37 Search Results for "Kaplan, Haim"


Document
Indexing Graphs for Shortest Beer Path Queries

Authors: David Coudert, Andrea D'Ascenzo, and Mattia D'Emidio

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
A beer graph is an edge-weighted graph G = (V,E,ω) with beer vertices B ⊆ V. A beer path between two vertices s and t of a beer graph is a path that connects s and t and visits at least one vertex in B. The beer distance between two vertices is the weight of a shortest beer path, i.e. a beer path having minimum total weight. A graph indexing scheme is a two-phase method that constructs an index data structure by a one-time preprocessing of an input graph and then exploits it to compute (or accelerate the computation of) answers to queries on structures of the graph dataset. In the last decade, such indexing schemes have been designed to perform, effectively, many relevant types of queries, e.g. on reachability, and have gained significant popularity in essentially all data-intensive application domains where large number of queries have to be routinely answered (e.g. journey planners), since they have been shown, through many experimental studies, to offer extremely low query times at the price of limited preprocessing time and space overheads. In this paper, we showcase that an indexing scheme, to efficiently execute queries on beer distances or shortest beer paths for pairs of vertices of a beer graph, can be obtained by adapting the highway labeling, a recently introduced indexing method to accelerate the computation of classical shortest paths. We design a preprocessing algorithm to build a whl index, i.e. a weighted highway labeling of a beer graph, and show how it can be queried to compute beer distances and shortest beer paths. Through extensive experimentation on real networks, we empirically demonstrate its practical effectiveness and superiority, in terms of offered trade-off between preprocessing time, space overhead and query time, with respect to the state-of-the-art.

Cite as

David Coudert, Andrea D'Ascenzo, and Mattia D'Emidio. Indexing Graphs for Shortest Beer Path Queries. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 2:1-2:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{coudert_et_al:OASIcs.ATMOS.2024.2,
  author =	{Coudert, David and D'Ascenzo, Andrea and D'Emidio, Mattia},
  title =	{{Indexing Graphs for Shortest Beer Path Queries}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{2:1--2:18},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.2},
  URN =		{urn:nbn:de:0030-drops-211907},
  doi =		{10.4230/OASIcs.ATMOS.2024.2},
  annote =	{Keywords: Graph Algorithms, Indexing Schemes, Beer Distances, Algorithms Engineering}
}
Document
Insights into (k, ρ)-Shortcutting Algorithms

Authors: Alexander Leonhardt, Ulrich Meyer, and Manuel Penschuck

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
A graph is called a (k, ρ)-graph iff every node can reach ρ of its nearest neighbors in at most k hops. This property has proven useful in the analysis and design of parallel shortest-path algorithms [Blelloch et al., 2016; Dong et al., 2021]. Any graph can be transformed into a (k, ρ)-graph by adding shortcuts. Formally, the (k,ρ)-Minimum-Shortcut-Problem (kρ-MSP) asks to find an appropriate shortcut set of minimal cardinality. We show that kρ-MSP is NP-complete in the practical regime of k ≥ 3 and ρ = Θ(n^ε) for ε > 0. With a related construction, we bound the approximation factor of known kρ-MSP heuristics [Blelloch et al., 2016] from below and propose algorithmic countermeasures improving the approximation quality. Further, we describe an integer linear problem (ILP) that optimally solves kρ-MSP. Finally, we compare the practical performance and quality of all algorithms empirically.

Cite as

Alexander Leonhardt, Ulrich Meyer, and Manuel Penschuck. Insights into (k, ρ)-Shortcutting Algorithms. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 84:1-84:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{leonhardt_et_al:LIPIcs.ESA.2024.84,
  author =	{Leonhardt, Alexander and Meyer, Ulrich and Penschuck, Manuel},
  title =	{{Insights into (k, \rho)-Shortcutting Algorithms}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{84:1--84:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.84},
  URN =		{urn:nbn:de:0030-drops-211554},
  doi =		{10.4230/LIPIcs.ESA.2024.84},
  annote =	{Keywords: Complexity, Approximation, Optimal algorithms, Parallel shortest path}
}
Document
Segment Proximity Graphs and Nearest Neighbor Queries Amid Disjoint Segments

