28 Search Results for "Kovács, Laura"


Volume

LIPIcs, Volume 171

31st International Conference on Concurrency Theory (CONCUR 2020)

CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference)

Editors: Igor Konnov and Laura Kovács

Document
Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation

Authors: Martin Vassor and Nobuko Yoshida

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
Multiparty message-passing protocols are notoriously difficult to design, due to interaction mismatches that lead to errors such as deadlocks. Existing protocol specification formats have been developed to prevent such errors (e.g. multiparty session types (MPST)). In order to further constrain protocols, specifications can be extended with refinements, i.e. logical predicates to control the behaviour of the protocol based on previous values exchanged. Unfortunately, existing refinement theories and implementations are tightly coupled with specification formats. This paper proposes a framework for multiparty message-passing protocols with refinements and its implementation in Rust. Our work decouples correctness of refinements from the underlying model of computation, which results in a specification-agnostic framework. Our contributions are threefold. First, we introduce a trace system which characterises valid refined traces, i.e. a sequence of sending and receiving actions correct with respect to refinements. Second, we give a correct model of computation named refined communicating system (RCS), which is an extension of communicating automata systems with refinements. We prove that RCS only produce valid refined traces. We show how to generate RCS from mainstream protocol specification formats, such as refined multiparty session types (RMPST) or refined choreography automata. Third, we illustrate the flexibility of the framework by developing both a static analysis technique and an improved model of computation for dynamic refinement evaluation. Finally, we provide a Rust toolchain for decentralised RMPST, evaluate our implementation with a set of benchmarks from the literature, and observe that refinement overhead is negligible.

Cite as

Martin Vassor and Nobuko Yoshida. Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 41:1-41:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vassor_et_al:LIPIcs.ECOOP.2024.41,
  author =	{Vassor, Martin and Yoshida, Nobuko},
  title =	{{Refinements for Multiparty Message-Passing Protocols: Specification-Agnostic Theory and Implementation}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{41:1--41:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.41},
  URN =		{urn:nbn:de:0030-drops-208906},
  doi =		{10.4230/LIPIcs.ECOOP.2024.41},
  annote =	{Keywords: Message-Passing Concurrency, Session Types, Specification}
}
Document
Short Paper
A Logic of East and West for Intervals (Short Paper)

Authors: Zekai Li, Amin Farjudian, and Heshan Du

Published in: LIPIcs, Volume 315, 16th International Conference on Spatial Information Theory (COSIT 2024)


Abstract
This paper proposes a logic of east and west for intervals (LEWI), which extends the logic of east and west for points. For intervals in 1D Euclidean space, the logic LEWI formalises the qualitative direction relations "east", "west", "definitely east", "definitely west", "partially east", "partially west", etc. To cope with imprecision in geometry representations, the logic LEWI is parameterized by a margin of error σ ∈ ℝ_{> 0} and a level of indeterminacy in directions τ ∈ ℕ_{> 1}. For every τ, we provide an axiomatisation of the logic LEWI, and prove that it is sound and complete with respect to 1D Euclidean space.

Cite as

Zekai Li, Amin Farjudian, and Heshan Du. A Logic of East and West for Intervals (Short Paper). In 16th International Conference on Spatial Information Theory (COSIT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 315, pp. 17:1-17:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.COSIT.2024.17,
  author =	{Li, Zekai and Farjudian, Amin and Du, Heshan},
  title =	{{A Logic of East and West for Intervals}},
  booktitle =	{16th International Conference on Spatial Information Theory (COSIT 2024)},
  pages =	{17:1--17:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-330-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{315},
  editor =	{Adams, Benjamin and Griffin, Amy L. and Scheider, Simon and McKenzie, Grant},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.COSIT.2024.17},
  URN =		{urn:nbn:de:0030-drops-208320},
  doi =		{10.4230/LIPIcs.COSIT.2024.17},
  annote =	{Keywords: Qualitative Spatial Logic, Soundness, Completeness}
}
Document
Duper: A Proof-Producing Superposition Theorem Prover for Dependent Type Theory

