8 Search Results for "Jiang, Haotian"


Document
Track A: Algorithms, Complexity and Games
The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants

Authors: Emile Anand, Jan van den Brand, Mehrdad Ghadiri, and Daniel J. Zhang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Many iterative algorithms in computer science require repeated computation of some algebraic expression whose input varies slightly from one iteration to the next. Although efficient data structures have been proposed for maintaining the solution of such algebraic expressions under low-rank updates, most of these results are only analyzed under exact arithmetic (real-RAM model and finite fields) which may not accurately reflect the more limited complexity guarantees of real computers. In this paper, we analyze the stability and bit complexity of such data structures for expressions that involve the inversion, multiplication, addition, and subtraction of matrices under the word-RAM model. We show that the bit complexity only increases linearly in the number of matrix operations in the expression. In addition, we consider the bit complexity of maintaining the determinant of a matrix expression. We show that the required bit complexity depends on the logarithm of the condition number of matrices instead of the logarithm of their determinant. Finally, we discuss rank maintenance and its connections to determinant maintenance. Our results have wide applications ranging from computational geometry (e.g., computing the volume of a polytope) to optimization (e.g., solving linear programs using the simplex algorithm).

Cite as

Emile Anand, Jan van den Brand, Mehrdad Ghadiri, and Daniel J. Zhang. The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{anand_et_al:LIPIcs.ICALP.2024.10,
  author =	{Anand, Emile and van den Brand, Jan and Ghadiri, Mehrdad and Zhang, Daniel J.},
  title =	{{The Bit Complexity of Dynamic Algebraic Formulas and Their Determinants}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.10},
  URN =		{urn:nbn:de:0030-drops-201538},
  doi =		{10.4230/LIPIcs.ICALP.2024.10},
  annote =	{Keywords: Data Structures, Online Algorithms, Bit Complexity}
}
Document
Track A: Algorithms, Complexity and Games
On the Cut-Query Complexity of Approximating Max-Cut

Authors: Orestis Plevrakis, Seyoon Ragavan, and S. Matthew Weinberg

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of query-efficient global max-cut on a weighted undirected graph in the value oracle model examined by [Rubinstein et al., 2018]. Graph algorithms in this cut query model and other query models have recently been studied for various other problems such as min-cut, connectivity, bipartiteness, and triangle detection. Max-cut in the cut query model can also be viewed as a natural special case of submodular function maximization: on query S ⊆ V, the oracle returns the total weight of the cut between S and V\S. Our first main technical result is a lower bound stating that a deterministic algorithm achieving a c-approximation for any c > 1/2 requires Ω(n) queries. This uses an extension of the cut dimension to rule out approximation (prior work of [Graur et al., 2020] introducing the cut dimension only rules out exact solutions). Secondly, we provide a randomized algorithm with Õ(n) queries that finds a c-approximation for any c < 1. We achieve this using a query-efficient sparsifier for undirected weighted graphs (prior work of [Rubinstein et al., 2018] holds only for unweighted graphs). To complement these results, for most constants c ∈ (0,1], we nail down the query complexity of achieving a c-approximation, for both deterministic and randomized algorithms (up to logarithmic factors). Analogously to general submodular function maximization in the same model, we observe a phase transition at c = 1/2: we design a deterministic algorithm for global c-approximate max-cut in O(log n) queries for any c < 1/2, and show that any randomized algorithm requires Ω(n/log n) queries to find a c-approximate max-cut for any c > 1/2. Additionally, we show that any deterministic algorithm requires Ω(n²) queries to find an exact max-cut (enough to learn the entire graph).

Cite as

Orestis Plevrakis, Seyoon Ragavan, and S. Matthew Weinberg. On the Cut-Query Complexity of Approximating Max-Cut. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 115:1-115:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{plevrakis_et_al:LIPIcs.ICALP.2024.115,
  author =	{Plevrakis, Orestis and Ragavan, Seyoon and Weinberg, S. Matthew},
  title =	{{On the Cut-Query Complexity of Approximating Max-Cut}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{115:1--115:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.115},
  URN =		{urn:nbn:de:0030-drops-202587},
  doi =		{10.4230/LIPIcs.ICALP.2024.115},
  annote =	{Keywords: query complexity, maximum cut, approximation algorithms, graph sparsification}
}
Document
Track A: Algorithms, Complexity and Games
Better Sparsifiers for Directed Eulerian Graphs

Authors: Sushant Sachdeva, Anvith Thudi, and Yibin Zhao

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Spectral sparsification for directed Eulerian graphs is a key component in the design of fast algorithms for solving directed Laplacian linear systems. Directed Laplacian linear system solvers are crucial algorithmic primitives to fast computation of fundamental problems on random walks, such as computing stationary distributions, hitting and commute times, and personalized PageRank vectors. While spectral sparsification is well understood for undirected graphs and it is known that for every graph G, (1+ε)-sparsifiers with O(nε^{-2}) edges exist [Batson-Spielman-Srivastava, STOC '09] (which is optimal), the best known constructions of Eulerian sparsifiers require Ω(nε^{-2}log⁴ n) edges and are based on short-cycle decompositions [Chu et al., FOCS '18]. In this paper, we give improved constructions of Eulerian sparsifiers, specifically: 1) We show that for every directed Eulerian graph G→, there exists an Eulerian sparsifier with O(nε^{-2} log² n log²log n + nε^{-4/3}log^{8/3} n) edges. This result is based on combining short-cycle decompositions [Chu-Gao-Peng-Sachdeva-Sawlani-Wang, FOCS '18, SICOMP] and [Parter-Yogev, ICALP '19], with recent progress on the matrix Spencer conjecture [Bansal-Meka-Jiang, STOC '23]. 2) We give an improved analysis of the constructions based on short-cycle decompositions, giving an m^{1+δ}-time algorithm for any constant δ > 0 for constructing Eulerian sparsifiers with O(nε^{-2}log³ n) edges.

Cite as

Sushant Sachdeva, Anvith Thudi, and Yibin Zhao. Better Sparsifiers for Directed Eulerian Graphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 119:1-119:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sachdeva_et_al:LIPIcs.ICALP.2024.119,
  author =	{Sachdeva, Sushant and Thudi, Anvith and Zhao, Yibin},
  title =	{{Better Sparsifiers for Directed Eulerian Graphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{119:1--119:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.119},
  URN =		{urn:nbn:de:0030-drops-202628},
  doi =		{10.4230/LIPIcs.ICALP.2024.119},
  annote =	{Keywords: Graph algorithms, Linear algebra and computation, Discrepancy theory}
}
Document
Track A: Algorithms, Complexity and Games
Smoothed Analysis of the Komlós Conjecture

Authors: Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
The well-known Komlós conjecture states that given n vectors in ℝ^d with Euclidean norm at most one, there always exists a ± 1 coloring such that the 𝓁_∞ norm of the signed-sum vector is a constant independent of n and d. We prove this conjecture in a smoothed analysis setting where the vectors are perturbed by adding a small Gaussian noise and when the number of vectors n = ω(d log d). The dependence of n on d is the best possible even in a completely random setting. Our proof relies on a weighted second moment method, where instead of considering uniformly randomly colorings we apply the second moment method on an implicit distribution on colorings obtained by applying the Gram-Schmidt walk algorithm to a suitable set of vectors. The main technical idea is to use various properties of these colorings, including subgaussianity, to control the second moment.

Cite as

Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha. Smoothed Analysis of the Komlós Conjecture. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 14:1-14:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.ICALP.2022.14,
  author =	{Bansal, Nikhil and Jiang, Haotian and Meka, Raghu and Singla, Sahil and Sinha, Makrand},
  title =	{{Smoothed Analysis of the Koml\'{o}s Conjecture}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{14:1--14:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.14},
  URN =		{urn:nbn:de:0030-drops-163556},
  doi =		{10.4230/LIPIcs.ICALP.2022.14},
  annote =	{Keywords: Koml\'{o}s conjecture, smoothed analysis, weighted second moment method, subgaussian coloring}
}
Document
Prefix Discrepancy, Smoothed Analysis, and Combinatorial Vector Balancing

Authors: Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha

Published in: LIPIcs, Volume 215, 13th Innovations in Theoretical Computer Science Conference (ITCS 2022)


Abstract
A well-known result of Banaszczyk in discrepancy theory concerns the prefix discrepancy problem (also known as the signed series problem): given a sequence of T unit vectors in ℝ^d, find ± signs for each of them such that the signed sum vector along any prefix has a small 𝓁_∞-norm? This problem is central to proving upper bounds for the Steinitz problem, and the popular Komlós problem is a special case where one is only concerned with the final signed sum vector instead of all prefixes. Banaszczyk gave an O(√{log d+ log T}) bound for the prefix discrepancy problem. We investigate the tightness of Banaszczyk’s bound and consider natural generalizations of prefix discrepancy: - We first consider a smoothed analysis setting, where a small amount of additive noise perturbs the input vectors. We show an exponential improvement in T compared to Banaszczyk’s bound. Using a primal-dual approach and a careful chaining argument, we show that one can achieve a bound of O(√{log d+ log log T}) with high probability in the smoothed setting. Moreover, this smoothed analysis bound is the best possible without further improvement on Banaszczyk’s bound in the worst case. - We also introduce a generalization of the prefix discrepancy problem to arbitrary DAGs. Here, vertices correspond to unit vectors, and the discrepancy constraints correspond to paths on a DAG on T vertices - prefix discrepancy is precisely captured when the DAG is a simple path. We show that an analog of Banaszczyk’s O(√{log d+ log T}) bound continues to hold in this setting for adversarially given unit vectors and that the √{log T} factor is unavoidable for DAGs. We also show that unlike for prefix discrepancy, the dependence on T cannot be improved significantly in the smoothed case for DAGs. - We conclude by exploring a more general notion of vector balancing, which we call combinatorial vector balancing. In this problem, the discrepancy constraints are generalized from paths of a DAG to an arbitrary set system. We obtain near-optimal bounds in this setting, up to poly-logarithmic factors.

Cite as

Nikhil Bansal, Haotian Jiang, Raghu Meka, Sahil Singla, and Makrand Sinha. Prefix Discrepancy, Smoothed Analysis, and Combinatorial Vector Balancing. In 13th Innovations in Theoretical Computer Science Conference (ITCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 215, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bansal_et_al:LIPIcs.ITCS.2022.13,
  author =	{Bansal, Nikhil and Jiang, Haotian and Meka, Raghu and Singla, Sahil and Sinha, Makrand},
  title =	{{Prefix Discrepancy, Smoothed Analysis, and Combinatorial Vector Balancing}},
  booktitle =	{13th Innovations in Theoretical Computer Science Conference (ITCS 2022)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-217-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{215},
  editor =	{Braverman, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2022.13},
  URN =		{urn:nbn:de:0030-drops-156092},
  doi =		{10.4230/LIPIcs.ITCS.2022.13},
  annote =	{Keywords: Prefix discrepancy, smoothed analysis, combinatorial vector balancing}
}
Document
Invited Talk
Convex Optimization and Dynamic Data Structure (Invited Talk)

Authors: Yin Tat Lee

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
In the last three years, there are many breakthroughs in optimization such as nearly quadratic time algorithms for bipartite matching, linear programming algorithms that are as fast as Ax = b. All of these algorithms are based on a careful combination of optimization techniques and dynamic data structures. In this talk, we will explain the framework underlying all the recent breakthroughs. Joint work with Jan van den Brand, Michael B. Cohen, Sally Dong, Haotian Jiang, Tarun Kathuria, Danupon Nanongkai, Swati Padmanabhan, Richard Peng, Thatchaphol Saranurak, Aaron Sidford, Zhao Song, Di Wang, Sam Chiu-wai Wong, Guanghao Ye, Qiuyi Zhang.

Cite as

Yin Tat Lee. Convex Optimization and Dynamic Data Structure (Invited Talk). In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, p. 3:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{lee:LIPIcs.FSTTCS.2020.3,
  author =	{Lee, Yin Tat},
  title =	{{Convex Optimization and Dynamic Data Structure}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{3:1--3:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.3},
  URN =		{urn:nbn:de:0030-drops-132440},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.3},
  annote =	{Keywords: Convex Optimization, Dynamic Data Structure}
}
Document
Algorithms and Adaptivity Gaps for Stochastic k-TSP

Authors: Haotian Jiang, Jian Li, Daogao Liu, and Sahil Singla

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Given a metric (V,d) and a root ∈ V, the classic k-TSP problem is to find a tour originating at the root of minimum length that visits at least k nodes in V. In this work, motivated by applications where the input to an optimization problem is uncertain, we study two stochastic versions of k-TSP. In Stoch-Reward k-TSP, originally defined by Ene-Nagarajan-Saket [Ene et al., 2018], each vertex v in the given metric (V,d) contains a stochastic reward R_v. The goal is to adaptively find a tour of minimum expected length that collects at least reward k; here "adaptively" means our next decision may depend on previous outcomes. Ene et al. give an O(log k)-approximation adaptive algorithm for this problem, and left open if there is an O(1)-approximation algorithm. We totally resolve their open question, and even give an O(1)-approximation non-adaptive algorithm for Stoch-Reward k-TSP. We also introduce and obtain similar results for the Stoch-Cost k-TSP problem. In this problem each vertex v has a stochastic cost C_v, and the goal is to visit and select at least k vertices to minimize the expected sum of tour length and cost of selected vertices. Besides being a natural stochastic generalization of k-TSP, this problem is also interesting because it generalizes the Price of Information framework [Singla, 2018] from deterministic probing costs to metric probing costs. Our techniques are based on two crucial ideas: "repetitions" and "critical scaling". In general, replacing a random variable with its expectation leads to very poor results. We show that for our problems, if we truncate the random variables at an ideal threshold, then their expected values form a good surrogate. Here, we rely on running several repetitions of our algorithm with the same threshold, and then argue concentration using Freedman’s and Jogdeo-Samuels' inequalities. Unfortunately, this ideal threshold depends on how far we are from achieving our target k, which a non-adaptive algorithm does not know. To overcome this barrier, we truncate the random variables at various different scales and identify a "critical" scale.

Cite as

Haotian Jiang, Jian Li, Daogao Liu, and Sahil Singla. Algorithms and Adaptivity Gaps for Stochastic k-TSP. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 45:1-45:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{jiang_et_al:LIPIcs.ITCS.2020.45,
  author =	{Jiang, Haotian and Li, Jian and Liu, Daogao and Singla, Sahil},
  title =	{{Algorithms and Adaptivity Gaps for Stochastic k-TSP}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{45:1--45:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.45},
  URN =		{urn:nbn:de:0030-drops-117308},
  doi =		{10.4230/LIPIcs.ITCS.2020.45},
  annote =	{Keywords: approximation algorithms, stochastic optimization, travelling salesman problem}
}
Document
A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics

Authors: T-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang

Published in: LIPIcs, Volume 112, 26th Annual European Symposium on Algorithms (ESA 2018)


Abstract
We present a unified (randomized) polynomial-time approximation scheme (PTAS) for the prize collecting traveling salesman problem (PCTSP) and the prize collecting Steiner tree problem (PCSTP) in doubling metrics. Given a metric space and a penalty function on a subset of points known as terminals, a solution is a subgraph on points in the metric space, whose cost is the weight of its edges plus the penalty due to terminals not covered by the subgraph. Under our unified framework, the solution subgraph needs to be Eulerian for PCTSP, while it needs to be a tree for PCSTP. Before our work, even a QPTAS for the problems in doubling metrics is not known. Our unified PTAS is based on the previous dynamic programming frameworks proposed in [Talwar STOC 2004] and [Bartal, Gottlieb, Krauthgamer STOC 2012]. However, since it is unknown which part of the optimal cost is due to edge lengths and which part is due to penalties of uncovered terminals, we need to develop new techniques to apply previous divide-and-conquer strategies and sparse instance decompositions.

Cite as

T-H. Hubert Chan, Haotian Jiang, and Shaofeng H.-C. Jiang. A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics. In 26th Annual European Symposium on Algorithms (ESA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 112, pp. 15:1-15:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{chan_et_al:LIPIcs.ESA.2018.15,
  author =	{Chan, T-H. Hubert and Jiang, Haotian and Jiang, Shaofeng H.-C.},
  title =	{{A Unified PTAS for Prize Collecting TSP and Steiner Tree Problem in Doubling Metrics}},
  booktitle =	{26th Annual European Symposium on Algorithms (ESA 2018)},
  pages =	{15:1--15:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-081-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{112},
  editor =	{Azar, Yossi and Bast, Hannah and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2018.15},
  URN =		{urn:nbn:de:0030-drops-94781},
  doi =		{10.4230/LIPIcs.ESA.2018.15},
  annote =	{Keywords: Doubling Dimension, Traveling Salesman Problem, Polynomial Time Approximation Scheme, Steiner Tree Problem, Prize Collecting}
}
  • Refine by Author
  • 4 Jiang, Haotian
  • 3 Singla, Sahil
  • 2 Bansal, Nikhil
  • 2 Meka, Raghu
  • 2 Sinha, Makrand
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Linear algebra algorithms
  • 1 Mathematics of computing → Approximation algorithms
  • 1 Mathematics of computing → Combinatoric problems
  • 1 Mathematics of computing → Computations on matrices
  • 1 Mathematics of computing → Mathematical optimization
  • Show More...

  • Refine by Keyword
  • 2 approximation algorithms
  • 2 smoothed analysis
  • 1 Bit Complexity
  • 1 Convex Optimization
  • 1 Data Structures
  • Show More...

  • Refine by Type
  • 8 document

  • Refine by Publication Year
  • 3 2024
  • 2 2020
  • 2 2022
  • 1 2018