Authors: Pankaj K. Agarwal, Haim Kaplan, Matthew J. Katz, and Micha Sharir

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
In this paper we study a few proximity problems related to a set of pairwise-disjoint segments in {ℝ}². Let S be a set of n pairwise-disjoint segments in {ℝ}², and let r > 0 be a parameter. We define the segment proximity graph of S to be G_r(S) := (S,E), where E = {(e₁,e₂) ∣ dist(e₁,e₂) ≤ r} and dist (e₁,e₂) = min_{(p,q) ∈ e₁× e₂} ‖p-q‖ is the Euclidean distance between e₁ and e₂. We define the weight of an edge (e₁,e₂) ∈ E to be dist(e₁,e₂). We first present a simple grid-based O(nlog² n)-time algorithm for computing a BFS tree of G_r(S). We apply it to obtain an O^*(n^{6/5}) + O(nlog²nlogΔ)-time algorithm for the so-called reverse shortest path problem, in which we want to find the smallest value r^* for which G_{r^*}(S) contains a path of some specified length between two designated start and target segments (where the O^*(⋅) notation hides polylogarithmic factors). Here Δ = max_{e ≠ e' ∈ S} dist(e,e')/min_{e ≠ e' ∈ S} dist(e,e') is the spread of S. Next, we present a dynamic data structure that can maintain a set S of pairwise-disjoint segments in the plane under insertions/deletions, so that, for a query segment e from an unknown set Q of pairwise-disjoint segments, such that e does not intersect any segment in (the current version of) S, the segment of S closest to e can be computed in O(log⁵ n) amortized time. The amortized update time is also O(log⁵ n). We note that if the segments in S∪Q are allowed to intersect then the known lower bounds on halfplane range searching suggest that a sequence of n updates and queries may take at least close to Ω(n^{4/3}) time. One thus has to strongly rely on the non-intersecting property of S and Q to perform updates and queries in O(polylog(n)) (amortized) time each. Using these results on nearest-neighbor (NN) searching for disjoint segments, we show that a DFS tree (or forest) of G_r(S) can be computed in O^*(n) time. We also obtain an O^*(n)-time algorithm for constructing a minimum spanning tree of G_r(S). Finally, we present an O^*(n^{4/3})-time algorithm for computing a single-source shortest-path tree in G_r(S). This is the only result that does not exploit the disjointness of the input segments.

Cite as

Pankaj K. Agarwal, Haim Kaplan, Matthew J. Katz, and Micha Sharir. Segment Proximity Graphs and Nearest Neighbor Queries Amid Disjoint Segments. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ESA.2024.7,
  author =	{Agarwal, Pankaj K. and Kaplan, Haim and Katz, Matthew J. and Sharir, Micha},
  title =	{{Segment Proximity Graphs and Nearest Neighbor Queries Amid Disjoint Segments}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.7},
  URN =		{urn:nbn:de:0030-drops-210782},
  doi =		{10.4230/LIPIcs.ESA.2024.7},
  annote =	{Keywords: segment proximity graphs, nearest neighbor searching, dynamic data structures, BFS, DFS, unit-disk graphs}
}
Document
Track A: Algorithms, Complexity and Games
Caching Connections in Matchings

Authors: Yaniv Sadeh and Haim Kaplan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Motivated by the desire to utilize a limited number of configurable optical switches by recent advances in Software Defined Networks (SDNs), we define an online problem which we call the Caching in Matchings problem. This problem has a natural combinatorial structure and therefore may find additional applications in theory and practice. In the Caching in Matchings problem our cache consists of k matchings of connections between servers that form a bipartite graph. To cache a connection we insert it into one of the k matchings possibly evicting at most two other connections from this matching. This problem resembles the problem known as Connection Caching [Cohen et al., 2000], where we also cache connections but our only restriction is that they form a graph with bounded degree k. Our results show a somewhat surprising qualitative separation between the problems: The competitive ratio of any online algorithm for caching in matchings must depend on the size of the graph. Specifically, we give a deterministic O(nk) competitive and randomized O(n log k) competitive algorithms for caching in matchings, where n is the number of servers and k is the number of matchings. We also show that the competitive ratio of any deterministic algorithm is Ω(max(n/k,k)) and of any randomized algorithm is Ω(log (n/(k² log k)) ⋅ log k). In particular, the lower bound for randomized algorithms is Ω(log n) regardless of k, and can be as high as Ω(log² n) if k = n^{1/3}, for example. We also show that if we allow the algorithm to use at least 2k-1 matchings compared to k used by the optimum then we match the competitive ratios of connection catching which are independent of n. Interestingly, we also show that even a single extra matching for the algorithm allows to get substantially better bounds.