Authors: Joshua Clune, Yicheng Qian, Alexander Bentkamp, and Jeremy Avigad

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We present Duper, a proof-producing theorem prover for Lean based on the superposition calculus. Duper can be called directly as a terminal tactic in interactive Lean proofs, but is also designed with proof reconstruction for a future Lean hammer in mind. In this paper, we describe Duper’s underlying approach to proof search and proof reconstruction with a particular emphasis on the challenges of working in a dependent type theory. We also compare Duper’s performance to Metis' on pre-existing benchmarks to give evidence that Duper is performant enough to be useful for proof reconstruction in a hammer.

Cite as

Joshua Clune, Yicheng Qian, Alexander Bentkamp, and Jeremy Avigad. Duper: A Proof-Producing Superposition Theorem Prover for Dependent Type Theory. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{clune_et_al:LIPIcs.ITP.2024.10,
  author =	{Clune, Joshua and Qian, Yicheng and Bentkamp, Alexander and Avigad, Jeremy},
  title =	{{Duper: A Proof-Producing Superposition Theorem Prover for Dependent Type Theory}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{10:1--10:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.10},
  URN =		{urn:nbn:de:0030-drops-207381},
  doi =		{10.4230/LIPIcs.ITP.2024.10},
  annote =	{Keywords: proof search, automatic theorem proving, interactive theorem proving, Lean, dependent type theory}
}
Document
A Modular Formalization of Superposition in Isabelle/HOL

Authors: Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Superposition is an efficient proof calculus for reasoning about first-order logic with equality that is implemented in many automatic theorem provers. It works by saturating the given set of clauses and is refutationally complete, meaning that if the set is inconsistent, the saturation will contain a contradiction. In this work, we restructured the completeness proof to cleanly separate the ground (i.e., variable-free) and nonground aspects, and we formalized the result in Isabelle/HOL. We relied on the IsaFoR library for first-order terms and on the Isabelle saturation framework.

Cite as

Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret. A Modular Formalization of Superposition in Isabelle/HOL. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{desharnais_et_al:LIPIcs.ITP.2024.12,
  author =	{Desharnais, Martin and Toth, Balazs and Waldmann, Uwe and Blanchette, Jasmin and Tourret, Sophie},
  title =	{{A Modular Formalization of Superposition in Isabelle/HOL}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.12},
  URN =		{urn:nbn:de:0030-drops-207401},
  doi =		{10.4230/LIPIcs.ITP.2024.12},
  annote =	{Keywords: Superposition, verification, first-order logic, higher-order logic}
}
Document
Completeness of Asynchronous Session Tree Subtyping in Coq

Authors: Burak Ekici and Nobuko Yoshida

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Multiparty session types (MPST) serve as a foundational framework for formally specifying and verifying message passing protocols. Asynchronous subtyping in MPST allows for typing optimised programs preserving type safety and deadlock freedom under asynchronous interactions where the message order is preserved and sending is non-blocking. The optimisation is obtained by message reordering, which allows for sending messages earlier or receiving them later. Sound subtyping algorithms have been extensively studied and implemented as part of various programming languages and tools including C, Rust and C-MPI. However, formalising all such permutations under sequencing, selection, branching and recursion in session types is an intricate task. Additionally, checking asynchronous subtyping has been proven to be undecidable. This paper introduces the first formalisation of asynchronous subtyping in MPST within the Coq proof assistant. We first decompose session types into session trees that do not involve branching and selection, and then establish a coinductive refinement relation over them to govern subtyping. To showcase our formalisation, we prove example subtyping schemas that appear in the literature, all of which cannot be verified, at the same time, by any of the existing decidable sound algorithms. Additionally, we take the (inductive) negation of the refinement relation from a prior work by Ghilezan et al. [Ghilezan et al., 2023] and re-implement it, significantly reducing the number of rules (from eighteen to eight). We establish the completeness of subtyping with respect to its negation in Coq, addressing the issues concerning the negation rules outlined in the previous work [Ghilezan et al., 2023]. In the formalisation, we use the greatest fixed point of the least fixed point technique, facilitated by the paco library, to define coinductive predicates. We employ parametrised coinduction to prove their properties. The formalisation consists of roughly 10K lines of Coq code, accessible at: https://github.com/ekiciburak/sessionTreeST/tree/itp2024.

