91 Search Results for "Goaoc, Xavier"


Volume

LIPIcs, Volume 224

38th International Symposium on Computational Geometry (SoCG 2022)

SoCG 2022, June 7-10, 2022, Berlin, Germany

Editors: Xavier Goaoc and Michael Kerber

Document
Engineering A* Search for the Flip Distance of Plane Triangulations

Authors: Philip Mayer and Petra Mutzel

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The flip distance for two triangulations of a point set is defined as the smallest number of edge flips needed to transform one triangulation into another, where an edge flip is the act of replacing an edge of a triangulation by a different edge such that the result remains a triangulation. We adapt and engineer a sophisticated A* search algorithm acting on the so-called flip graph. In particular, we prove that previously proposed lower bounds for the flip distance form consistent heuristics for A* and show that they can be computed efficiently using dynamic algorithms. As an alternative approach, we present an integer linear program (ILP) for the flip distance problem. We experimentally evaluate our approaches on a new real-world benchmark data set based on an application in geodesy, namely sea surface reconstruction. Our evaluation reveals that A* search consistently outperforms our ILP formulation as well as a naive baseline, which is bidirectional breadth-first search. In particular, the runtime of our approach improves upon the baseline by more than two orders of magnitude. Furthermore, our A* search successfully solves most of the considered sea surface instances with up to 41 points. This is a substantial improvement compared to the baseline, which struggles with subsets of the real-world data of size 25. Lastly, to allow the consideration of global sea level data, we developed a decomposition-based heuristic for the flip distance. In our experiments it yields optimal flip distance values for most of the considered sea level data and it can be applied to large data sets due to its fast runtime.

Cite as

Philip Mayer and Petra Mutzel. Engineering A* Search for the Flip Distance of Plane Triangulations. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 23:1-23:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mayer_et_al:LIPIcs.SEA.2024.23,
  author =	{Mayer, Philip and Mutzel, Petra},
  title =	{{Engineering A* Search for the Flip Distance of Plane Triangulations}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{23:1--23:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.23},
  URN =		{urn:nbn:de:0030-drops-203887},
  doi =		{10.4230/LIPIcs.SEA.2024.23},
  annote =	{Keywords: Computational Geometry, Triangulations, Flip Distance, A-star Search, Integer Linear Programming}
}
Document
A Canonical Tree Decomposition for Chirotopes

Authors: Mathilde Bouvel, Valentin Feray, Xavier Goaoc, and Florent Koechlin

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
We introduce and study a notion of decomposition of planar point sets (or rather of their chirotopes) as trees decorated by smaller chirotopes. This decomposition is based on the concept of mutually avoiding sets, and adapts in some sense the modular decomposition of graphs in the world of chirotopes. The associated tree always exists and is unique up to some appropriate constraints. We also show how to compute the number of triangulations of a chirotope efficiently, starting from its tree and the (weighted) numbers of triangulations of its parts.

Cite as

Mathilde Bouvel, Valentin Feray, Xavier Goaoc, and Florent Koechlin. A Canonical Tree Decomposition for Chirotopes. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 23:1-23:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bouvel_et_al:LIPIcs.SoCG.2024.23,
  author =	{Bouvel, Mathilde and Feray, Valentin and Goaoc, Xavier and Koechlin, Florent},
  title =	{{A Canonical Tree Decomposition for Chirotopes}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{23:1--23:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.23},
  URN =		{urn:nbn:de:0030-drops-199680},
  doi =		{10.4230/LIPIcs.SoCG.2024.23},
  annote =	{Keywords: Order type, modular decomposition, counting triangulations, mutually avoiding point sets, generating functions, rewriting systems}
}
Document
Complete Volume
LIPIcs, Volume 224, SoCG 2022, Complete Volume

Authors: Xavier Goaoc and Michael Kerber

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
LIPIcs, Volume 224, SoCG 2022, Complete Volume

Cite as

38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 1-1110, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Proceedings{goaoc_et_al:LIPIcs.SoCG.2022,
  title =	{{LIPIcs, Volume 224, SoCG 2022, Complete Volume}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{1--1110},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022},
  URN =		{urn:nbn:de:0030-drops-160075},
  doi =		{10.4230/LIPIcs.SoCG.2022},
  annote =	{Keywords: LIPIcs, Volume 224, SoCG 2022, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Xavier Goaoc and Michael Kerber

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{goaoc_et_al:LIPIcs.SoCG.2022.0,
  author =	{Goaoc, Xavier and Kerber, Michael},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.0},
  URN =		{urn:nbn:de:0030-drops-160087},
  doi =		{10.4230/LIPIcs.SoCG.2022.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Tiling with Squares and Packing Dominos in Polynomial Time

Authors: Anders Aamand, Mikkel Abrahamsen, Thomas Ahle, and Peter M. R. Rasmussen

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
A polyomino is a polygonal region with axis-parallel edges and corners of integral coordinates, which may have holes. In this paper, we consider planar tiling and packing problems with polyomino pieces and a polyomino container P. We give polynomial-time algorithms for deciding if P can be tiled with k× k squares for any fixed k which can be part of the input (that is, deciding if P is the union of a set of non-overlapping k× k squares) and for packing P with a maximum number of non-overlapping and axis-parallel 2× 1 dominos, allowing rotations by 90^∘. As packing is more general than tiling, the latter algorithm can also be used to decide if P can be tiled by 2× 1 dominos. These are classical problems with important applications in VLSI design, and the related problem of finding a maximum packing of 2× 2 squares is known to be NP-hard [J. Algorithms 1990]. For our three problems there are known pseudo-polynomial-time algorithms, that is, algorithms with running times polynomial in the area or perimeter of P. However, the standard, compact way to represent a polygon is by listing the coordinates of the corners in binary. We use this representation, and thus present the first polynomial-time algorithms for the problems. Concretely, we give a simple O(nlog n)-time algorithm for tiling with squares, where n is the number of corners of P. We then give a more involved algorithm that reduces the problems of packing and tiling with dominos to finding a maximum and perfect matching in a graph with O(n³) vertices. This leads to algorithms with running times O(n³(log³ n)/(log²log n)) and O(n³(log² n)/(log log n)), respectively.

Cite as

Anders Aamand, Mikkel Abrahamsen, Thomas Ahle, and Peter M. R. Rasmussen. Tiling with Squares and Packing Dominos in Polynomial Time. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 1:1-1:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aamand_et_al:LIPIcs.SoCG.2022.1,
  author =	{Aamand, Anders and Abrahamsen, Mikkel and Ahle, Thomas and Rasmussen, Peter M. R.},
  title =	{{Tiling with Squares and Packing Dominos in Polynomial Time}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{1:1--1:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.1},
  URN =		{urn:nbn:de:0030-drops-160096},
  doi =		{10.4230/LIPIcs.SoCG.2022.1},
  annote =	{Keywords: packing, tiling, polyominos}
}
Document
On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

Authors: Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(1-1/k)-approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(1-1/k)+ε)-approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in non-Euclidean metrics.

Cite as

Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang. On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.SoCG.2022.2,
  author =	{Afshani, Peyman and de Berg, Mark and Buchin, Kevin and Gao, Jie and L\"{o}ffler, Maarten and Nayyeri, Amir and Raichel, Benjamin and Sarkar, Rik and Wang, Haotian and Yang, Hao-Tsung},
  title =	{{On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.2},
  URN =		{urn:nbn:de:0030-drops-160109},
  doi =		{10.4230/LIPIcs.SoCG.2022.2},
  annote =	{Keywords: Approximation, Motion Planning, Scheduling}
}
Document
On Semialgebraic Range Reporting

Authors: Peyman Afshani and Pingan Cheng

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Semialgebraic range searching, arguably the most general version of range searching, is a fundamental problem in computational geometry. In the problem, we are to preprocess a set of points in ℝ^D such that the subset of points inside a semialgebraic region described by a constant number of polynomial inequalities of degree Δ can be found efficiently. Relatively recently, several major advances were made on this problem. Using algebraic techniques, "near-linear space" data structures [Agarwal et al., 2013; Matoušek and Patáková, 2015] with almost optimal query time of Q(n) = O(n^{1-1/D+o(1)}) were obtained. For "fast query" data structures (i.e., when Q(n) = n^{o(1)}), it was conjectured that a similar improvement is possible, i.e., it is possible to achieve space S(n) = O(n^{D+o(1)}). The conjecture was refuted very recently by Afshani and Cheng [Afshani and Cheng, 2021]. In the plane, i.e., D = 2, they proved that S(n) = Ω(n^{Δ+1 - o(1)}/Q(n)^{(Δ+3)Δ/2}) which shows Ω(n^{Δ+1-o(1)}) space is needed for Q(n) = n^{o(1)}. While this refutes the conjecture, it still leaves a number of unresolved issues: the lower bound only works in 2D and for fast queries, and neither the exponent of n or Q(n) seem to be tight even for D = 2, as the best known upper bounds have S(n) = O(n^{m+o(1)}/Q(n)^{(m-1)D/(D-1)}) where m = binom(D+Δ,D)-1 = Ω(Δ^D) is the maximum number of parameters to define a monic degree-Δ D-variate polynomial, for any constant dimension D and degree Δ. In this paper, we resolve two of the issues: we prove a lower bound in D-dimensions, for constant D, and show that when the query time is n^{o(1)}+O(k), the space usage is Ω(n^{m-o(1)}), which almost matches the Õ(n^{m}) upper bound and essentially closes the problem for the fast-query case, as far as the exponent of n is considered in the pointer machine model. When considering the exponent of Q(n), we show that the analysis in [Afshani and Cheng, 2021] is tight for D = 2, by presenting matching upper bounds for uniform random point sets. This shows either the existing upper bounds can be improved or to obtain better lower bounds a new fundamentally different input set needs to be constructed.

Cite as

Peyman Afshani and Pingan Cheng. On Semialgebraic Range Reporting. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.SoCG.2022.3,
  author =	{Afshani, Peyman and Cheng, Pingan},
  title =	{{On Semialgebraic Range Reporting}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.3},
  URN =		{urn:nbn:de:0030-drops-160117},
  doi =		{10.4230/LIPIcs.SoCG.2022.3},
  annote =	{Keywords: Computational Geometry, Range Searching, Data Structures and Algorithms, Lower Bounds}
}
Document
Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems

Authors: Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Let 𝒯 be a set of n planar semi-algebraic regions in ℝ³ of constant complexity (e.g., triangles, disks), which we call plates. We wish to preprocess 𝒯 into a data structure so that for a query object γ, which is also a plate, we can quickly answer various intersection queries, such as detecting whether γ intersects any plate of 𝒯, reporting all the plates intersected by γ, or counting them. We focus on two simpler cases of this general setting: (i) the input objects are plates and the query objects are constant-degree algebraic arcs in ℝ³ (arcs, for short), or (ii) the input objects are arcs and the query objects are plates in ℝ³. These interesting special cases form the building blocks for the general case. By combining the polynomial-partitioning technique with additional tools from real algebraic geometry, we obtain a variety of results with different storage and query-time bounds, depending on the complexity of the input and query objects. For example, if 𝒯 is a set of plates and the query objects are arcs, we obtain a data structure that uses O^*(n^{4/3}) storage (where the O^*(⋅) notation hides subpolynomial factors) and answers an intersection query in O^*(n^{2/3}) time. Alternatively, by increasing the storage to O^*(n^{3/2}), the query time can be decreased to O^*(n^{ρ}), where ρ = (2t-3)/3(t-1) < 2/3 and t ≥ 3 is the number of parameters needed to represent the query arcs.

Cite as

Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir. Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2022.4,
  author =	{Agarwal, Pankaj K. and Aronov, Boris and Ezra, Esther and Katz, Matthew J. and Sharir, Micha},
  title =	{{Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.4},
  URN =		{urn:nbn:de:0030-drops-160126},
  doi =		{10.4230/LIPIcs.SoCG.2022.4},
  annote =	{Keywords: Intersection searching, Semi-algebraic range searching, Point-enclosure queries, Ray-shooting queries, Polynomial partitions, Cylindrical algebraic decomposition, Multi-level partition trees, Collision detection}
}
Document
Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

Authors: Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). We introduce a special kind of simple drawings that we call generalized twisted drawings. A simple drawing is generalized twisted if there is a point O such that every ray emanating from O crosses every edge of the drawing at most once and there is a ray emanating from O which crosses every edge exactly once. Via this new class of simple drawings, we show that every simple drawing of the complete graph with n vertices contains Ω(n^{1/2}) pairwise disjoint edges and a plane path of length Ω((log n)/(log log n)). Both results improve over previously known best lower bounds. On the way we show several structural results about and properties of generalized twisted drawings. We further present different characterizations of generalized twisted drawings, which might be of independent interest.

Cite as

Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, and Alexandra Weinberger. Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 5:1-5:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.SoCG.2022.5,
  author =	{Aichholzer, Oswin and Garc{\'\i}a, Alfredo and Tejel, Javier and Vogtenhuber, Birgit and Weinberger, Alexandra},
  title =	{{Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{5:1--5:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.5},
  URN =		{urn:nbn:de:0030-drops-160136},
  doi =		{10.4230/LIPIcs.SoCG.2022.5},
  annote =	{Keywords: Simple drawings, simple topological graphs, disjoint edges, plane matching, plane path}
}
Document
Edge Partitions of Complete Geometric Graphs

Authors: Oswin Aichholzer, Johannes Obenaus, Joachim Orthaber, Rosna Paul, Patrick Schnider, Raphael Steiner, Tim Taubner, and Birgit Vogtenhuber

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
In this paper, we disprove the long-standing conjecture that any complete geometric graph on 2n vertices can be partitioned into n plane spanning trees. Our construction is based on so-called bumpy wheel sets. We fully characterize which bumpy wheels can and in particular which cannot be partitioned into plane spanning trees (or even into arbitrary plane subgraphs). Furthermore, we show a sufficient condition for generalized wheels to not admit a partition into plane spanning trees, and give a complete characterization when they admit a partition into plane spanning double stars. Finally, we initiate the study of partitions into beyond planar subgraphs, namely into k-planar and k-quasi-planar subgraphs and obtain first bounds on the number of subgraphs required in this setting.

Cite as

Oswin Aichholzer, Johannes Obenaus, Joachim Orthaber, Rosna Paul, Patrick Schnider, Raphael Steiner, Tim Taubner, and Birgit Vogtenhuber. Edge Partitions of Complete Geometric Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 6:1-6:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aichholzer_et_al:LIPIcs.SoCG.2022.6,
  author =	{Aichholzer, Oswin and Obenaus, Johannes and Orthaber, Joachim and Paul, Rosna and Schnider, Patrick and Steiner, Raphael and Taubner, Tim and Vogtenhuber, Birgit},
  title =	{{Edge Partitions of Complete Geometric Graphs}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{6:1--6:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.6},
  URN =		{urn:nbn:de:0030-drops-160141},
  doi =		{10.4230/LIPIcs.SoCG.2022.6},
  annote =	{Keywords: edge partition, complete geometric graph, plane spanning tree, wheel set}
}
Document
Minimum-Error Triangulations for Sea Surface Reconstruction

Authors: Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We apply state-of-the-art computational geometry methods to the problem of reconstructing a time-varying sea surface from tide gauge records. Our work builds on a recent article by Nitzke et al. (Computers & Geosciences, 157:104920, 2021) who have suggested to learn a triangulation D of a given set of tide gauge stations. The objective is to minimize the misfit of the piecewise linear surface induced by D to a reference surface that has been acquired with satellite altimetry. The authors restricted their search to k-order Delaunay (k-OD) triangulations and used an integer linear program in order to solve the resulting optimization problem. In geometric terms, the input to our problem consists of two sets of points in ℝ² with elevations: a set 𝒮 that is to be triangulated, and a set ℛ of reference points. Intuitively, we define the error of a triangulation as the average vertical distance of a point in ℛ to the triangulated surface that is obtained by interpolating elevations of 𝒮 linearly in each triangle. Our goal is to find the triangulation of 𝒮 that has minimum error with respect to ℛ. In our work, we prove that the minimum-error triangulation problem is NP-hard and cannot be approximated within any multiplicative factor in polynomial time unless P = NP. At the same time we show that the problem instances that occur in our application (considering sea level data from several hundreds of tide gauge stations worldwide) can be solved relatively fast using dynamic programming when restricted to k-OD triangulations for k ≤ 7. In particular, instances for which the number of connected components of the so-called k-OD fixed-edge graph is small can be solved within few seconds.

Cite as

Anna Arutyunova, Anne Driemel, Jan-Henrik Haunert, Herman Haverkort, Jürgen Kusche, Elmar Langetepe, Philip Mayer, Petra Mutzel, and Heiko Röglin. Minimum-Error Triangulations for Sea Surface Reconstruction. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{arutyunova_et_al:LIPIcs.SoCG.2022.7,
  author =	{Arutyunova, Anna and Driemel, Anne and Haunert, Jan-Henrik and Haverkort, Herman and Kusche, J\"{u}rgen and Langetepe, Elmar and Mayer, Philip and Mutzel, Petra and R\"{o}glin, Heiko},
  title =	{{Minimum-Error Triangulations for Sea Surface Reconstruction}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.7},
  URN =		{urn:nbn:de:0030-drops-160155},
  doi =		{10.4230/LIPIcs.SoCG.2022.7},
  annote =	{Keywords: Minimum-Error Triangulation, k-Order Delaunay Triangulations, Data dependent Triangulations, Sea Surface Reconstruction, fixed-Edge Graph}
}
Document
Delaunay-Like Triangulation of Smooth Orientable Submanifolds by 𝓁₁-Norm Minimization

Authors: Dominique Attali and André Lieutier

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
In this paper, we focus on one particular instance of the shape reconstruction problem, in which the shape we wish to reconstruct is an orientable smooth submanifold of the Euclidean space. Assuming we have as input a simplicial complex K that approximates the submanifold (such as the Čech complex or the Rips complex), we recast the reconstruction problem as a 𝓁₁-norm minimization problem in which the optimization variable is a chain of K. Providing that K satisfies certain reasonable conditions, we prove that the considered minimization problem has a unique solution which triangulates the submanifold and coincides with the flat Delaunay complex introduced and studied in a companion paper [D. Attali and A. Lieutier, 2022]. Since the objective is a weighted 𝓁₁-norm and the contraints are linear, the triangulation process can thus be implemented by linear programming.

Cite as

Dominique Attali and André Lieutier. Delaunay-Like Triangulation of Smooth Orientable Submanifolds by 𝓁₁-Norm Minimization. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{attali_et_al:LIPIcs.SoCG.2022.8,
  author =	{Attali, Dominique and Lieutier, Andr\'{e}},
  title =	{{Delaunay-Like Triangulation of Smooth Orientable Submanifolds by 𝓁₁-Norm Minimization}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.8},
  URN =		{urn:nbn:de:0030-drops-160162},
  doi =		{10.4230/LIPIcs.SoCG.2022.8},
  annote =	{Keywords: manifold reconstruction, Delaunay complex, triangulation, sampling conditions, optimization, 𝓁₁-norm minimization, simplicial complex, chain, fundamental class}
}
Document
Tighter Bounds for Reconstruction from ε-Samples

Authors: Håvard Bakke Bjerkevik

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We show that reconstructing a curve in ℝ^d for d ≥ 2 from a 0.66-sample is always possible using an algorithm similar to the classical NN-Crust algorithm. Previously, this was only known to be possible for 0.47-samples in ℝ² and 1/3-samples in ℝ^d for d ≥ 3. In addition, we show that there is not always a unique way to reconstruct a curve from a 0.72-sample; this was previously only known for 1-samples. We also extend this non-uniqueness result to hypersurfaces in all higher dimensions.