Cite as

Yaniv Sadeh and Haim Kaplan. Caching Connections in Matchings. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 120:1-120:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{sadeh_et_al:LIPIcs.ICALP.2024.120,
  author =	{Sadeh, Yaniv and Kaplan, Haim},
  title =	{{Caching Connections in Matchings}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{120:1--120:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.120},
  URN =		{urn:nbn:de:0030-drops-202639},
  doi =		{10.4230/LIPIcs.ICALP.2024.120},
  annote =	{Keywords: Caching, Matchings, Caching in Matchings, Edge Coloring, Online Algorithms}
}
Document
Optimal Energetic Paths for Electric Cars

Authors: Dani Dorfman, Haim Kaplan, Robert E. Tarjan, and Uri Zwick

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
A weighted directed graph G = (V,A,c), where A ⊆ V× V and c:A → ℝ, naturally describes a road network in which an electric car, or vehicle (EV), can roam. An arc uv ∈ A models a road segment connecting the two vertices (junctions) u and v. The cost c(uv) of the arc uv is the amount of energy the car needs to travel from u to v. This amount can be positive, zero or negative. We consider both the more realistic scenario where there are no negative cycles in the graph, as well as the more challenging scenario, which can also be motivated, where negative cycles may be present. The electric car has a battery that can store up to B units of energy. The car can traverse an arc uv ∈ A only if it is at u and the charge b in its battery satisfies b ≥ c(uv). If the car traverses the arc uv then it reaches v with a charge of min{b-c(uv),B} in its battery. Arcs with a positive cost deplete the battery while arcs with negative costs may charge the battery, but not above its capacity of B. If the car is at a vertex u and cannot traverse any outgoing arcs of u, then it is stuck and cannot continue traveling. We consider the following natural problem: Given two vertices s,t ∈ V, can the car travel from s to t, starting at s with an initial charge b, where 0 ≤ b ≤ B? If so, what is the maximum charge with which the car can reach t? Equivalently, what is the smallest depletion δ_{B,b}(s,t) such that the car can reach t with a charge of b-δ_{B,b}(s,t) in its battery, and which path should the car follow to achieve this? We also refer to δ_{B,b}(s,t) as the energetic cost of traveling from s to t. We let δ_{B,b}(s,t) = ∞ if the car cannot travel from s to t starting with an initial charge of b. The problem of computing energetic costs is a strict generalization of the standard shortest paths problem. When there are no negative cycles, the single-source version of the problem can be solved using simple adaptations of the classical Bellman-Ford and Dijkstra algorithms. More involved algorithms are required when the graph may contain negative cycles.

Cite as

Dani Dorfman, Haim Kaplan, Robert E. Tarjan, and Uri Zwick. Optimal Energetic Paths for Electric Cars. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 42:1-42:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{dorfman_et_al:LIPIcs.ESA.2023.42,
  author =	{Dorfman, Dani and Kaplan, Haim and Tarjan, Robert E. and Zwick, Uri},
  title =	{{Optimal Energetic Paths for Electric Cars}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.42},
  URN =		{urn:nbn:de:0030-drops-186955},
  doi =		{10.4230/LIPIcs.ESA.2023.42},
  annote =	{Keywords: Electric cars, Optimal Paths, Battery depletion}
}
Document
The Unweighted and Weighted Reverse Shortest Path Problem for Disk Graphs

Authors: Haim Kaplan, Matthew J. Katz, Rachel Saban, and Micha Sharir

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the reverse shortest path problem on disk graphs in the plane. In this problem we consider the proximity graph of a set of n disks in the plane of arbitrary radii: In this graph two disks are connected if the distance between them is at most some threshold parameter r. The case of intersection graphs is a special case with r = 0. We give an algorithm that, given a target length k, computes the smallest value of r for which there is a path of length at most k between some given pair of disks in the proximity graph. Our algorithm runs in O^*(n^{5/4}) randomized expected time, which improves to O^*(n^{6/5}) for unit disk graphs, where all the disks have the same radius. Our technique is robust and can be applied to many variants of the problem. One significant variant is the case of weighted proximity graphs, where edges are assigned real weights equal to the distance between the disks or between their centers, and k is replaced by a target weight w. In other variants, we want to optimize a parameter different from r, such as a scale factor of the radii of the disks. The main technique for the decision version of the problem (determining whether the graph with a given r has the desired property) is based on efficient implementations of BFS (for the unweighted case) and of Dijkstra’s algorithm (for the weighted case), using efficient data structures for maintaining the bichromatic closest pair for certain bicliques and several distance functions. The optimization problem is then solved by combining the resulting decision procedure with enhanced variants of the interval shrinking and bifurcation technique of [R. Ben Avraham et al., 2015].

Cite as

Haim Kaplan, Matthew J. Katz, Rachel Saban, and Micha Sharir. The Unweighted and Weighted Reverse Shortest Path Problem for Disk Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 67:1-67:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.ESA.2023.67,
  author =	{Kaplan, Haim and Katz, Matthew J. and Saban, Rachel and Sharir, Micha},
  title =	{{The Unweighted and Weighted Reverse Shortest Path Problem for Disk Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{67:1--67:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.67},
  URN =		{urn:nbn:de:0030-drops-187208},
  doi =		{10.4230/LIPIcs.ESA.2023.67},
  annote =	{Keywords: Computational geometry, geometric optimization, disk graphs, BFS, Dijkstra’s algorithm, reverse shortest path}
}
Document
Track A: Algorithms, Complexity and Games
Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

Authors: Daniel Agassy, Dani Dorfman, and Haim Kaplan

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
A (ϕ,ε)-expander decomposition of a graph G (with n vertices and m edges) is a partition of V into clusters V₁,…,V_k with conductance Φ(G[V_i]) ≥ ϕ, such that there are at most ε m inter-cluster edges. Such a decomposition plays a crucial role in many graph algorithms. We give a randomized Õ(m/ϕ) time algorithm for computing a (ϕ, ϕlog²n)-expander decomposition. This improves upon the (ϕ, ϕlog³n)-expander decomposition also obtained in Õ(m/ϕ) time by [Saranurak and Wang, SODA 2019] (SW) and brings the number of inter-cluster edges within logarithmic factor of optimal. One crucial component of SW’s algorithm is a non-stop version of the cut-matching game of [Khandekar, Rao, Vazirani, JACM 2009] (KRV): The cut player does not stop when it gets from the matching player an unbalanced sparse cut, but continues to play on a trimmed part of the large side. The crux of our improvement is the design of a non-stop version of the cleverer cut player of [Orecchia, Schulman, Vazirani, Vishnoi, STOC 2008] (OSVV). The cut player of OSSV uses a more sophisticated random walk, a subtle potential function, and spectral arguments. Designing and analysing a non-stop version of this game was an explicit open question asked by SW.

Cite as

Daniel Agassy, Dani Dorfman, and Haim Kaplan. Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 9:1-9:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{agassy_et_al:LIPIcs.ICALP.2023.9,
  author =	{Agassy, Daniel and Dorfman, Dani and Kaplan, Haim},
  title =	{{Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{9:1--9:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.9},
  URN =		{urn:nbn:de:0030-drops-180619},
  doi =		{10.4230/LIPIcs.ICALP.2023.9},
  annote =	{Keywords: Exapander Decomposition, Cut-Matching Game}
}
Document
Track A: Algorithms, Complexity and Games
Fast Approximation of Search Trees on Trees with Centroid Trees

Authors: Benjamin Aram Berendsohn, Ishay Golinsky, Haim Kaplan, and László Kozma

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
Search trees on trees (STTs) generalize the fundamental binary search tree (BST) data structure: in STTs the underlying search space is an arbitrary tree, whereas in BSTs it is a path. An optimal BST of size n can be computed for a given distribution of queries in 𝒪(n²) time [Knuth, Acta Inf. 1971] and centroid BSTs provide a nearly-optimal alternative, computable in 𝒪(n) time [Mehlhorn, SICOMP 1977]. By contrast, optimal STTs are not known to be computable in polynomial time, and the fastest constant-approximation algorithm runs in 𝒪(n³) time [Berendsohn, Kozma, SODA 2022]. Centroid trees can be defined for STTs analogously to BSTs, and they have been used in a wide range of algorithmic applications. In the unweighted case (i.e., for a uniform distribution of queries), the centroid tree can be computed in 𝒪(n) time [Brodal, Fagerberg, Pedersen, Östlin, ICALP 2001; Della Giustina, Prezza, Venturini, SPIRE 2019]. These algorithms, however, do not readily extend to the weighted case. Moreover, no approximation guarantees were previously known for centroid trees in either the unweighted or weighted cases. In this paper we revisit centroid trees in a general, weighted setting, and we settle both the algorithmic complexity of constructing them, and the quality of their approximation. For constructing a weighted centroid tree, we give an output-sensitive 𝒪(n log h) ⊆ 𝒪(n log n) time algorithm, where h is the height of the resulting centroid tree. If the weights are of polynomial complexity, the running time is 𝒪(n log log n). We show these bounds to be optimal, in a general decision tree model of computation. For approximation, we prove that the cost of a centroid tree is at most twice the optimum, and this guarantee is best possible, both in the weighted and unweighted cases. We also give tight, fine-grained bounds on the approximation-ratio for bounded-degree trees and on the approximation-ratio of more general α-centroid trees.

Cite as

Benjamin Aram Berendsohn, Ishay Golinsky, Haim Kaplan, and László Kozma. Fast Approximation of Search Trees on Trees with Centroid Trees. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 19:1-19:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{berendsohn_et_al:LIPIcs.ICALP.2023.19,
  author =	{Berendsohn, Benjamin Aram and Golinsky, Ishay and Kaplan, Haim and Kozma, L\'{a}szl\'{o}},
  title =	{{Fast Approximation of Search Trees on Trees with Centroid Trees}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{19:1--19:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.19},
  URN =		{urn:nbn:de:0030-drops-180711},
  doi =		{10.4230/LIPIcs.ICALP.2023.19},
  annote =	{Keywords: centroid tree, search trees on trees, approximation}
}
Document
Dynamic Binary Search Trees: Improved Lower Bounds for the Greedy-Future Algorithm

Authors: Yaniv Sadeh and Haim Kaplan

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
Binary search trees (BSTs) are one of the most basic and widely used data structures. The best static tree for serving a sequence of queries (searches) can be computed by dynamic programming. In contrast, when the BSTs are allowed to be dynamic (i.e. change by rotations between searches), we still do not know how to compute the optimal algorithm (OPT) for a given sequence. One of the candidate algorithms whose serving cost is suspected to be optimal up-to a (multiplicative) constant factor is known by the name Greedy Future (GF). In an equivalent geometric way of representing queries on BSTs, GF is in fact equivalent to another algorithm called Geometric Greedy (GG). Most of the results on GF are obtained using the geometric model and the study of GG. Despite this intensive recent fruitful research, the best lower bound we have on the competitive ratio of GF is 4/3. Furthermore, it has been conjectured that the additive gap between the cost of GF and OPT is only linear in the number of queries. In this paper we prove a lower bound of 2 on the competitive ratio of GF, and we prove that the additive gap between the cost of GF and OPT can be Ω(m ⋅ log log n) where n is the number of items in the tree and m is the number of queries.

Cite as

Yaniv Sadeh and Haim Kaplan. Dynamic Binary Search Trees: Improved Lower Bounds for the Greedy-Future Algorithm. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 53:1-53:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{sadeh_et_al:LIPIcs.STACS.2023.53,
  author =	{Sadeh, Yaniv and Kaplan, Haim},
  title =	{{Dynamic Binary Search Trees: Improved Lower Bounds for the Greedy-Future Algorithm}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{53:1--53:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.53},
  URN =		{urn:nbn:de:0030-drops-177055},
  doi =		{10.4230/LIPIcs.STACS.2023.53},
  annote =	{Keywords: Binary Search Trees, Greedy Future, Geometric Greedy, Lower Bounds, Dynamic Optimality Conjecture}
}
Document
Dynamic Connectivity in Disk Graphs

Authors: Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Let S ⊆ ℝ² be a set of n planar sites, such that each s ∈ S has an associated radius r_s > 0. Let 𝒟(S) be the disk intersection graph for S. It has vertex set S and an edge between two distinct sites s, t ∈ S if and only if the disks with centers s, t and radii r_s, r_t intersect. Our goal is to design data structures that maintain the connectivity structure of 𝒟(S) as sites are inserted and/or deleted. First, we consider unit disk graphs, i.e., r_s = 1, for all s ∈ S. We describe a data structure that has O(log² n) amortized update and O(log n/log log n) amortized query time. Second, we look at disk graphs with bounded radius ratio Ψ, i.e., for all s ∈ S, we have 1 ≤ r_s ≤ Ψ, for a Ψ ≥ 1 known in advance. In the fully dynamic case, we achieve amortized update time O(Ψ λ₆(log n) log⁷ n) and query time O(log n/log log n), where λ_s(n) is the maximum length of a Davenport-Schinzel sequence of order s on n symbols. In the incremental case, where only insertions are allowed, we get logarithmic dependency on Ψ, with O(α(n)) query time and O(logΨ λ₆(log n) log⁷ n) update time. For the decremental setting, where only deletions are allowed, we first develop an efficient disk revealing structure: given two sets R and B of disks, we can delete disks from R, and upon each deletion, we receive a list of all disks in B that no longer intersect the union of R. Using this, we get decremental data structures with amortized query time O(log n/log log n) that support m deletions in O((nlog⁵ n + m log⁷ n) λ₆(log n) + nlog Ψ log⁴n) overall time for bounded radius ratio Ψ and O((nlog⁶ n + m log⁸n) λ₆(log n)) for arbitrary radii.

Cite as

Haim Kaplan, Alexander Kauer, Katharina Klost, Kristin Knorr, Wolfgang Mulzer, Liam Roditty, and Paul Seiferth. Dynamic Connectivity in Disk Graphs. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 49:1-49:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.SoCG.2022.49,
  author =	{Kaplan, Haim and Kauer, Alexander and Klost, Katharina and Knorr, Kristin and Mulzer, Wolfgang and Roditty, Liam and Seiferth, Paul},
  title =	{{Dynamic Connectivity in Disk Graphs}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{49:1--49:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.49},
  URN =		{urn:nbn:de:0030-drops-160572},
  doi =		{10.4230/LIPIcs.SoCG.2022.49},
  annote =	{Keywords: Disk Graphs, Connectivity, Lower Envelopes}
}
Document
Track A: Algorithms, Complexity and Games
Breaking the 2ⁿ Barrier for 5-Coloring and 6-Coloring

Authors: Or Zamir

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
The coloring problem (i.e., computing the chromatic number of a graph) can be solved in O^*(2ⁿ) time, as shown by Björklund, Husfeldt and Koivisto in 2009. For k = 3,4, better algorithms are known for the k-coloring problem. 3-coloring can be solved in O(1.33ⁿ) time (Beigel and Eppstein, 2005) and 4-coloring can be solved in O(1.73ⁿ) time (Fomin, Gaspers and Saurabh, 2007). Surprisingly, for k > 4 no improvements over the general O^*(2ⁿ) are known. We show that both 5-coloring and 6-coloring can also be solved in O((2-ε) ⁿ) time for some ε > 0. As a crucial step, we obtain an exponential improvement for computing the chromatic number of a very large family of graphs. In particular, for any constants Δ,α > 0, the chromatic number of graphs with at least α⋅ n vertices of degree at most Δ can be computed in O((2-ε) ⁿ) time, for some ε = ε_{Δ,α} > 0. This statement generalizes previous results for bounded-degree graphs (Björklund, Husfeldt, Kaski, and Koivisto, 2010) and graphs with bounded average degree (Golovnev, Kulikov and Mihajlin, 2016). We generalize the aforementioned statement to List Coloring, for which no previous improvements are known even for the case of bounded-degree graphs.

Cite as

Or Zamir. Breaking the 2ⁿ Barrier for 5-Coloring and 6-Coloring. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 113:1-113:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{zamir:LIPIcs.ICALP.2021.113,
  author =	{Zamir, Or},
  title =	{{Breaking the 2ⁿ Barrier for 5-Coloring and 6-Coloring}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{113:1--113:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.113},
  URN =		{urn:nbn:de:0030-drops-141825},
  doi =		{10.4230/LIPIcs.ICALP.2021.113},
  annote =	{Keywords: Algorithms, Graph Algorithms, Graph Coloring}
}
Document
Locality Sensitive Hashing for Efficient Similar Polygon Retrieval

Authors: Haim Kaplan and Jay Tenenbaum

Published in: LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)


Abstract
Locality Sensitive Hashing (LSH) is an effective method of indexing a set of items to support efficient nearest neighbors queries in high-dimensional spaces. The basic idea of LSH is that similar items should produce hash collisions with higher probability than dissimilar items. We study LSH for (not necessarily convex) polygons, and use it to give efficient data structures for similar shape retrieval. Arkin et al. [Arkin et al., 1991] represent polygons by their "turning function" - a function which follows the angle between the polygon’s tangent and the x-axis while traversing the perimeter of the polygon. They define the distance between polygons to be variations of the L_p (for p = 1,2) distance between their turning functions. This metric is invariant under translation, rotation and scaling (and the selection of the initial point on the perimeter) and therefore models well the intuitive notion of shape resemblance. We develop and analyze LSH near neighbor data structures for several variations of the L_p distance for functions (for p = 1,2). By applying our schemes to the turning functions of a collection of polygons we obtain efficient near neighbor LSH-based structures for polygons. To tune our structures to turning functions of polygons, we prove some new properties of these turning functions that may be of independent interest. As part of our analysis, we address the following problem which is of independent interest. Find the vertical translation of a function f that is closest in L₁ distance to a function g. We prove tight bounds on the approximation guarantee obtained by the translation which is equal to the difference between the averages of g and f.

Cite as

Haim Kaplan and Jay Tenenbaum. Locality Sensitive Hashing for Efficient Similar Polygon Retrieval. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 46:1-46:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.STACS.2021.46,
  author =	{Kaplan, Haim and Tenenbaum, Jay},
  title =	{{Locality Sensitive Hashing for Efficient Similar Polygon Retrieval}},
  booktitle =	{38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)},
  pages =	{46:1--46:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-180-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{187},
  editor =	{Bl\"{a}ser, Markus and Monmege, Benjamin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.46},
  URN =		{urn:nbn:de:0030-drops-136910},
  doi =		{10.4230/LIPIcs.STACS.2021.46},
  annote =	{Keywords: Locality sensitive hashing, polygons, turning function, L\underlinep distance, nearest neighbors, similarity search}
}
Document
Locality Sensitive Hashing for Set-Queries, Motivated by Group Recommendations

Authors: Haim Kaplan and Jay Tenenbaum

Published in: LIPIcs, Volume 162, 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)


Abstract
Locality Sensitive Hashing (LSH) is an effective method to index a set of points such that we can efficiently find the nearest neighbors of a query point. We extend this method to our novel Set-query LSH (SLSH), such that it can find the nearest neighbors of a set of points, given as a query. Let s(x,y) be the similarity between two points x and y. We define a similarity between a set Q and a point x by aggregating the similarities s(p,x) for all p∈ Q. For example, we can take s(p,x) to be the angular similarity between p and x (i.e., 1-(∠(x,p)/π)), and aggregate by arithmetic or geometric averaging, or taking the lowest similarity. We develop locality sensitive hash families and data structures for a large set of such arithmetic and geometric averaging similarities, and analyze their collision probabilities. We also establish an analogous framework and hash families for distance functions. Specifically, we give a structure for the euclidean distance aggregated by either averaging or taking the maximum. We leverage SLSH to solve a geometric extension of the approximate near neighbors problem. In this version, we consider a metric for which the unit ball is an ellipsoid and its orientation is specified with the query. An important application that motivates our work is group recommendation systems. Such a system embeds movies and users in the same feature space, and the task of recommending a movie for a group to watch together, translates to a set-query Q using an appropriate similarity.

Cite as

Haim Kaplan and Jay Tenenbaum. Locality Sensitive Hashing for Set-Queries, Motivated by Group Recommendations. In 17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 162, pp. 28:1-28:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.SWAT.2020.28,
  author =	{Kaplan, Haim and Tenenbaum, Jay},
  title =	{{Locality Sensitive Hashing for Set-Queries, Motivated by Group Recommendations}},
  booktitle =	{17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020)},
  pages =	{28:1--28:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-150-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{162},
  editor =	{Albers, Susanne},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2020.28},
  URN =		{urn:nbn:de:0030-drops-122756},
  doi =		{10.4230/LIPIcs.SWAT.2020.28},
  annote =	{Keywords: Locality sensitive hashing, nearest neighbors, similarity search, group recommendations, distance functions, similarity functions, ellipsoid}
}
Document
How to Find a Point in the Convex Hull Privately

Authors: Haim Kaplan, Micha Sharir, and Uri Stemmer

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
We study the question of how to compute a point in the convex hull of an input set S of n points in ℝ^d in a differentially private manner. This question, which is trivial without privacy requirements, turns out to be quite deep when imposing differential privacy. In particular, it is known that the input points must reside on a fixed finite subset G ⊆ ℝ^d, and furthermore, the size of S must grow with the size of G. Previous works [Amos Beimel et al., 2010; Amos Beimel et al., 2019; Amos Beimel et al., 2013; Mark Bun et al., 2018; Mark Bun et al., 2015; Haim Kaplan et al., 2019] focused on understanding how n needs to grow with |G|, and showed that n=O(d^2.5 ⋅ 8^(log^*|G|)) suffices (so n does not have to grow significantly with |G|). However, the available constructions exhibit running time at least |G|^d², where typically |G|=X^d for some (large) discretization parameter X, so the running time is in fact Ω(X^d³). In this paper we give a differentially private algorithm that runs in O(n^d) time, assuming that n=Ω(d⁴ log X). To get this result we study and exploit some structural properties of the Tukey levels (the regions D_{≥ k} consisting of points whose Tukey depth is at least k, for k=0,1,…). In particular, we derive lower bounds on their volumes for point sets S in general position, and develop a rather subtle mechanism for handling point sets S in degenerate position (where the deep Tukey regions have zero volume). A naive approach to the construction of the Tukey regions requires n^O(d²) time. To reduce the cost to O(n^d), we use an approximation scheme for estimating the volumes of the Tukey regions (within their affine spans in case of degeneracy), and for sampling a point from such a region, a scheme that is based on the volume estimation framework of Lovász and Vempala [László Lovász and Santosh S. Vempala, 2006] and of Cousins and Vempala [Ben Cousins and Santosh S. Vempala, 2018]. Making this framework differentially private raises a set of technical challenges that we address.

Cite as

Haim Kaplan, Micha Sharir, and Uri Stemmer. How to Find a Point in the Convex Hull Privately. In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 52:1-52:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.SoCG.2020.52,
  author =	{Kaplan, Haim and Sharir, Micha and Stemmer, Uri},
  title =	{{How to Find a Point in the Convex Hull Privately}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{52:1--52:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.52},
  URN =		{urn:nbn:de:0030-drops-122107},
  doi =		{10.4230/LIPIcs.SoCG.2020.52},
  annote =	{Keywords: Differential privacy, Tukey depth, Convex hull}
}
Document
Sample Complexity Bounds for Influence Maximization

Authors: Gal Sadeh, Edith Cohen, and Haim Kaplan

Published in: LIPIcs, Volume 151, 11th Innovations in Theoretical Computer Science Conference (ITCS 2020)


Abstract
Influence maximization (IM) is the problem of finding for a given s ≥ 1 a set S of |S|=s nodes in a network with maximum influence. With stochastic diffusion models, the influence of a set S of seed nodes is defined as the expectation of its reachability over simulations, where each simulation specifies a deterministic reachability function. Two well-studied special cases are the Independent Cascade (IC) and the Linear Threshold (LT) models of Kempe, Kleinberg, and Tardos [Kempe et al., 2003]. The influence function in stochastic diffusion is unbiasedly estimated by averaging reachability values over i.i.d. simulations. We study the IM sample complexity: the number of simulations needed to determine a (1-ε)-approximate maximizer with confidence 1-δ. Our main result is a surprising upper bound of O(s τ ε^{-2} ln (n/δ)) for a broad class of models that includes IC and LT models and their mixtures, where n is the number of nodes and τ is the number of diffusion steps. Generally τ ≪ n, so this significantly improves over the generic upper bound of O(s n ε^{-2} ln (n/δ)). Our sample complexity bounds are derived from novel upper bounds on the variance of the reachability that allow for small relative error for influential sets and additive error when influence is small. Moreover, we provide a data-adaptive method that can detect and utilize fewer simulations on models where it suffices. Finally, we provide an efficient greedy design that computes an (1-1/e-ε)-approximate maximizer from simulations and applies to any submodular stochastic diffusion model that satisfies the variance bounds.

Cite as

Gal Sadeh, Edith Cohen, and Haim Kaplan. Sample Complexity Bounds for Influence Maximization. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 151, pp. 29:1-29:36, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sadeh_et_al:LIPIcs.ITCS.2020.29,
  author =	{Sadeh, Gal and Cohen, Edith and Kaplan, Haim},
  title =	{{Sample Complexity Bounds for Influence Maximization}},
  booktitle =	{11th Innovations in Theoretical Computer Science Conference (ITCS 2020)},
  pages =	{29:1--29:36},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-134-4},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{151},
  editor =	{Vidick, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2020.29},
  URN =		{urn:nbn:de:0030-drops-117140},
  doi =		{10.4230/LIPIcs.ITCS.2020.29},
  annote =	{Keywords: Sample complexity, Influence maximization, Submodular maximization}
}
  • Refine by Author
  • 31 Kaplan, Haim
  • 10 Sharir, Micha
  • 6 Mulzer, Wolfgang
  • 6 Zwick, Uri
  • 5 Agarwal, Pankaj K.
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 3 Computational geometry
  • 2 Approximate incidences
  • 2 Approximation
  • 2 BFS
  • 2 Graph Algorithms
  • Show More...

  • Refine by Type
  • 37 document

  • Refine by Publication Year
  • 7 2019
  • 5 2018
  • 5 2023
  • 4 2017
  • 4 2024
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail