12 Search Results for "Ingólfsdóttir, Anna"


Document
The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension

Authors: Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
It is celebrated that a simple random walk on ℤ and ℤ² returns to the initial vertex v infinitely many times during infinitely many transitions, which is said recurrent, while it returns to v only finite times on ℤ^d for d ≥ 3, which is said transient. It is also known that a simple random walk on a growing region on ℤ^d can be recurrent depending on growing speed for any fixed d. This paper shows that a simple random walk on {0,1,…,N}ⁿ with an increasing n and a fixed N can be recurrent depending on the increasing speed of n. Precisely, we are concerned with a specific model of a random walk on a growing graph (RWoGG) and show a phase transition between the recurrence and transience of the random walk regarding the growth speed of the graph. For the proof, we develop a pausing coupling argument introducing the notion of weakly less homesick as graph growing (weakly LHaGG).

Cite as

Shuma Kumamoto, Shuji Kijima, and Tomoyuki Shirai. The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 22:1-22:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kumamoto_et_al:LIPIcs.AofA.2024.22,
  author =	{Kumamoto, Shuma and Kijima, Shuji and Shirai, Tomoyuki},
  title =	{{The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{22:1--22:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.22},
  URN =		{urn:nbn:de:0030-drops-204577},
  doi =		{10.4230/LIPIcs.AofA.2024.22},
  annote =	{Keywords: Random walk, dynamic graph, recurrence, transience, coupling}
}
Document
Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs

Authors: Daniel Hambly, Rhyd Lewis, and Padraig Corcoran

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
In this paper, we examine the NP-hard problem of identifying fixed-length s-t paths in edge-weighted graphs - that is, a path of a desired length k from a source vertex s to a target vertex t. Many existing strategies look at paths whose lengths are determined by the number of edges in the path. We, however, look at the length of the path as the sum of the edge weights. Here, three exact algorithms for this problem are proposed: the first based on an integer programming (IP) formulation, the second a backtracking algorithm, and the third based on an extension of Yen’s algorithm. Analysis of these algorithms on random graphs shows that the backtracking algorithm performs best on smaller values of k, whilst the IP is preferable for larger values of k.

Cite as

Daniel Hambly, Rhyd Lewis, and Padraig Corcoran. Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 15:1-15:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{hambly_et_al:LIPIcs.SEA.2024.15,
  author =	{Hambly, Daniel and Lewis, Rhyd and Corcoran, Padraig},
  title =	{{Determining Fixed-Length Paths in Directed and Undirected Edge-Weighted Graphs}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{15:1--15:11},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.15},
  URN =		{urn:nbn:de:0030-drops-203805},
  doi =		{10.4230/LIPIcs.SEA.2024.15},
  annote =	{Keywords: Graphs, paths, backtracking, integer programming, Yen’s algorithm}
}
Document
Invited Talk
Meaningfulness and Genericity in a Subsuming Framework (Invited Talk)

Authors: Delia Kesner, Victor Arrial, and Giulio Guerrieri

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
This paper studies the notion of meaningfulness for a unifying framework called dBang-calculus, which subsumes both call-by-name (dCBN) and call-by-value (dCBV). We first define meaningfulness in dBang and then characterize it by means of typability and inhabitation in an associated non-idempotent intersection type system previously appearing in the literature. We validate the proposed notion of meaningfulness by showing two properties: (1) consistency of the smallest theory, called ℋ, equating all meaningless terms, and (2) genericity, stating that meaningless subterms have no bearing on the significance of meaningful terms. The theory ℋ is also shown to have a unique consistent and maximal extension ℋ*, which coincides with a well-known notion of observational equivalence. Last but not least, we show that the notions of meaningfulness and genericity in the literature for dCBN and dCBV are subsumed by the corresponding ones proposed here for the dBang-calculus.

Cite as

Delia Kesner, Victor Arrial, and Giulio Guerrieri. Meaningfulness and Genericity in a Subsuming Framework (Invited Talk). In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kesner_et_al:LIPIcs.FSCD.2024.1,
  author =	{Kesner, Delia and Arrial, Victor and Guerrieri, Giulio},
  title =	{{Meaningfulness and Genericity in a Subsuming Framework}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{1:1--1:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.1},
  URN =		{urn:nbn:de:0030-drops-203305},
  doi =		{10.4230/LIPIcs.FSCD.2024.1},
  annote =	{Keywords: Lambda calculus, Solvability, Meaningfulness, Inhabitation, Genericity}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Structure of Trees in the Pushdown Hierarchy

Authors: Arnaud Carayol and Lucien Charamond

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this article, we investigate the structure of the trees in the pushdown hierarchy, a hierarchy of infinite graphs having a decidable MSO-theory. We show that a binary complete tree in the pushdown hierarchy must contain at least two different subtrees which are isomorphic. We extend this property to any tree with no leaves and with chains of unary vertices of bounded length. We provided two applications of this result. A first application in formal language theory, gives a simple argument to show that some languages are not deterministic higher-order indexed languages. A second application in number theory shows that the real numbers defined by deterministic higher-order pushdown automata are either rational or transcendental.

Cite as

Arnaud Carayol and Lucien Charamond. The Structure of Trees in the Pushdown Hierarchy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 131:1-131:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{carayol_et_al:LIPIcs.ICALP.2024.131,
  author =	{Carayol, Arnaud and Charamond, Lucien},
  title =	{{The Structure of Trees in the Pushdown Hierarchy}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{131:1--131:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.131},
  URN =		{urn:nbn:de:0030-drops-202749},
  doi =		{10.4230/LIPIcs.ICALP.2024.131},
  annote =	{Keywords: Pushdown hierarchy, Monadic second-order logic, Automatic numbers}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Homogeneity and Homogenizability: Hard Problems for the Logic SNP

Authors: Jakub Rydval

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The infinite-domain CSP dichotomy conjecture extends the finite-domain CSP dichotomy theorem to reducts of finitely bounded homogeneous structures. Every countable finitely bounded homogeneous structure is uniquely described by a universal first-order sentence up to isomorphism, and every reduct of such a structure by a sentence of the logic SNP. By Fraïssé’s Theorem, testing the existence of a finitely bounded homogeneous structure for a given universal first-order sentence is equivalent to testing the amalgamation property for the class of its finite models. The present paper motivates a complexity-theoretic view on the classification problem for finitely bounded homogeneous structures. We show that this meta-problem is EXPSPACE-hard or PSPACE-hard, depending on whether the input is specified by a universal sentence or a set of forbidden substructures. By relaxing the input to SNP sentences and the question to the existence of a structure with a finitely bounded homogeneous expansion, we obtain a different meta-problem, closely related to the question of homogenizability. We show that this second meta-problem is already undecidable, even if the input SNP sentence comes from the Datalog fragment and uses at most binary relation symbols. As a byproduct of our proof, we also get the undecidability of some other properties for Datalog programs, e.g., whether they can be rewritten in the logic MMSNP, whether they solve some finite-domain CSP, or whether they define a structure with a homogeneous Ramsey expansion in a finite relational signature.

Cite as

Jakub Rydval. Homogeneity and Homogenizability: Hard Problems for the Logic SNP. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 150:1-150:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{rydval:LIPIcs.ICALP.2024.150,
  author =	{Rydval, Jakub},
  title =	{{Homogeneity and Homogenizability: Hard Problems for the Logic SNP}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{150:1--150:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.150},
  URN =		{urn:nbn:de:0030-drops-202939},
  doi =		{10.4230/LIPIcs.ICALP.2024.150},
  annote =	{Keywords: constraint satisfaction problems, finitely bounded, homogeneous, amalgamation property, universal, SNP, homogenizable}
}
Document
On the Axiomatisation of Branching Bisimulation Congruence over CCS

Authors: Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, and Bas Luttik

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
In this paper we investigate the equational theory of (the restriction, relabelling, and recursion free fragment of) CCS modulo rooted branching bisimilarity, which is a classic, bisimulation-based notion of equivalence that abstracts from internal computational steps in process behaviour. Firstly, we show that CCS is not finitely based modulo the considered congruence. As a key step of independent interest in the proof of that negative result, we prove that each CCS process has a unique parallel decomposition into indecomposable processes modulo branching bisimilarity. As a second main contribution, we show that, when the set of actions is finite, rooted branching bisimilarity has a finite equational basis over CCS enriched with the left merge and communication merge operators from ACP.

Cite as

Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, and Bas Luttik. On the Axiomatisation of Branching Bisimulation Congruence over CCS. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2022.6,
  author =	{Aceto, Luca and Castiglioni, Valentina and Ing\'{o}lfsd\'{o}ttir, Anna and Luttik, Bas},
  title =	{{On the Axiomatisation of Branching Bisimulation Congruence over CCS}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.6},
  URN =		{urn:nbn:de:0030-drops-170692},
  doi =		{10.4230/LIPIcs.CONCUR.2022.6},
  annote =	{Keywords: Equational basis, Weak semantics, CCS, Parallel composition}
}
Document
The Best a Monitor Can Do

Authors: Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Existing notions of monitorability for branching-time properties are fairly restrictive. This, in turn, impacts the ability to incorporate prior knowledge about the system under scrutiny - which corresponds to a branching-time property - into the runtime analysis. We propose a definition of optimal monitors that verify the best monitorable under- or over-approximation of a specification, regardless of its monitorability status. Optimal monitors can be obtained for arbitrary branching-time properties by synthesising a sound and complete monitor for their strongest monitorable consequence. We show that the strongest monitorable consequence of specifications expressed in Hennessy-Milner logic with recursion is itself expressible in this logic, and present a procedure to find it. Our procedure enables prior knowledge to be optimally incorporated into runtime monitors.

Cite as

Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina Lehtinen. The Best a Monitor Can Do. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 7:1-7:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CSL.2021.7,
  author =	{Aceto, Luca and Achilleos, Antonis and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna and Lehtinen, Karoliina},
  title =	{{The Best a Monitor Can Do}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{7:1--7:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.7},
  URN =		{urn:nbn:de:0030-drops-134416},
  doi =		{10.4230/LIPIcs.CSL.2021.7},
  annote =	{Keywords: monitorability, branching-time logics, runtime verification}
}
Document
Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?

Authors: Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
Bergstra and Klop have shown that bisimilarity has a finite equational axiomatisation over ACP/CCS extended with the binary left and communication merge operators. Moller proved that auxiliary operators are necessary to obtain a finite axiomatisation of bisimilarity over CCS, and Aceto et al. showed that this remains true when Hennessy’s merge is added to that language. These results raise the question of whether there is one auxiliary binary operator whose addition to CCS leads to a finite axiomatisation of bisimilarity. This study provides a negative answer to that question based on three reasonable assumptions.

Cite as

Luca Aceto, Valentina Castiglioni, Wan Fokkink, Anna Ingólfsdóttir, and Bas Luttik. Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?. In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 8:1-8:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CSL.2021.8,
  author =	{Aceto, Luca and Castiglioni, Valentina and Fokkink, Wan and Ing\'{o}lfsd\'{o}ttir, Anna and Luttik, Bas},
  title =	{{Are Two Binary Operators Necessary to Finitely Axiomatise Parallel Composition?}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{8:1--8:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.8},
  URN =		{urn:nbn:de:0030-drops-134425},
  doi =		{10.4230/LIPIcs.CSL.2021.8},
  annote =	{Keywords: Equational logic, CCS, bisimulation, parallel composition, non-finitely based algebras}
}
Document
On the Axiomatisability of Parallel Composition: A Journey in the Spectrum

Authors: Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, Bas Luttik, and Mathias Ruggaard Pedersen

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
This paper studies the existence of finite equational axiomatisations of the interleaving parallel composition operator modulo the behavioural equivalences in van Glabbeek’s linear time-branching time spectrum. In the setting of the process algebra BCCSP over a finite set of actions, we provide finite, ground-complete axiomatisations for various simulation and (decorated) trace semantics. On the other hand, we show that no congruence over that language that includes bisimilarity and is included in possible futures equivalence has a finite, ground-complete axiomatisation. This negative result applies to all the nested trace and nested simulation semantics.

Cite as

Luca Aceto, Valentina Castiglioni, Anna Ingólfsdóttir, Bas Luttik, and Mathias Ruggaard Pedersen. On the Axiomatisability of Parallel Composition: A Journey in the Spectrum. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2020.18,
  author =	{Aceto, Luca and Castiglioni, Valentina and Ing\'{o}lfsd\'{o}ttir, Anna and Luttik, Bas and Pedersen, Mathias Ruggaard},
  title =	{{On the Axiomatisability of Parallel Composition: A Journey in the Spectrum}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.18},
  URN =		{urn:nbn:de:0030-drops-128303},
  doi =		{10.4230/LIPIcs.CONCUR.2020.18},
  annote =	{Keywords: Axiomatisation, Parallel composition, Linear time-branching time spectrum}
}
Document
On Runtime Enforcement via Suppressions

Authors: Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir

Published in: LIPIcs, Volume 118, 29th International Conference on Concurrency Theory (CONCUR 2018)


Abstract
Runtime enforcement is a dynamic analysis technique that uses monitors to enforce the behaviour specified by some correctness property on an executing system. The enforceability of a logic captures the extent to which the properties expressible via the logic can be enforced at runtime. We study the enforceability of Hennessy-Milner Logic with Recursion (muHML) with respect to suppression enforcement. We develop an operational framework for enforcement which we then use to formalise when a monitor enforces a muHML property. We also show that the safety syntactic fragment of the logic, sHML, is enforceable by providing an automated synthesis function that generates correct suppression monitors from sHML formulas.

Cite as

Luca Aceto, Ian Cassar, Adrian Francalanza, and Anna Ingólfsdóttir. On Runtime Enforcement via Suppressions. In 29th International Conference on Concurrency Theory (CONCUR 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 118, pp. 34:1-34:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2018.34,
  author =	{Aceto, Luca and Cassar, Ian and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna},
  title =	{{On Runtime Enforcement via Suppressions}},
  booktitle =	{29th International Conference on Concurrency Theory (CONCUR 2018)},
  pages =	{34:1--34:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-087-3},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{118},
  editor =	{Schewe, Sven and Zhang, Lijun},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2018.34},
  URN =		{urn:nbn:de:0030-drops-95729},
  doi =		{10.4230/LIPIcs.CONCUR.2018.34},
  annote =	{Keywords: Enforceability, Suppression Enforcement, Monitor Synthesis, Logic}
}
Document
Monitoring for Silent Actions

Authors: Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir

Published in: LIPIcs, Volume 93, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)


Abstract
Silent actions are an essential mechanism for system modelling and specification. They are used to abstractly report the occurrence of computation steps without divulging their precise details, thereby enabling the description of important aspects such as the branching structure of a system. Yet, their use rarely features in specification logics used in runtime verification. We study monitorability aspects of a branching-time logic that employs silent actions, identifying which formulas are monitorable for a number of instrumentation setups. We also consider defective instrumentation setups that imprecisely report silent events, and establish monitorability results for tolerating these imperfections.

Cite as

Luca Aceto, Antonis Achilleos, Adrian Francalanza, and Anna Ingólfsdóttir. Monitoring for Silent Actions. In 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 93, pp. 7:1-7:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.FSTTCS.2017.7,
  author =	{Aceto, Luca and Achilleos, Antonis and Francalanza, Adrian and Ing\'{o}lfsd\'{o}ttir, Anna},
  title =	{{Monitoring for Silent Actions}},
  booktitle =	{37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2017)},
  pages =	{7:1--7:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-055-2},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{93},
  editor =	{Lokam, Satya and Ramanujam, R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2017.7},
  URN =		{urn:nbn:de:0030-drops-84023},
  doi =		{10.4230/LIPIcs.FSTTCS.2017.7},
  annote =	{Keywords: Runtime Verification, Monitorability, Hennessy-Milner Logic with Recursion, Silent Actions}
}
Document
Rule Formats for Nominal Process Calculi

Authors: Luca Aceto, Ignacio Fábregas, Álvaro García-Pérez, Anna Ingólfsdóttir, and Yolanda Ortega-Mallén

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
The nominal transition systems (NTSs) of Parrow et al. describe the operational semantics of nominal process calculi. We study NTSs in terms of the nominal residual transition systems (NRTSs) that we introduce. We provide rule formats for the specifications of NRTSs that ensure that the associated NRTS is an NTS and apply them to the operational specification of the early pi-calculus. Our study stems from the recent Nominal SOS of Cimini et al. and from earlier works in nominal sets and nominal logic by Gabbay, Pitts and their collaborators.

Cite as

Luca Aceto, Ignacio Fábregas, Álvaro García-Pérez, Anna Ingólfsdóttir, and Yolanda Ortega-Mallén. Rule Formats for Nominal Process Calculi. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{aceto_et_al:LIPIcs.CONCUR.2017.10,
  author =	{Aceto, Luca and F\'{a}bregas, Ignacio and Garc{\'\i}a-P\'{e}rez, \'{A}lvaro and Ing\'{o}lfsd\'{o}ttir, Anna and Ortega-Mall\'{e}n, Yolanda},
  title =	{{Rule Formats for Nominal Process Calculi}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.10},
  URN =		{urn:nbn:de:0030-drops-77869},
  doi =		{10.4230/LIPIcs.CONCUR.2017.10},
  annote =	{Keywords: nominal sets, nominal structural operational semantics, process algebra, nominal transition systems, scope opening, rule formats}
}
  • Refine by Author
  • 7 Aceto, Luca
  • 7 Ingólfsdóttir, Anna
  • 3 Castiglioni, Valentina
  • 3 Francalanza, Adrian
  • 3 Luttik, Bas
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Equational logic and rewriting
  • 2 Theory of computation → Operational semantics
  • 1 Information systems → Fixed length attributes
  • 1 Software and its engineering → Dynamic analysis
  • 1 Software and its engineering → Formal software verification
  • Show More...

  • Refine by Keyword
  • 2 CCS
  • 2 Parallel composition
  • 1 Automatic numbers
  • 1 Axiomatisation
  • 1 Enforceability
  • Show More...

  • Refine by Type
  • 12 document

  • Refine by Publication Year
  • 5 2024
  • 2 2018
  • 2 2021
  • 1 2017
  • 1 2020
  • Show More...