Cite as

Burak Ekici and Nobuko Yoshida. Completeness of Asynchronous Session Tree Subtyping in Coq. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ekici_et_al:LIPIcs.ITP.2024.13,
  author =	{Ekici, Burak and Yoshida, Nobuko},
  title =	{{Completeness of Asynchronous Session Tree Subtyping in Coq}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.13},
  URN =		{urn:nbn:de:0030-drops-207418},
  doi =		{10.4230/LIPIcs.ITP.2024.13},
  annote =	{Keywords: asynchronous multiparty session types, session trees, subtyping, Coq}
}
Document
An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility

Authors: Dohan Kim

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We present an Isabelle/HOL formalization of narrowing for E-unifiability, reachability, and infeasibility. Given a semi-complete rewrite system ℛ and two terms s and t, we show a formalized proof that if narrowing terminates, then it provides a decision procedure for ℛ-unifiability for s and t, where ℛ is viewed as a set of equations. Furthermore, we present multiset narrowing and its formalization for multiset reachability and reachability analysis, providing decision procedures using certain restricted conditions on multiset reachability and reachability problems. Our multiset narrowing also provides a complete method for E-unifiability problems consisting of multiple goals if E can be represented by a complete rewrite system.

Cite as

Dohan Kim. An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kim:LIPIcs.ITP.2024.24,
  author =	{Kim, Dohan},
  title =	{{An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.24},
  URN =		{urn:nbn:de:0030-drops-207525},
  doi =		{10.4230/LIPIcs.ITP.2024.24},
  annote =	{Keywords: Narrowing, Multiset Narrowing, Unifiability, Reachability}
}
Document
The Power of Counting Steps in Quantitative Games

Authors: Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study deterministic games of infinite duration played on graphs and focus on the strategy complexity of quantitative objectives. Such games are known to admit optimal memoryless strategies over finite graphs, but require infinite-memory strategies in general over infinite graphs. We provide new lower and upper bounds for the strategy complexity of mean-payoff and total-payoff objectives over infinite graphs, focusing on whether step-counter strategies (sometimes called Markov strategies) suffice to implement winning strategies. In particular, we show that over finitely branching arenas, three variants of limsup mean-payoff and total-payoff objectives admit winning strategies that are based either on a step counter or on a step counter and an additional bit of memory. Conversely, we show that for certain liminf total-payoff objectives, strategies resorting to a step counter and finite memory are not sufficient. For step-counter strategies, this settles the case of all classical quantitative objectives up to the second level of the Borel hierarchy.

Cite as

Sougata Bose, Rasmus Ibsen-Jensen, David Purser, Patrick Totzke, and Pierre Vandenhove. The Power of Counting Steps in Quantitative Games. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 13:1-13:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bose_et_al:LIPIcs.CONCUR.2024.13,
  author =	{Bose, Sougata and Ibsen-Jensen, Rasmus and Purser, David and Totzke, Patrick and Vandenhove, Pierre},
  title =	{{The Power of Counting Steps in Quantitative Games}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{13:1--13:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.13},
  URN =		{urn:nbn:de:0030-drops-207852},
  doi =		{10.4230/LIPIcs.CONCUR.2024.13},
  annote =	{Keywords: Games on graphs, Markov strategies, quantitative objectives, infinite-state systems}
}
Document
Invariants for One-Counter Automata with Disequality Tests

Authors: Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem has been known to be NP-hard and in PSPACE, and characterising its computational complexity has been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell (2020). We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy, namely into the class coNP^NP. In the presence of both equality and disequality tests, our upper bound is at the third level, P^NP^NP. To prove this result, we show that non-reachability can be witnessed by a pair of invariants (forward and backward). These invariants are almost inductive. They aim to over-approximate only a "core" of the reachability set instead of the entire set. The invariants are also leaky: it is possible to escape the set. We complement this with separate checks as the leaks can only occur in a controlled way.

Cite as

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2024.17,
  author =	{Chistikov, Dmitry and Leroux, J\'{e}r\^{o}me and Sinclair-Banks, Henry and Waldburger, Nicolas},
  title =	{{Invariants for One-Counter Automata with Disequality Tests}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.17},
  URN =		{urn:nbn:de:0030-drops-207898},
  doi =		{10.4230/LIPIcs.CONCUR.2024.17},
  annote =	{Keywords: Inductive invariant, Vector addition system, One-counter automaton}
}
Document
Weighted Basic Parallel Processes and Combinatorial Enumeration

Authors: Lorenzo Clemente

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study weighted basic parallel processes (WBPP), a nonlinear recursive generalisation of weighted finite automata inspired from process algebra and Petri net theory. Our main result is an algorithm of 2-EXPSPACE complexity for the WBPP equivalence problem. While (unweighted) BPP language equivalence is undecidable, we can use this algorithm to decide multiplicity equivalence of BPP and language equivalence of unambiguous BPP, with the same complexity. These are long-standing open problems for the related model of weighted context-free grammars. Our second contribution is a connection between WBPP, power series solutions of systems of polynomial differential equations, and combinatorial enumeration. To this end we consider constructible differentially finite power series (CDF), a class of multivariate differentially algebraic series introduced by Bergeron and Reutenauer in order to provide a combinatorial interpretation to differential equations. CDF series generalise rational, algebraic, and a large class of D-finite (holonomic) series, for which no complexity upper bound for equivalence was known. We show that CDF series correspond to commutative WBPP series. As a consequence of our result on WBPP and commutativity, we show that equivalence of CDF power series can be decided with 2-EXPTIME complexity. In order to showcase the CDF equivalence algorithm, we show that CDF power series naturally arise from combinatorial enumeration, namely as the exponential generating series of constructible species of structures. Examples of such species include sequences, binary trees, ordered trees, Cayley trees, set partitions, series-parallel graphs, and many others. As a consequence of this connection, we obtain an algorithm to decide multiplicity equivalence of constructible species, decidability of which was not known before. The complexity analysis is based on effective bounds from algebraic geometry, namely on the length of chains of polynomial ideals constructed by repeated application of finitely many, not necessarily commuting derivations of a multivariate polynomial ring. This is obtained by generalising a result of Novikov and Yakovenko in the case of a single derivation, which is noteworthy since generic bounds on ideal chains are non-primitive recursive in general. On the way, we develop the theory of WBPP series and CDF power series, exposing several of their appealing properties.

Cite as

Lorenzo Clemente. Weighted Basic Parallel Processes and Combinatorial Enumeration. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 18:1-18:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{clemente:LIPIcs.CONCUR.2024.18,
  author =	{Clemente, Lorenzo},
  title =	{{Weighted Basic Parallel Processes and Combinatorial Enumeration}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{18:1--18:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.18},
  URN =		{urn:nbn:de:0030-drops-207903},
  doi =		{10.4230/LIPIcs.CONCUR.2024.18},
  annote =	{Keywords: weighted automata, combinatorial enumeration, shuffle, algebraic differential equations, process algebra, basic parallel processes, species of structures}
}
Document
A Spectrum of Approximate Probabilistic Bisimulations

Authors: Timm Spork, Christel Baier, Joost-Pieter Katoen, Jakob Piribauer, and Tim Quatmann

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
This paper studies various notions of approximate probabilistic bisimulation on labeled Markov chains (LMCs). We introduce approximate versions of weak and branching bisimulation, as well as a notion of ε-perturbed bisimulation that relates LMCs that can be made (exactly) probabilistically bisimilar by small perturbations of their transition probabilities. We explore how the notions interrelate and establish their connections to other well-known notions like ε-bisimulation.

Cite as

Timm Spork, Christel Baier, Joost-Pieter Katoen, Jakob Piribauer, and Tim Quatmann. A Spectrum of Approximate Probabilistic Bisimulations. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 37:1-37:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{spork_et_al:LIPIcs.CONCUR.2024.37,
  author =	{Spork, Timm and Baier, Christel and Katoen, Joost-Pieter and Piribauer, Jakob and Quatmann, Tim},
  title =	{{A Spectrum of Approximate Probabilistic Bisimulations}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{37:1--37:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.37},
  URN =		{urn:nbn:de:0030-drops-208099},
  doi =		{10.4230/LIPIcs.CONCUR.2024.37},
  annote =	{Keywords: Markov chains, Approximate bisimulation, Abstraction, Model checking}
}
Document
ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization

Authors: Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
As a broadly applied technique in numerous optimization problems, recently, local search has been employed to solve Pseudo-Boolean Optimization (PBO) problem. A representative local search solver for PBO is LS-PBO. In this paper, firstly, we improve LS-PBO by a dynamic scoring mechanism, which dynamically strikes a balance between score on hard constraints and score on the objective function. Moreover, on top of this improved LS-PBO, we develop the first parallel local search PBO solver. The main idea is to share good solutions among different threads to guide the search, by maintaining a pool of feasible solutions. For evaluating solutions when updating the pool, we propose a function that considers both the solution quality and the diversity of the pool. Furthermore, we calculate the polarity density in the pool to enhance the scoring function of local search. Our empirical experiments show clear benefits of the proposed parallel approach, making it competitive with the parallel version of the famous commercial solver Gurobi.

Cite as

Zhihan Chen, Peng Lin, Hao Hu, and Shaowei Cai. ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.CP.2024.5,
  author =	{Chen, Zhihan and Lin, Peng and Hu, Hao and Cai, Shaowei},
  title =	{{ParLS-PBO: A Parallel Local Search Solver for Pseudo Boolean Optimization}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.5},
  URN =		{urn:nbn:de:0030-drops-206900},
  doi =		{10.4230/LIPIcs.CP.2024.5},
  annote =	{Keywords: Pseudo-Boolean Optimization, Parallel Solving, Local Search, Scoring Function, Solution Pool}
}
Document
A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers

Authors: Maarten Flippo, Konstantin Sidorov, Imko Marijnissen, Jeff Smits, and Emir Demirović

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Proof logging is used to increase trust in the optimality and unsatisfiability claims of solvers. However, to this date, no constraint programming solver can practically produce proofs without significantly impacting performance, which hinders mainstream adoption. We address this issue by introducing a novel proof generation framework, together with a CP proof format and proof checker. Our approach is to divide the proof generation into three steps. At runtime, we require the CP solver to only produce a proof sketch, which we call a scaffold. After the solving is done, our proof processor trims and expands the scaffold into a full CP proof, which is subsequently verified. Our framework is agnostic to the solver and the verification approach. Through MiniZinc benchmarks, we demonstrate that with our framework, the overhead of logging during solving is often less than 10%, significantly lower than other approaches, and that our proof processing step can reduce the overall size of the proof by orders of magnitude and by extension the proof checking time. Our results demonstrate that proof logging has the potential to become an integral part of the CP community.

Cite as

Maarten Flippo, Konstantin Sidorov, Imko Marijnissen, Jeff Smits, and Emir Demirović. A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{flippo_et_al:LIPIcs.CP.2024.11,
  author =	{Flippo, Maarten and Sidorov, Konstantin and Marijnissen, Imko and Smits, Jeff and Demirovi\'{c}, Emir},
  title =	{{A Multi-Stage Proof Logging Framework to Certify the Correctness of CP Solvers}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.11},
  URN =		{urn:nbn:de:0030-drops-206969},
  doi =		{10.4230/LIPIcs.CP.2024.11},
  annote =	{Keywords: proof logging, formal verification, constraint programming}
}
Document
Mutational Fuzz Testing for Constraint Modeling Systems

Authors: Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe, and Tias Guns

Published in: LIPIcs, Volume 307, 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)


Abstract
Constraint programming (CP) modeling languages, like MiniZinc, Essence and CPMpy, play a crucial role in making CP technology accessible to non-experts. Both solver-independent modeling frameworks and solvers themselves are complex pieces of software that can contain bugs, which undermines their usefulness. Mutational fuzz testing is a way to test complex systems by stochastically mutating input and verifying preserved properties of the mutated output. We investigate different mutations and verification methods that can be used on the constraint specifications directly. This includes methods proposed in the context of SMT problem specifications, as well as new methods related to global constraints, optimization, and solution counting/preservation. Our results show that such a fuzz testing approach improves the overall code coverage of a modeling system compared to only unit testing, and is able to find bugs in the whole toolchain, from the modeling language transformations themselves to the underlying solvers.

Cite as

Wout Vanroose, Ignace Bleukx, Jo Devriendt, Dimos Tsouros, Hélène Verhaeghe, and Tias Guns. Mutational Fuzz Testing for Constraint Modeling Systems. In 30th International Conference on Principles and Practice of Constraint Programming (CP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 307, pp. 29:1-29:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanroose_et_al:LIPIcs.CP.2024.29,
  author =	{Vanroose, Wout and Bleukx, Ignace and Devriendt, Jo and Tsouros, Dimos and Verhaeghe, H\'{e}l\`{e}ne and Guns, Tias},
  title =	{{Mutational Fuzz Testing for Constraint Modeling Systems}},
  booktitle =	{30th International Conference on Principles and Practice of Constraint Programming (CP 2024)},
  pages =	{29:1--29:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-336-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{307},
  editor =	{Shaw, Paul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.29},
  URN =		{urn:nbn:de:0030-drops-207149},
  doi =		{10.4230/LIPIcs.CP.2024.29},
  annote =	{Keywords: fuzz testing, Constraint modeling language, bugs, mutational testing, modeling, constraint reformulation}
}
Document
When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines

Authors: Filippo Bonchi, Alessandro Di Giorgio, and Davide Trotta

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
Fo-bicategories are a categorification of Peirce’s calculus of relations. Notably, their laws provide a proof system for first-order logic that is both purely equational and complete. This paper illustrates a correspondence between fo-bicategories and Lawvere’s hyperdoctrines. To streamline our proof, we introduce peircean bicategories, which offer a more succinct characterization of fo-bicategories.

Cite as

Filippo Bonchi, Alessandro Di Giorgio, and Davide Trotta. When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 30:1-30:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonchi_et_al:LIPIcs.MFCS.2024.30,
  author =	{Bonchi, Filippo and Di Giorgio, Alessandro and Trotta, Davide},
  title =	{{When Lawvere Meets Peirce: An Equational Presentation of Boolean Hyperdoctrines}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{30:1--30:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.30},
  URN =		{urn:nbn:de:0030-drops-205867},
  doi =		{10.4230/LIPIcs.MFCS.2024.30},
  annote =	{Keywords: relational algebra, hyperdoctrines, cartesian bicategories, string diagrams}
}
  • Refine by Author
  • 7 Kovács, Laura
  • 2 Konnov, Igor
  • 2 Yoshida, Nobuko
  • 1 Aceto, Luca
  • 1 Avigad, Jeremy
  • Show More...

  • Refine by Classification
  • 6 Theory of computation → Logic and verification
  • 5 Theory of computation → Automated reasoning
  • 5 Theory of computation → Concurrency
  • 2 Theory of computation → Constraint and logic programming
  • 2 Theory of computation → Equational logic and rewriting
  • Show More...

  • Refine by Keyword
  • 2 verification
  • 1 Abstraction
  • 1 Approximate bisimulation
  • 1 Automated Deduction
  • 1 CDCL
  • Show More...

  • Refine by Type
  • 27 document
  • 1 volume

  • Refine by Publication Year
  • 20 2024
  • 4 2020
  • 2 2013
  • 1 2017
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail