27 Search Results for "Krishna, S."


Document
Resilience of Timed Systems

Authors: S. Akshay, Blaise Genest, Loïc Hélouët, S. Krishna, and Sparsa Roychowdhury

Published in: LIPIcs, Volume 213, 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)


Abstract
This paper addresses reliability of timed systems in the setting of resilience, that considers the behaviors of a system when unspecified timing errors such as missed deadlines occur. Given a fault model that allows transitions to fire later than allowed by their guard, a system is universally resilient (or self-resilient) if after a fault, it always returns to a timed behavior of the non-faulty system. It is existentially resilient if after a fault, there exists a way to return to a timed behavior of the non-faulty system, that is, if there exists a controller which can guide the system back to a normal behavior. We show that universal resilience of timed automata is undecidable, while existential resilience is decidable, in EXPSPACE. To obtain better complexity bounds and decidability of universal resilience, we consider untimed resilience, as well as subclasses of timed automata.

Cite as

S. Akshay, Blaise Genest, Loïc Hélouët, S. Krishna, and Sparsa Roychowdhury. Resilience of Timed Systems. In 41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 213, pp. 33:1-33:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{akshay_et_al:LIPIcs.FSTTCS.2021.33,
  author =	{Akshay, S. and Genest, Blaise and H\'{e}lou\"{e}t, Lo\"{i}c and Krishna, S. and Roychowdhury, Sparsa},
  title =	{{Resilience of Timed Systems}},
  booktitle =	{41st IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2021)},
  pages =	{33:1--33:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-215-0},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{213},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Chekuri, Chandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2021.33},
  URN =		{urn:nbn:de:0030-drops-155442},
  doi =		{10.4230/LIPIcs.FSTTCS.2021.33},
  annote =	{Keywords: Timed automata, Fault tolerance, Integer-resets, Resilience}
}
Document
1½-Player Stochastic StopWatch Games

Authors: Sparsa Roychowdhury

Published in: LIPIcs, Volume 206, 28th International Symposium on Temporal Representation and Reasoning (TIME 2021)


Abstract
Stochastic timed games (STGs), introduced by Bouyer and Forejt, generalize continuous-time Markov chains and timed automata. Depending on the number of players - 2, 1, or 0 - subclasses of stochastic timed games are classified as 2½-player, 1½-player, and ½-player games where the ½ symbolizes the presence of the stochastic player. The qualitative and quantitative reachability problem for STGs was studied in [Patricia Bouyer and Vojtech Forejt, 2009] and [S. Akshay et al., 2016]. In this paper, we introduce stochastic stopwatch games (SSG), an extension of (STG) from clocks to stopwatches. We focus on 1½-player SSGs and prove that with two variables which can be either a clock or a stopwatch, qualitative reachability is decidable, whereas, if we increase the number of variables to three, with at least one stopwatch, the problem becomes undecidable.

Cite as

Sparsa Roychowdhury. 1½-Player Stochastic StopWatch Games. In 28th International Symposium on Temporal Representation and Reasoning (TIME 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 206, pp. 17:1-17:18, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{roychowdhury:LIPIcs.TIME.2021.17,
  author =	{Roychowdhury, Sparsa},
  title =	{{1½-Player Stochastic StopWatch Games}},
  booktitle =	{28th International Symposium on Temporal Representation and Reasoning (TIME 2021)},
  pages =	{17:1--17:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-206-8},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{206},
  editor =	{Combi, Carlo and Eder, Johann and Reynolds, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TIME.2021.17},
  URN =		{urn:nbn:de:0030-drops-147934},
  doi =		{10.4230/LIPIcs.TIME.2021.17},
  annote =	{Keywords: Timed Automata, Stopwatches, Stochastic Timed Games}
}
Document
Scope-Bounded Reachability in Valence Systems