Cite as

Håvard Bakke Bjerkevik. Tighter Bounds for Reconstruction from ε-Samples. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 9:1-9:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bakkebjerkevik:LIPIcs.SoCG.2022.9,
  author =	{Bakke Bjerkevik, H\r{a}vard},
  title =	{{Tighter Bounds for Reconstruction from \epsilon-Samples}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{9:1--9:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.9},
  URN =		{urn:nbn:de:0030-drops-160170},
  doi =		{10.4230/LIPIcs.SoCG.2022.9},
  annote =	{Keywords: Curve reconstruction, surface reconstruction, \epsilon-sampling}
}
Document
Erdős-Szekeres-Type Problems in the Real Projective Plane

Authors: Martin Balko, Manfred Scheucher, and Pavel Valtr

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We consider point sets in the real projective plane ℝ𝒫² and explore variants of classical extremal problems about planar point sets in this setting, with a main focus on Erdős-Szekeres-type problems. We provide asymptotically tight bounds for a variant of the Erdős-Szekeres theorem about point sets in convex position in ℝ𝒫², which was initiated by Harborth and Möller in 1994. The notion of convex position in ℝ𝒫² agrees with the definition of convex sets introduced by Steinitz in 1913. For k ≥ 3, an (affine) k-hole in a finite set S ⊆ ℝ² is a set of k points from S in convex position with no point of S in the interior of their convex hull. After introducing a new notion of k-holes for points sets from ℝ𝒫², called projective k-holes, we find arbitrarily large finite sets of points from ℝ𝒫² with no projective 8-holes, providing an analogue of a classical result by Horton from 1983. We also prove that they contain only quadratically many projective k-holes for k ≤ 7. On the other hand, we show that the number of k-holes can be substantially larger in ℝ𝒫² than in ℝ² by constructing, for every k ∈ {3,… ,6}, sets of n points from ℝ² ⊂ ℝ𝒫² with Ω(n^{3-3/5k}) projective k-holes and only O(n²) affine k-holes. Last but not least, we prove several other results, for example about projective holes in random point sets in ℝ𝒫² and about some algorithmic aspects. The study of extremal problems about point sets in ℝ𝒫² opens a new area of research, which we support by posing several open problems.

Cite as

Martin Balko, Manfred Scheucher, and Pavel Valtr. Erdős-Szekeres-Type Problems in the Real Projective Plane. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{balko_et_al:LIPIcs.SoCG.2022.10,
  author =	{Balko, Martin and Scheucher, Manfred and Valtr, Pavel},
  title =	{{Erd\H{o}s-Szekeres-Type Problems in the Real Projective Plane}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{10:1--10:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.10},
  URN =		{urn:nbn:de:0030-drops-160182},
  doi =		{10.4230/LIPIcs.SoCG.2022.10},
  annote =	{Keywords: real projective plane, point set, convex position, k-gon, k-hole, Erd\H{o}s-Szekeres theorem, Horton set, random point set}
}
  • Refine by Author
  • 13 Goaoc, Xavier
  • 6 Patáková, Zuzana
  • 4 Tancer, Martin
  • 3 Bringmann, Karl
  • 3 Buchin, Kevin
  • Show More...

  • Refine by Classification
  • 62 Theory of computation → Computational geometry
  • 12 Theory of computation → Design and analysis of algorithms
  • 8 Mathematics of computing → Algebraic topology
  • 8 Mathematics of computing → Geometric topology
  • 6 Mathematics of computing → Combinatorics
  • Show More...

  • Refine by Keyword
  • 5 persistent homology
  • 4 Computational Geometry
  • 2 Dynamic Time Warping
  • 2 Graph drawing
  • 2 Helly-type theorem
  • Show More...

  • Refine by Type
  • 90 document
  • 1 volume

  • Refine by Publication Year
  • 77 2022
  • 4 2015
  • 2 2018
  • 2 2020
  • 2 2021
  • Show More...