on the information source analysis, evaluation through instantiation, and, ultimately, instantiation into a concrete software architecture. We provide an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. As the remaining steps of design, evaluation, and instantiation of the architecture are largely use-case specific, we provide a detailed description of their procedures and point to relevant examples. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.

Cite as

Bradley P. Allen and Filip Ilievski. Standardizing Knowledge Engineering Practices with a Reference Architecture. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.2.1.5,
  author =	{Allen, Bradley P. and Ilievski, Filip},
  title =	{{Standardizing Knowledge Engineering Practices with a Reference Architecture}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:23},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.5},
  URN =		{urn:nbn:de:0030-drops-198623},
  doi =		{10.4230/TGDK.2.1.5},
  annote =	{Keywords: knowledge engineering, knowledge graphs, quality attributes, software architectures, sociotechnical systems}
}
Document
Track A: Algorithms, Complexity and Games
Tolerant Bipartiteness Testing in Dense Graphs

Authors: Arijit Ghosh, Gopinath Mishra, Rahul Raychaudhury, and Sayantan Sen

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Bipartite testing has been a central problem in the area of property testing since its inception in the seminal work of Goldreich, Goldwasser, and Ron. Though the non-tolerant version of bipartite testing has been extensively studied in the literature, the tolerant variant is not well understood. In this paper, we consider the following version of tolerant bipartite testing problem: Given two parameters ε, δ ∈ (0,1), with δ > ε, and access to the adjacency matrix of a graph G, we have to decide whether G can be made bipartite by editing at most ε n² entries of the adjacency matrix of G, or we have to edit at least δ n² entries of the adjacency matrix to make G bipartite. In this paper, we prove that for δ = (2+Ω(1))ε, tolerant bipartite testing can be decided by performing 𝒪̃(1/ε³) many adjacency queries and in 2^𝒪̃(1/ε) time complexity. This improves upon the state-of-the-art query and time complexities of this problem of 𝒪̃(1/ε⁶) and 2^𝒪̃(1/ε²), respectively, due to Alon, Fernandez de la Vega, Kannan and Karpinski, where 𝒪̃(⋅) hides a factor polynomial in log (1/ε).

Cite as

Arijit Ghosh, Gopinath Mishra, Rahul Raychaudhury, and Sayantan Sen. Tolerant Bipartiteness Testing in Dense Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 69:1-69:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ghosh_et_al:LIPIcs.ICALP.2022.69,
  author =	{Ghosh, Arijit and Mishra, Gopinath and Raychaudhury, Rahul and Sen, Sayantan},
  title =	{{Tolerant Bipartiteness Testing in Dense Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{69:1--69:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.69},
  URN =		{urn:nbn:de:0030-drops-164101},
  doi =		{10.4230/LIPIcs.ICALP.2022.69},
  annote =	{Keywords: Tolerant Testing, Bipartite Testing, Query Complexity, Graph Property Testing}
}
Document
Dynamic Cantor Derivative Logic

Authors: David Fernández-Duque and Yoàv Montacute

Published in: LIPIcs, Volume 216, 30th EACSL Annual Conference on Computer Science Logic (CSL 2022)


Abstract
Topological semantics for modal logic based on the Cantor derivative operator gives rise to derivative logics, also referred to as d-logics. Unlike logics based on the topological closure operator, d-logics have not previously been studied in the framework of dynamical systems, which are pairs (X,f) consisting of a topological space X equipped with a continuous function f: X → X. We introduce the logics wK4C, K4C and GLC and show that they all have the finite Kripke model property and are sound and complete with respect to the d-semantics in this dynamical setting. In particular, we prove that wK4C is the d-logic of all dynamic topological systems, K4C is the d-logic of all T_D dynamic topological systems, and GLC is the d-logic of all dynamic topological systems based on a scattered space. We also prove a general result for the case where f is a homeomorphism, which in particular yields soundness and completeness for the corresponding systems wK4H, K4H and GLH. The main contribution of this work is the foundation of a general proof method for finite model property and completeness of dynamic topological d-logics. Furthermore, our result for GLC constitutes the first step towards a proof of completeness for the trimodal topo-temporal language with respect to a finite axiomatisation - something known to be impossible over the class of all spaces.

Cite as

David Fernández-Duque and Yoàv Montacute. Dynamic Cantor Derivative Logic. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 216, pp. 19:1-19:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{fernandezduque_et_al:LIPIcs.CSL.2022.19,
  author =	{Fern\'{a}ndez-Duque, David and Montacute, Yo\`{a}v},
  title =	{{Dynamic Cantor Derivative Logic}},
  booktitle =	{30th EACSL Annual Conference on Computer Science Logic (CSL 2022)},
  pages =	{19:1--19:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-218-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{216},
  editor =	{Manea, Florin and Simpson, Alex},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2022.19},
  URN =		{urn:nbn:de:0030-drops-157397},
  doi =		{10.4230/LIPIcs.CSL.2022.19},
  annote =	{Keywords: dynamic topological logic, Cantor derivative, temporal logic, modal logic}
}
Document
An Approximation Algorithm for the Matrix Tree Multiplication Problem

Authors: Mahmoud Abo-Khamis, Ryan Curtin, Sungjin Im, Benjamin Moseley, Hung Ngo, Kirk Pruhs, and Alireza Samadian

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We consider the Matrix Tree Multiplication problem. This problem is a generalization of the classic Matrix Chain Multiplication problem covered in the dynamic programming chapter of many introductory algorithms textbooks. An instance of the Matrix Tree Multiplication problem consists of a rooted tree with a matrix associated with each edge. The output is, for each leaf in the tree, the product of the matrices on the chain/path from the root to that leaf. Matrix multiplications that are shared between various chains need only be computed once, potentially being shared between different root to leaf chains. Algorithms are evaluated by the number of scalar multiplications performed. Our main result is a linear time algorithm for which the number of scalar multiplications performed is at most 15 times the optimal number of scalar multiplications.

Cite as

Mahmoud Abo-Khamis, Ryan Curtin, Sungjin Im, Benjamin Moseley, Hung Ngo, Kirk Pruhs, and Alireza Samadian. An Approximation Algorithm for the Matrix Tree Multiplication Problem. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 6:1-6:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{abokhamis_et_al:LIPIcs.MFCS.2021.6,
  author =	{Abo-Khamis, Mahmoud and Curtin, Ryan and Im, Sungjin and Moseley, Benjamin and Ngo, Hung and Pruhs, Kirk and Samadian, Alireza},
  title =	{{An Approximation Algorithm for the Matrix Tree Multiplication Problem}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{6:1--6:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.6},
  URN =		{urn:nbn:de:0030-drops-144464},
  doi =		{10.4230/LIPIcs.MFCS.2021.6},
  annote =	{Keywords: Matrix Multiplication, Approximation Algorithm}
}
Document
Graph Spanners in the Message-Passing Model

Authors: Manuel Fernández V, David P. Woodruff, and Taisuke Yasuda

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Graph spanners are sparse subgraphs which approximately preserve all pairwise shortest-path distances in an input graph. The notion of approximation can be additive, multiplicative, or both, and many variants of this problem have been extensively studied. We study the problem of computing a graph spanner when the edges of the input graph are distributed across two or more sites in an arbitrary, possibly worst-case partition, and the goal is for the sites to minimize the communication used to output a spanner. We assume the message-passing model of communication, for which there is a point-to-point link between all pairs of sites as well as a coordinator who is responsible for producing the output. We stress that the subset of edges that each site has is not related to the network topology, which is fixed to be point-to-point. While this model has been extensively studied for related problems such as graph connectivity, it has not been systematically studied for graph spanners. We present the first tradeoffs for total communication versus the quality of the spanners computed, for two or more sites, as well as for additive and multiplicative notions of distortion. We show separations in the communication complexity when edges are allowed to occur on multiple sites, versus when each edge occurs on at most one site. We obtain nearly tight bounds (up to polylog factors) for the communication of additive 2-spanners in both the with and without duplication models, multiplicative (2k-1)-spanners in the with duplication model, and multiplicative 3 and 5-spanners in the without duplication model. Our lower bound for multiplicative 3-spanners employs biregular bipartite graphs rather than the usual Erdős girth conjecture graphs and may be of wider interest.

Cite as

Manuel Fernández V, David P. Woodruff, and Taisuke Yasuda. Graph Spanners in the Message-Passing Model. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 77:1-77:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{fernandezv_et_al:LIPIcs.ITCS.2020.77,
  author =	{Fern\'{a}ndez V, Manuel and Woodruff, David P. and Yasuda, Taisuke},
  title =	{{Graph Spanners in the Message-Passing Model}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{77:1--77:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.77},
  URN =		{urn:nbn:de:0030-drops-117620},
  doi =		{10.4230/LIPIcs.ITCS.2020.77},
  annote =	{Keywords: Graph spanners, Message-passing model, Communication complexity}
}
Document
The Second Order Traffic Fine: Temporal Reasoning in European Transport Regulations

Authors: Ana de Almeida Borges, Juan José Conejero Rodríguez, David Fernández-Duque, Mireia González Bedmar, and Joost J. Joosten

Published in: LIPIcs, Volume 147, 26th International Symposium on Temporal Representation and Reasoning (TIME 2019)


Abstract
We argue that European transport regulations can be formalized within the Sigma^1_1 fragment of monadic second order logic, and possibly weaker fragments including linear temporal logic. We consider several articles in the regulation to verify these claims.

Cite as

Ana de Almeida Borges, Juan José Conejero Rodríguez, David Fernández-Duque, Mireia González Bedmar, and Joost J. Joosten. The Second Order Traffic Fine: Temporal Reasoning in European Transport Regulations. In 26th International Symposium on Temporal Representation and Reasoning (TIME 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 147, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{dealmeidaborges_et_al:LIPIcs.TIME.2019.6,
  author =	{de Almeida Borges, Ana and Conejero Rodr{\'\i}guez, Juan Jos\'{e} and Fern\'{a}ndez-Duque, David and Gonz\'{a}lez Bedmar, Mireia and Joosten, Joost J.},
  title =	{{The Second Order Traffic Fine: Temporal Reasoning in European Transport Regulations}},
  booktitle =	{26th International Symposium on Temporal Representation and Reasoning (TIME 2019)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-127-6},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{147},
  editor =	{Gamper, Johann and Pinchinat, Sophie and Sciavicco, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2019.6},
  URN =		{urn:nbn:de:0030-drops-113649},
  doi =		{10.4230/LIPIcs.TIME.2019.6},
  annote =	{Keywords: linear temporal logic, monadic second order logic, formalized law, transport regulations}
}
Document
APPROX
The Query Complexity of Mastermind with l_p Distances

Authors: Manuel Fernández V, David P. Woodruff, and Taisuke Yasuda

Published in: LIPIcs, Volume 145, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)


Abstract
Consider a variant of the Mastermind game in which queries are l_p distances, rather than the usual Hamming distance. That is, a codemaker chooses a hidden vector y in {-k,-k+1,...,k-1,k}^n and answers to queries of the form ||y-x||_p where x in {-k,-k+1,...,k-1,k}^n. The goal is to minimize the number of queries made in order to correctly guess y. In this work, we show an upper bound of O(min{n,(n log k)/(log n)}) queries for any real 1<=p<infty and O(n) queries for p=infty. To prove this result, we in fact develop a nonadaptive polynomial time algorithm that works for a natural class of separable distance measures, i.e., coordinate-wise sums of functions of the absolute value. We also show matching lower bounds up to constant factors, even for adaptive algorithms for the approximation version of the problem, in which the problem is to output y' such that ||y'-y||_p <= R for any R <= k^{1-epsilon}n^{1/p} for constant epsilon>0. Thus, essentially any approximation of this problem is as hard as finding the hidden vector exactly, up to constant factors. Finally, we show that for the noisy version of the problem, i.e., the setting when the codemaker answers queries with any q = (1 +/- epsilon)||y-x||_p, there is no query efficient algorithm.

Cite as

Manuel Fernández V, David P. Woodruff, and Taisuke Yasuda. The Query Complexity of Mastermind with l_p Distances. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 145, pp. 1:1-1:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{fernandezv_et_al:LIPIcs.APPROX-RANDOM.2019.1,
  author =	{Fern\'{a}ndez V, Manuel and Woodruff, David P. and Yasuda, Taisuke},
  title =	{{The Query Complexity of Mastermind with l\underlinep Distances}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2019)},
  pages =	{1:1--1:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-125-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{145},
  editor =	{Achlioptas, Dimitris and V\'{e}gh, L\'{a}szl\'{o} A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX-RANDOM.2019.1},
  URN =		{urn:nbn:de:0030-drops-112165},
  doi =		{10.4230/LIPIcs.APPROX-RANDOM.2019.1},
  annote =	{Keywords: Mastermind, Query Complexity, l\underlinep Distance}
}
  • Refine by Author
  • 3 Fernández-Duque, David
  • 2 Fernández V, Manuel
  • 2 Mancuso, Renato
  • 2 Woodruff, David P.
  • 2 Yasuda, Taisuke
  • Show More...

  • Refine by Classification
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Information systems → Semantic web description languages
  • 2 Theory of computation → Modal and temporal logics
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Applied computing → Law
  • Show More...

  • Refine by Keyword
  • 2 Query Complexity
  • 2 temporal logic
  • 1 Algorithms
  • 1 Approximation Algorithm
  • 1 Bipartite Testing
  • Show More...

  • Refine by Type
  • 17 document

  • Refine by Publication Year
  • 9 2024
  • 2 2019
  • 2 2022
  • 1 2016
  • 1 2017
  • Show More...