Authors: Aneesh K. Shetty, S. Krishna, and Georg Zetzsche

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
Multi-pushdown systems are a standard model for concurrent recursive programs, but they have an undecidable reachability problem. Therefore, there have been several proposals to underapproximate their sets of runs so that reachability in this underapproximation becomes decidable. One such underapproximation that covers a relatively high portion of runs is scope boundedness. In such a run, after each push to stack i, the corresponding pop operation must come within a bounded number of visits to stack i. In this work, we generalize this approach to a large class of infinite-state systems. For this, we consider the model of valence systems, which consist of a finite-state control and an infinite-state storage mechanism that is specified by a finite undirected graph. This framework captures pushdowns, vector addition systems, integer vector addition systems, and combinations thereof. For this framework, we propose a notion of scope boundedness that coincides with the classical notion when the storage mechanism happens to be a multi-pushdown. We show that with this notion, reachability can be decided in PSPACE for every storage mechanism in the framework. Moreover, we describe the full complexity landscape of this problem across all storage mechanisms, both in the case of (i) the scope bound being given as input and (ii) for fixed scope bounds. Finally, we provide an almost complete description of the complexity landscape if even a description of the storage mechanism is part of the input.

Cite as

Aneesh K. Shetty, S. Krishna, and Georg Zetzsche. Scope-Bounded Reachability in Valence Systems. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 29:1-29:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{shetty_et_al:LIPIcs.CONCUR.2021.29,
  author =	{Shetty, Aneesh K. and Krishna, S. and Zetzsche, Georg},
  title =	{{Scope-Bounded Reachability in Valence Systems}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{29:1--29:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.29},
  URN =		{urn:nbn:de:0030-drops-144069},
  doi =		{10.4230/LIPIcs.CONCUR.2021.29},
  annote =	{Keywords: multi-pushdown systems, underapproximations, valence systems, reachability}
}
Document
On the Separability Problem of String Constraints

Authors: Parosh Aziz Abdulla, Mohamed Faouzi Atig, Vrunda Dave, and Shankara Narayanan Krishna

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
We address the separability problem for straight-line string constraints. The separability problem for languages of a class C by a class S asks: given two languages A and B in C, does there exist a language I in S separating A and B (i.e., I is a superset of A and disjoint from B)? The separability of string constraints is the same as the fundamental problem of interpolation for string constraints. We first show that regular separability of straight line string constraints is undecidable. Our second result is the decidability of the separability problem for straight-line string constraints by piece-wise testable languages, though the precise complexity is open. In our third result, we consider the positive fragment of piece-wise testable languages as a separator, and obtain an ExpSpace algorithm for the separability of a useful class of straight-line string constraints, and a Pspace-hardness result.

Cite as

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Vrunda Dave, and Shankara Narayanan Krishna. On the Separability Problem of String Constraints. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 16:1-16:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{abdulla_et_al:LIPIcs.CONCUR.2020.16,
  author =	{Abdulla, Parosh Aziz and Atig, Mohamed Faouzi and Dave, Vrunda and Krishna, Shankara Narayanan},
  title =	{{On the Separability Problem of String Constraints}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{16:1--16:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.16},
  URN =		{urn:nbn:de:0030-drops-128286},
  doi =		{10.4230/LIPIcs.CONCUR.2020.16},
  annote =	{Keywords: string constraints, separability, interpolants}
}
Document
Determinisability of One-Clock Timed Automata

Authors: Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
The deterministic membership problem for timed automata asks whether the timed language recognised by a nondeterministic timed automaton can be recognised by a deterministic timed automaton. We show that the problem is decidable when the input automaton is a one-clock nondeterministic timed automaton without epsilon transitions and the number of clocks of the deterministic timed automaton is fixed. We show that the problem in all the other cases is undecidable, i.e., when either 1) the input nondeterministic timed automaton has two clocks or more, or 2) it uses epsilon transitions, or 3) the number of clocks of the output deterministic automaton is not fixed.

Cite as

Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Determinisability of One-Clock Timed Automata. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 42:1-42:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{clemente_et_al:LIPIcs.CONCUR.2020.42,
  author =	{Clemente, Lorenzo and Lasota, S{\l}awomir and Pi\'{o}rkowski, Rados{\l}aw},
  title =	{{Determinisability of One-Clock Timed Automata}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{42:1--42:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.42},
  URN =		{urn:nbn:de:0030-drops-128542},
  doi =		{10.4230/LIPIcs.CONCUR.2020.42},
  annote =	{Keywords: Timed automata, determinisation, deterministic membership problem}
}
Document
Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations

Authors: Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We develop polynomial-time algorithms for the fair and efficient allocation of indivisible goods among n agents that have subadditive valuations over the goods. We first consider the Nash social welfare as our objective and design a polynomial-time algorithm that, in the value oracle model, finds an 8n-approximation to the Nash optimal allocation. Subadditive valuations include XOS (fractionally subadditive) and submodular valuations as special cases. Our result, even for the special case of submodular valuations, improves upon the previously best known O(n log n)-approximation ratio of Garg et al. (2020). More generally, we study maximization of p-mean welfare. The p-mean welfare is parameterized by an exponent term p ∈ (-∞, 1] and encompasses a range of welfare functions, such as social welfare (p = 1), Nash social welfare (p → 0), and egalitarian welfare (p → -∞). We give an algorithm that, for subadditive valuations and any given p ∈ (-∞, 1], computes (in the value oracle model and in polynomial time) an allocation with p-mean welfare at least 1/(8n) times the optimal. Further, we show that our approximation guarantees are essentially tight for XOS and, hence, subadditive valuations. We adapt a result of Dobzinski et al. (2010) to show that, under XOS valuations, an O (n^{1-ε}) approximation for the p-mean welfare for any p ∈ (-∞,1] (including the Nash social welfare) requires exponentially many value queries; here, ε > 0 is any fixed constant.

Cite as

Siddharth Barman, Umang Bhaskar, Anand Krishna, and Ranjani G. Sundaram. Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{barman_et_al:LIPIcs.ESA.2020.11,
  author =	{Barman, Siddharth and Bhaskar, Umang and Krishna, Anand and Sundaram, Ranjani G.},
  title =	{{Tight Approximation Algorithms for p-Mean Welfare Under Subadditive Valuations}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.11},
  URN =		{urn:nbn:de:0030-drops-128775},
  doi =		{10.4230/LIPIcs.ESA.2020.11},
  annote =	{Keywords: Discrete Fair Division, Nash Social Welfare, Subadditive Valuations, Submodular Valuations}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Timed Games and Deterministic Separability

Authors: Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study a generalisation of Büchi-Landweber games to the timed setting. The winning condition is specified by a non-deterministic timed automaton with epsilon transitions and only Player I can elapse time. We show that for fixed number of clocks and maximal numerical constant available to Player II, it is decidable whether she has a winning timed controller using these resources. More interestingly, we also show that the problem remains decidable even when the maximal numerical constant is not specified in advance, which is an important technical novelty not present in previous literature on timed games. We complement these two decidability result by showing undecidability when the number of clocks available to Player II is not fixed. As an application of timed games, and our main motivation to study them, we show that they can be used to solve the deterministic separability problem for nondeterministic timed automata with epsilon transitions. This is a novel decision problem about timed automata which has not been studied before. We show that separability is decidable when the number of clocks of the separating automaton is fixed and the maximal constant is not. The problem whether separability is decidable without bounding the number of clocks of the separator remains an interesting open problem.

Cite as

Lorenzo Clemente, Sławomir Lasota, and Radosław Piórkowski. Timed Games and Deterministic Separability. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 121:1-121:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{clemente_et_al:LIPIcs.ICALP.2020.121,
  author =	{Clemente, Lorenzo and Lasota, S{\l}awomir and Pi\'{o}rkowski, Rados{\l}aw},
  title =	{{Timed Games and Deterministic Separability}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{121:1--121:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.121},
  URN =		{urn:nbn:de:0030-drops-125282},
  doi =		{10.4230/LIPIcs.ICALP.2020.121},
  annote =	{Keywords: Timed automata, separability problems, timed games}
}
Document
Formal Proof and Analysis of an Incremental Cycle Detection Algorithm

Authors: Armaël Guéneau, Jacques-Henri Jourdan, Arthur Charguéraud, and François Pottier

Published in: LIPIcs, Volume 141, 10th International Conference on Interactive Theorem Proving (ITP 2019)


Abstract
We study a state-of-the-art incremental cycle detection algorithm due to Bender, Fineman, Gilbert, and Tarjan. We propose a simple change that allows the algorithm to be regarded as genuinely online. Then, we exploit Separation Logic with Time Credits to simultaneously verify the correctness and the worst-case amortized asymptotic complexity of the modified algorithm.

Cite as

Armaël Guéneau, Jacques-Henri Jourdan, Arthur Charguéraud, and François Pottier. Formal Proof and Analysis of an Incremental Cycle Detection Algorithm. In 10th International Conference on Interactive Theorem Proving (ITP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 141, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{gueneau_et_al:LIPIcs.ITP.2019.18,
  author =	{Gu\'{e}neau, Arma\"{e}l and Jourdan, Jacques-Henri and Chargu\'{e}raud, Arthur and Pottier, Fran\c{c}ois},
  title =	{{Formal Proof and Analysis of an Incremental Cycle Detection Algorithm}},
  booktitle =	{10th International Conference on Interactive Theorem Proving (ITP 2019)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-122-1},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{141},
  editor =	{Harrison, John and O'Leary, John and Tolmach, Andrew},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2019.18},
  URN =		{urn:nbn:de:0030-drops-110739},
  doi =		{10.4230/LIPIcs.ITP.2019.18},
  annote =	{Keywords: interactive deductive program verification, complexity analysis}
}
Document
Timed Basic Parallel Processes

Authors: Lorenzo Clemente, Piotr Hofman, and Patrick Totzke

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Timed basic parallel processes (TBPP) extend communication-free Petri nets (aka. BPP or commutative context-free grammars) by a global notion of time. TBPP can be seen as an extension of timed automata (TA) with context-free branching rules, and as such may be used to model networks of independent timed automata with process creation. We show that the coverability and reachability problems (with unary encoded target multiplicities) are PSPACE-complete and EXPTIME-complete, respectively. For the special case of 1-clock TBPP, both are NP-complete and hence not more complex than for untimed BPP. This contrasts with known super-Ackermannian-completeness and undecidability results for general timed Petri nets. As a result of independent interest, and basis for our NP upper bounds, we show that the reachability relation of 1-clock TA can be expressed by a formula of polynomial size in the existential fragment of linear arithmetic, which improves on recent results from the literature.

Cite as

Lorenzo Clemente, Piotr Hofman, and Patrick Totzke. Timed Basic Parallel Processes. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{clemente_et_al:LIPIcs.CONCUR.2019.15,
  author =	{Clemente, Lorenzo and Hofman, Piotr and Totzke, Patrick},
  title =	{{Timed Basic Parallel Processes}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{15:1--15:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.15},
  URN =		{urn:nbn:de:0030-drops-109171},
  doi =		{10.4230/LIPIcs.CONCUR.2019.15},
  annote =	{Keywords: Timed Automata, Petri Nets}
}
Document
Lifestate: Event-Driven Protocols and Callback Control Flow

Authors: Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
Developing interactive applications (apps) against event-driven software frameworks such as Android is notoriously difficult. To create apps that behave as expected, developers must follow complex and often implicit asynchronous programming protocols. Such protocols intertwine the proper registering of callbacks to receive control from the framework with appropriate application-programming interface (API) calls that in turn affect the set of possible future callbacks. An app violates the protocol when, for example, it calls a particular API method in a state of the framework where such a call is invalid. What makes automated reasoning hard in this domain is largely what makes programming apps against such frameworks hard: the specification of the protocol is unclear, and the control flow is complex, asynchronous, and higher-order. In this paper, we tackle the problem of specifying and modeling event-driven application-programming protocols. In particular, we formalize a core meta-model that captures the dialogue between event-driven frameworks and application callbacks. Based on this meta-model, we define a language called lifestate that permits precise and formal descriptions of application-programming protocols and the callback control flow imposed by the event-driven framework. Lifestate unifies modeling what app callbacks can expect of the framework with specifying rules the app must respect when calling into the framework. In this way, we effectively combine lifecycle constraints and typestate rules. To evaluate the effectiveness of lifestate modeling, we provide a dynamic verification algorithm that takes as input a trace of execution of an app and a lifestate protocol specification to either produce a trace witnessing a protocol violation or a proof that no such trace is realizable.

Cite as

Shawn Meier, Sergio Mover, and Bor-Yuh Evan Chang. Lifestate: Event-Driven Protocols and Callback Control Flow. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 1:1-1:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{meier_et_al:LIPIcs.ECOOP.2019.1,
  author =	{Meier, Shawn and Mover, Sergio and Chang, Bor-Yuh Evan},
  title =	{{Lifestate: Event-Driven Protocols and Callback Control Flow}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{1:1--1:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.1},
  URN =		{urn:nbn:de:0030-drops-107932},
  doi =		{10.4230/LIPIcs.ECOOP.2019.1},
  annote =	{Keywords: event-driven systems, application-programming protocols, application framework interfaces, callbacks, sound framework modeling, predictive dynamic verification}
}
Document
Transferring Obligations Through Synchronizations

Authors: Jafar Hamin and Bart Jacobs

Published in: LIPIcs, Volume 134, 33rd European Conference on Object-Oriented Programming (ECOOP 2019)


Abstract
One common approach for verifying safety properties of multithreaded programs is assigning appropriate permissions, such as ownership of a heap location, and obligations, such as an obligation to send a message on a channel, to each thread and making sure that each thread only performs the actions for which it has permissions and it also fulfills all of its obligations before it terminates. Although permissions can be transferred through synchronizations from a sender thread, where for example a message is sent or a condition variable is notified, to a receiver thread, where that message or that notification is received, in existing approaches obligations can only be transferred when a thread is forked. In this paper we introduce two mechanisms, one for channels and the other for condition variables, that allow obligations, along with permissions, to be transferred from the sender to the receiver, while ensuring that there is no state where the transferred obligations are lost, i.e. where they are discharged from the sender thread but not loaded onto the receiver thread yet. We show how these mechanisms can be used to modularly verify deadlock-freedom of a number of interesting programs, such as some variations of client-server programs, fair readers-writers locks, and dining philosophers, which cannot be modularly verified without such transfer. We also encoded the proposed separation logic-based proof rules in the VeriFast program verifier and succeeded in verifying the mentioned programs.

Cite as

Jafar Hamin and Bart Jacobs. Transferring Obligations Through Synchronizations. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 134, pp. 19:1-19:58, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{hamin_et_al:LIPIcs.ECOOP.2019.19,
  author =	{Hamin, Jafar and Jacobs, Bart},
  title =	{{Transferring Obligations Through Synchronizations}},
  booktitle =	{33rd European Conference on Object-Oriented Programming (ECOOP 2019)},
  pages =	{19:1--19:58},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-111-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{134},
  editor =	{Donaldson, Alastair F.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2019.19},
  URN =		{urn:nbn:de:0030-drops-108113},
  doi =		{10.4230/LIPIcs.ECOOP.2019.19},
  annote =	{Keywords: Hoare logic, separation logic, modular program verification, synchronization, transferring obligations, deadlock-freedom}
}
Document
Towards an Efficient Tree Automata Based Technique for Timed Systems

Authors: S. Akshay, Paul Gastin, Shankara Narayanan Krishna, and Ilias Sarkar

Published in: LIPIcs, Volume 85, 28th International Conference on Concurrency Theory (CONCUR 2017)


Abstract
The focus of this paper is the analysis of real-time systems with recursion, through the development of good theoretical techniques which are implementable. Time is modeled using clock variables, and recursion using stacks. Our technique consists of modeling the behaviours of the timed system as graphs, and interpreting these graphs on tree terms by showing a bound on their tree-width. We then build a tree automaton that accepts exactly those tree terms that describe realizable runs of the timed system. The emptiness of the timed system thus boils down to emptiness of a finite tree automaton that accepts these tree terms. This approach helps us in obtaining an optimal complexity, not just in theory (as done in earlier work e.g.[concur16]), but also in going towards an efficient implementation of our technique. To do this, we make several improvements in the theory and exploit these to build a first prototype tool that can analyze timed systems with recursion.

Cite as

S. Akshay, Paul Gastin, Shankara Narayanan Krishna, and Ilias Sarkar. Towards an Efficient Tree Automata Based Technique for Timed Systems. In 28th International Conference on Concurrency Theory (CONCUR 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 85, pp. 39:1-39:15, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{akshay_et_al:LIPIcs.CONCUR.2017.39,
  author =	{Akshay, S. and Gastin, Paul and Krishna, Shankara Narayanan and Sarkar, Ilias},
  title =	{{Towards an Efficient Tree Automata Based Technique for Timed Systems}},
  booktitle =	{28th International Conference on Concurrency Theory (CONCUR 2017)},
  pages =	{39:1--39:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-048-4},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{85},
  editor =	{Meyer, Roland and Nestmann, Uwe},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2017.39},
  URN =		{urn:nbn:de:0030-drops-78017},
  doi =		{10.4230/LIPIcs.CONCUR.2017.39},
  annote =	{Keywords: Timed automata, tree automata, pushdown systems, tree-width}
}
Document
FO-Definable Transformations of Infinite Strings

Authors: Vrunda Dave, Shankara Narayanan Krishna, and Ashutosh Trivedi

Published in: LIPIcs, Volume 65, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)


Abstract
The theory of regular and aperiodic transformations of finite strings has recently received a lot of interest. These classes can be equivalently defined using logic (Monadic second-order logic and first-order logic), two-way machines (regular two-way and aperiodic two-way transducers), and one-way register machines (regular streaming string and aperiodic streaming string transducers). These classes are known to be closed under operations such as sequential composition and regular (star-free) choice; and problems such as functional equivalence and type checking, are decidable for these classes. On the other hand, for infinite strings these results are only known for regular transformations: Alur, Filiot, and Trivedi studied transformations of infinite strings and introduced an extension of streaming string transducers over infinte strings and showed that they capture monadic second-order definable transformations for infinite strings. In this paper we extend their work to recover connection for infinite strings among first-order logic definable transformations, aperiodic two-way transducers, and aperiodic streaming string transducers.

Cite as

Vrunda Dave, Shankara Narayanan Krishna, and Ashutosh Trivedi. FO-Definable Transformations of Infinite Strings. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 12:1-12:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{dave_et_al:LIPIcs.FSTTCS.2016.12,
  author =	{Dave, Vrunda and Krishna, Shankara Narayanan and Trivedi, Ashutosh},
  title =	{{FO-Definable Transformations of Infinite Strings}},
  booktitle =	{36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)},
  pages =	{12:1--12:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-027-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{65},
  editor =	{Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016.12},
  URN =		{urn:nbn:de:0030-drops-68476},
  doi =		{10.4230/LIPIcs.FSTTCS.2016.12},
  annote =	{Keywords: Transducers, FO-definability, Infinite Strings}
}
Document
Mean-Payoff Games on Timed Automata

Authors: Shibashis Guha, Marcin Jurdzinski, Shankara Narayanan Krishna, and Ashutosh Trivedi

Published in: LIPIcs, Volume 65, 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)


Abstract
Mean-payoff games on timed automata are played on the infinite weighted graph of configurations of priced timed automata between two players - Player Min and Player Max - by moving a token along the states of the graph to form an infinite run. The goal of Player Min is to minimize the limit average weight of the run, while the goal of the Player Max is the opposite. Brenguier, Cassez, and Raskin recently studied a variation of these games and showed that mean-payoff games are undecidable for timed automata with five or more clocks. We refine this result by proving the undecidability of mean-payoff games with three clocks. On a positive side, we show the decidability of mean-payoff games on one-clock timed automata with binary price-rates. A key contribution of this paper is the application of dynamic programming based proof techniques applied in the context of average reward optimization on an uncountable state and action space.

Cite as

Shibashis Guha, Marcin Jurdzinski, Shankara Narayanan Krishna, and Ashutosh Trivedi. Mean-Payoff Games on Timed Automata. In 36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 65, pp. 44:1-44:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{guha_et_al:LIPIcs.FSTTCS.2016.44,
  author =	{Guha, Shibashis and Jurdzinski, Marcin and Krishna, Shankara Narayanan and Trivedi, Ashutosh},
  title =	{{Mean-Payoff Games on Timed Automata}},
  booktitle =	{36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016)},
  pages =	{44:1--44:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-027-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{65},
  editor =	{Lal, Akash and Akshay, S. and Saurabh, Saket and Sen, Sandeep},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2016.44},
  URN =		{urn:nbn:de:0030-drops-68797},
  doi =		{10.4230/LIPIcs.FSTTCS.2016.44},
  annote =	{Keywords: Timed Automata, Mean-Payoff Games, Controller-Synthesis}
}
Document
The Cost of Global Broadcast in Dynamic Radio Networks

Authors: Mohamad Ahmadi, Abdolhamid Ghodselahi, Fabian Kuhn, and Anisur Rahaman Molla

Published in: LIPIcs, Volume 46, 19th International Conference on Principles of Distributed Systems (OPODIS 2015)


Abstract
We study the single-message broadcast problem in dynamic radio networks. We show that the time complexity of the problem depends on the amount of stability and connectivity of the dynamic network topology and on the adaptiveness of the adversary providing the dynamic topology. More formally, we model communication using the standard graph-based radio network model. To model the dynamic network, we use a variant of the synchronous dynamic graph model introduced in [Kuhn et al., STOC 2010]. For integer parameters T >= 1 and k => 1, we call a dynamic graph T-interval k-connected if for every interval of T consecutive rounds, there exists a k-vertex-connected stable subgraph. Further, for an integer parameter tau >= 0, we say that the adversary providing the dynamic network is tau-oblivious if for constructing the graph of some round t, the adversary has access to all the randomness (and states) of the algorithm up to round t-tau. As our main result, we show that for any T >= 1, any k >= 1, and any tau = 1, for a tau-oblivious adversary, there is a distributed algorithm to broadcast a single message in time O((1+n/(k * min(tau,T)) * n *log^3(n)). We further show that even for large interval k-connectivity, efficient broadcast is not possible for the usual adaptive adversaries. For a 1-oblivious adversary, we show that even for any T <= (n/k)^{1-epsilon} (for any constant epsilon > 0) and for any k >= 1, global broadcast in T-interval k-connected networks requires at least Omega(n^2/k^2*log(n)) time. Further, for a 0-oblivious adversary, broadcast cannot be solved in T-interval k-connected networks as long as T < n-k.

Cite as

Mohamad Ahmadi, Abdolhamid Ghodselahi, Fabian Kuhn, and Anisur Rahaman Molla. The Cost of Global Broadcast in Dynamic Radio Networks. In 19th International Conference on Principles of Distributed Systems (OPODIS 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 46, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{ahmadi_et_al:LIPIcs.OPODIS.2015.7,
  author =	{Ahmadi, Mohamad and Ghodselahi, Abdolhamid and Kuhn, Fabian and Molla, Anisur Rahaman},
  title =	{{The Cost of Global Broadcast in Dynamic Radio Networks}},
  booktitle =	{19th International Conference on Principles of Distributed Systems (OPODIS 2015)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-98-9},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{46},
  editor =	{Anceaume, Emmanuelle and Cachin, Christian and Potop-Butucaru, Maria},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2015.7},
  URN =		{urn:nbn:de:0030-drops-65989},
  doi =		{10.4230/LIPIcs.OPODIS.2015.7},
  annote =	{Keywords: radio network, dynamic network, global broadcast, interval connectivity, hitting game}
}
  • Refine by Author
  • 8 Krishna, Shankara Narayanan
  • 5 Trivedi, Ashutosh
  • 4 Akshay, S.
  • 3 Clemente, Lorenzo
  • 2 Dave, Vrunda
  • Show More...

  • Refine by Classification
  • 5 Theory of computation → Timed and hybrid models
  • 2 Theory of computation → Automata over infinite objects
  • 1 Hardware → Chip-level power issues
  • 1 Security and privacy → Logic and verification
  • 1 Software and its engineering → Correctness
  • Show More...

  • Refine by Keyword
  • 5 Timed automata
  • 3 Timed Automata
  • 2 JavaScript
  • 2 pushdown systems
  • 2 reachability
  • Show More...

  • Refine by Type
  • 27 document

  • Refine by Publication Year
  • 8 2015
  • 6 2016
  • 4 2019
  • 4 2020
  • 3 2021
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail