36 Search Results for "Löffler, Maarten"


Document
Computational Geometry (Dagstuhl Seminar 23221)

Authors: Siu-Wing Cheng, Maarten Löffler, Jeff M. Phillips, and Aleksandr Popov

Published in: Dagstuhl Reports, Volume 13, Issue 5 (2023)


Abstract
This report documents the program and the outcomes of the Dagstuhl Seminar 23221 "Computational Geometry". The seminar was held from May 29th to June 2nd, 2023, and 39 participants from various countries attended it, including two remote participants. Recent advances in computational geometry were presented and discussed, and new challenges were identified. This report collects the abstracts of the talks and the open problems presented at the seminar.

Cite as

Siu-Wing Cheng, Maarten Löffler, Jeff M. Phillips, and Aleksandr Popov. Computational Geometry (Dagstuhl Seminar 23221). In Dagstuhl Reports, Volume 13, Issue 5, pp. 165-181, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{cheng_et_al:DagRep.13.5.165,
  author =	{Cheng, Siu-Wing and L\"{o}ffler, Maarten and Phillips, Jeff M. and Popov, Aleksandr},
  title =	{{Computational Geometry (Dagstuhl Seminar 23221)}},
  pages =	{165--181},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{13},
  number =	{5},
  editor =	{Cheng, Siu-Wing and L\"{o}ffler, Maarten and Phillips, Jeff M. and Popov, Aleksandr},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.13.5.165},
  URN =		{urn:nbn:de:0030-drops-193692},
  doi =		{10.4230/DagRep.13.5.165},
  annote =	{Keywords: Algorithms, Combinatorics, Geometric Computing, Reconfiguration, Uncertainty}
}
Document
Shortest Paths in Portalgons

Authors: Maarten Löffler, Tim Ophelders, Rodrigo I. Silveira, and Frank Staals

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
Any surface that is intrinsically polyhedral can be represented by a collection of simple polygons (fragments), glued along pairs of equally long oriented edges, where each fragment is endowed with the geodesic metric arising from its Euclidean metric. We refer to such a representation as a portalgon, and we call two portalgons equivalent if the surfaces they represent are isometric. We analyze the complexity of shortest paths. We call a fragment happy if any shortest path on the portalgon visits it at most a constant number of times. A portalgon is happy if all of its fragments are happy. We present an efficient algorithm to compute shortest paths on happy portalgons. The number of times that a shortest path visits a fragment is unbounded in general. We contrast this by showing that the intrinsic Delaunay triangulation of any polyhedral surface corresponds to a happy portalgon. Since computing the intrinsic Delaunay triangulation may be inefficient, we provide an efficient algorithm to compute happy portalgons for a restricted class of portalgons.

Cite as

Maarten Löffler, Tim Ophelders, Rodrigo I. Silveira, and Frank Staals. Shortest Paths in Portalgons. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 48:1-48:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{loffler_et_al:LIPIcs.SoCG.2023.48,
  author =	{L\"{o}ffler, Maarten and Ophelders, Tim and Silveira, Rodrigo I. and Staals, Frank},
  title =	{{Shortest Paths in Portalgons}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{48:1--48:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.48},
  URN =		{urn:nbn:de:0030-drops-178980},
  doi =		{10.4230/LIPIcs.SoCG.2023.48},
  annote =	{Keywords: Polyhedral surfaces, shortest paths, geodesic distance, Delaunay triangulation}
}
Document
Minimum Link Fencing

Authors: Sujoy Bhore, Fabian Klute, Maarten Löffler, Martin Nöllenburg, Soeren Terziadis, and Anaïs Villedieu

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
We study a variant of the geometric multicut problem, where we are given a set 𝒫 of colored and pairwise interior-disjoint polygons in the plane. The objective is to compute a set of simple closed polygon boundaries (fences) that separate the polygons in such a way that any two polygons that are enclosed by the same fence have the same color, and the total number of links of all fences is minimized. We call this the minimum link fencing (MLF) problem and consider the natural case of bounded minimum link fencing (BMLF), where 𝒫 contains a polygon Q that is unbounded in all directions and can be seen as an outer polygon. We show that BMLF is NP-hard in general and that it is XP-time solvable when each fence contains at most two polygons and the number of segments per fence is the parameter. Finally, we present an O(n log n)-time algorithm for the case that the convex hull of 𝒫⧵{Q} does not intersect Q.

Cite as

Sujoy Bhore, Fabian Klute, Maarten Löffler, Martin Nöllenburg, Soeren Terziadis, and Anaïs Villedieu. Minimum Link Fencing. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 34:1-34:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bhore_et_al:LIPIcs.ISAAC.2022.34,
  author =	{Bhore, Sujoy and Klute, Fabian and L\"{o}ffler, Maarten and N\"{o}llenburg, Martin and Terziadis, Soeren and Villedieu, Ana\"{i}s},
  title =	{{Minimum Link Fencing}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{34:1--34:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.34},
  URN =		{urn:nbn:de:0030-drops-173191},
  doi =		{10.4230/LIPIcs.ISAAC.2022.34},
  annote =	{Keywords: computational geometry, polygon nesting, polygon separation}
}
Document
Segment Visibility Counting Queries in Polygons

Authors: Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov, Marcel Roeloffzen, and Frank Staals

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Let P be a simple polygon with n vertices, and let A be a set of m points or line segments inside P. We develop data structures that can efficiently count the objects from A that are visible to a query point or a query segment. Our main aim is to obtain fast, O(polylog nm), query times, while using as little space as possible. In case the query is a single point, a simple visibility-polygon-based solution achieves O(log nm) query time using O(nm²) space. In case A also contains only points, we present a smaller, O(n + m^{2+ε} log n)-space, data structure based on a hierarchical decomposition of the polygon. Building on these results, we tackle the case where the query is a line segment and A contains only points. The main complication here is that the segment may intersect multiple regions of the polygon decomposition, and that a point may see multiple such pieces. Despite these issues, we show how to achieve O(log n log nm) query time using only O(nm^{2+ε} + n²) space. Finally, we show that we can even handle the case where the objects in A are segments with the same bounds.

Cite as

Kevin Buchin, Bram Custers, Ivor van der Hoog, Maarten Löffler, Aleksandr Popov, Marcel Roeloffzen, and Frank Staals. Segment Visibility Counting Queries in Polygons. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 58:1-58:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ISAAC.2022.58,
  author =	{Buchin, Kevin and Custers, Bram and van der Hoog, Ivor and L\"{o}ffler, Maarten and Popov, Aleksandr and Roeloffzen, Marcel and Staals, Frank},
  title =	{{Segment Visibility Counting Queries in Polygons}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{58:1--58:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.58},
  URN =		{urn:nbn:de:0030-drops-173431},
  doi =		{10.4230/LIPIcs.ISAAC.2022.58},
  annote =	{Keywords: Visibility, Data Structure, Polygons, Complexity}
}
Document
Chromatic k-Nearest Neighbor Queries

Authors: Thijs van der Horst, Maarten Löffler, and Frank Staals

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Let P be a set of n colored points. We develop efficient data structures that store P and can answer chromatic k-nearest neighbor (k-NN) queries. Such a query consists of a query point q and a number k, and asks for the color that appears most frequently among the k points in P closest to q. Answering such queries efficiently is the key to obtain fast k-NN classifiers. Our main aim is to obtain query times that are independent of k while using near-linear space. We show that this is possible using a combination of two data structures. The first data structure allow us to compute a region containing exactly the k-nearest neighbors of a query point q, and the second data structure can then report the most frequent color in such a region. This leads to linear space data structures with query times of O(n^{1/2} log n) for points in ℝ¹, and with query times varying between O(n^{2/3}log^{2/3} n) and O(n^{5/6} polylog n), depending on the distance measure used, for points in ℝ². These results can be extended to work in higher dimensions as well. Since the query times are still fairly large we also consider approximations. If we are allowed to report a color that appears at least (1-ε)f^* times, where f^* is the frequency of the most frequent color, we obtain a query time of O(log n + log log_{1/(1-ε)} n) in ℝ¹ and expected query times ranging between Õ(n^{1/2}ε^{-3/2}) and Õ(n^{1/2}ε^{-5/2}) in ℝ² using near-linear space (ignoring polylogarithmic factors).

Cite as

Thijs van der Horst, Maarten Löffler, and Frank Staals. Chromatic k-Nearest Neighbor Queries. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 67:1-67:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{vanderhorst_et_al:LIPIcs.ESA.2022.67,
  author =	{van der Horst, Thijs and L\"{o}ffler, Maarten and Staals, Frank},
  title =	{{Chromatic k-Nearest Neighbor Queries}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{67:1--67:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.67},
  URN =		{urn:nbn:de:0030-drops-170055},
  doi =		{10.4230/LIPIcs.ESA.2022.67},
  annote =	{Keywords: data structure, nearest neighbor, classification}
}
Document
Nearest-Neighbor Decompositions of Drawings

Authors: Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler, Wolfgang Mulzer, and Daniel Perz

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
Let 𝒟 be a set of straight-line segments in the plane, potentially crossing, and let c be a positive integer. We denote by P the union of the endpoints of the straight-line segments of 𝒟 and of the intersection points between pairs of segments. We say that 𝒟 has a nearest-neighbor decomposition into c parts if we can partition P into c point sets P₁, … , P_c such that 𝒟 is the union of the nearest neighbor graphs on P₁, … , P_c. We show that it is NP-complete to decide whether 𝒟 can be drawn as the union of c ≥ 3 nearest-neighbor graphs, even when no two segments cross. We show that for c = 2, it is NP-complete in the general setting and polynomial-time solvable when no two segments cross. We show the existence of an O(log n)-approximation algorithm running in subexponential time for partitioning 𝒟 into a minimum number of nearest-neighbor graphs. As a main tool in our analysis, we establish the notion of the conflict graph for a drawing 𝒟. The vertices of the conflict graph are the connected components of 𝒟, with the assumption that each connected component is the nearest neighbor graph of its vertices, and there is an edge between two components U and V if and only if the nearest neighbor graph of U ∪ V contains an edge between a vertex in U and a vertex in V. We show that string graphs are conflict graphs of certain planar drawings. For planar graphs and complete k-partite graphs, we give additional, more efficient constructions. We furthermore show that there are subdivisions of non-planar graphs that are not conflict graphs. Lastly, we show a separator lemma for conflict graphs.

Cite as

Jonas Cleve, Nicolas Grelier, Kristin Knorr, Maarten Löffler, Wolfgang Mulzer, and Daniel Perz. Nearest-Neighbor Decompositions of Drawings. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 21:1-21:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{cleve_et_al:LIPIcs.SWAT.2022.21,
  author =	{Cleve, Jonas and Grelier, Nicolas and Knorr, Kristin and L\"{o}ffler, Maarten and Mulzer, Wolfgang and Perz, Daniel},
  title =	{{Nearest-Neighbor Decompositions of Drawings}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{21:1--21:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.21},
  URN =		{urn:nbn:de:0030-drops-161812},
  doi =		{10.4230/LIPIcs.SWAT.2022.21},
  annote =	{Keywords: nearest-neighbors, decompositions, drawing}
}
Document
On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

Authors: Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
We consider the following surveillance problem: Given a set P of n sites in a metric space and a set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the given order) and the latency L of a schedule is the maximum latency of any site, where the latency of a site s is the supremum of the lengths of the time intervals between consecutive visits to s. When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it is NP-hard. For k ≥ 2 (which is the version we are interested in) the problem becomes even more challenging; for example, it is not even clear if the decision version of the problem is decidable, in particular in the Euclidean case. We have two main results. We consider cyclic solutions in which the set of sites must be partitioned into 𝓁 groups, for some 𝓁 ≤ k, and each group is assigned a subset of the robots that move along the travelling salesman tour of the group at equal distance from each other. Our first main result is that approximating the optimal latency of the class of cyclic solutions can be reduced to approximating the optimal travelling salesman tour on some input, with only a 1+ε factor loss in the approximation factor and an O((k/ε) ^k) factor loss in the runtime, for any ε > 0. Our second main result shows that an optimal cyclic solution is a 2(1-1/k)-approximation of the overall optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall. We conjecture that this is true for k ≥ 3 as well. The results have a number of consequences. For the Euclidean version of the problem, for instance, combining our results with known results on Euclidean TSP, yields a PTAS for approximating an optimal cyclic solution, and it yields a (2(1-1/k)+ε)-approximation of the optimal unrestricted (not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained by combining our results with other known TSP algorithms in non-Euclidean metrics.

Cite as

Peyman Afshani, Mark de Berg, Kevin Buchin, Jie Gao, Maarten Löffler, Amir Nayyeri, Benjamin Raichel, Rik Sarkar, Haotian Wang, and Hao-Tsung Yang. On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 2:1-2:14, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.SoCG.2022.2,
  author =	{Afshani, Peyman and de Berg, Mark and Buchin, Kevin and Gao, Jie and L\"{o}ffler, Maarten and Nayyeri, Amir and Raichel, Benjamin and Sarkar, Rik and Wang, Haotian and Yang, Hao-Tsung},
  title =	{{On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.2},
  URN =		{urn:nbn:de:0030-drops-160109},
  doi =		{10.4230/LIPIcs.SoCG.2022.2},
  annote =	{Keywords: Approximation, Motion Planning, Scheduling}
}
Document
Pushing Blocks by Sweeping Lines

Authors: Hugo A. Akitaya, Maarten Löffler, and Giovanni Viglietta

Published in: LIPIcs, Volume 226, 11th International Conference on Fun with Algorithms (FUN 2022)


Abstract
We investigate the reconfiguration of n blocks, or "tokens", in the square grid using line pushes. A line push is performed from one of the four cardinal directions and pushes all tokens that are maximum in that direction to the opposite direction by one unit. Tokens that are in the way of other tokens are displaced in the same direction, as well. Similar models of manipulating objects using uniform external forces match the mechanics of existing games and puzzles, such as Mega Maze, 2048 and Labyrinth, and have also been investigated in the context of self-assembly, programmable matter and robotic motion planning. The problem of obtaining a given shape from a starting configuration is know to be NP-complete. We show that, for every n, there are sparse initial configurations of n tokens (i.e., where no two tokens are in the same row or column) that can be compacted into any a×b box such that ab = n. However, only 1×k, 2×k and 3×3 boxes are obtainable from any arbitrary sparse configuration with a matching number of tokens. We also study the problem of rearranging labeled tokens into a configuration of the same shape, but with permuted tokens. For every initial configuration of the tokens, we provide a complete characterization of what other configurations can be obtained by means of line pushes.

Cite as

Hugo A. Akitaya, Maarten Löffler, and Giovanni Viglietta. Pushing Blocks by Sweeping Lines. In 11th International Conference on Fun with Algorithms (FUN 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 226, pp. 1:1-1:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{a.akitaya_et_al:LIPIcs.FUN.2022.1,
  author =	{A. Akitaya, Hugo and L\"{o}ffler, Maarten and Viglietta, Giovanni},
  title =	{{Pushing Blocks by Sweeping Lines}},
  booktitle =	{11th International Conference on Fun with Algorithms (FUN 2022)},
  pages =	{1:1--1:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-232-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{226},
  editor =	{Fraigniaud, Pierre and Uno, Yushi},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2022.1},
  URN =		{urn:nbn:de:0030-drops-159719},
  doi =		{10.4230/LIPIcs.FUN.2022.1},
  annote =	{Keywords: Reconfiguration, Global Control, Pushing Blocks, Permutation}
}
Document
Terrain Prickliness: Theoretical Grounds for High Complexity Viewsheds

Authors: Ankush Acharyya, Ramesh K. Jallu, Maarten Löffler, Gert G.T. Meijer, Maria Saumell, Rodrigo I. Silveira, and Frank Staals

Published in: LIPIcs, Volume 208, 11th International Conference on Geographic Information Science (GIScience 2021) - Part II


Abstract
An important task in terrain analysis is computing viewsheds. A viewshed is the union of all the parts of the terrain that are visible from a given viewpoint or set of viewpoints. The complexity of a viewshed can vary significantly depending on the terrain topography and the viewpoint position. In this work we study a new topographic attribute, the prickliness, that measures the number of local maxima in a terrain from all possible angles of view. We show that the prickliness effectively captures the potential of terrains to have high complexity viewsheds. We present near-optimal algorithms to compute it for TIN terrains, and efficient approximate algorithms for raster DEMs. We validate the usefulness of the prickliness attribute with experiments in a large set of real terrains.

Cite as

Ankush Acharyya, Ramesh K. Jallu, Maarten Löffler, Gert G.T. Meijer, Maria Saumell, Rodrigo I. Silveira, and Frank Staals. Terrain Prickliness: Theoretical Grounds for High Complexity Viewsheds. In 11th International Conference on Geographic Information Science (GIScience 2021) - Part II. Leibniz International Proceedings in Informatics (LIPIcs), Volume 208, pp. 10:1-10:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{acharyya_et_al:LIPIcs.GIScience.2021.II.10,
  author =	{Acharyya, Ankush and Jallu, Ramesh K. and L\"{o}ffler, Maarten and Meijer, Gert G.T. and Saumell, Maria and Silveira, Rodrigo I. and Staals, Frank},
  title =	{{Terrain Prickliness: Theoretical Grounds for High Complexity Viewsheds}},
  booktitle =	{11th International Conference on Geographic Information Science (GIScience 2021) - Part II},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-208-2},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{208},
  editor =	{Janowicz, Krzysztof and Verstegen, Judith A.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2021.II.10},
  URN =		{urn:nbn:de:0030-drops-147697},
  doi =		{10.4230/LIPIcs.GIScience.2021.II.10},
  annote =	{Keywords: Digital elevation model, Triangulated irregular network, Viewshed complexity}
}
Document
Uncertain Curve Simplification

Authors: Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study the problem of polygonal curve simplification under uncertainty, where instead of a sequence of exact points, each uncertain point is represented by a region which contains the (unknown) true location of the vertex. The regions we consider are disks, line segments, convex polygons, and discrete sets of points. We are interested in finding the shortest subsequence of uncertain points such that no matter what the true location of each uncertain point is, the resulting polygonal curve is a valid simplification of the original polygonal curve under the Hausdorff or the Fréchet distance. For both these distance measures, we present polynomial-time algorithms for this problem.

Cite as

Kevin Buchin, Maarten Löffler, Aleksandr Popov, and Marcel Roeloffzen. Uncertain Curve Simplification. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 26:1-26:22, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.MFCS.2021.26,
  author =	{Buchin, Kevin and L\"{o}ffler, Maarten and Popov, Aleksandr and Roeloffzen, Marcel},
  title =	{{Uncertain Curve Simplification}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{26:1--26:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.26},
  URN =		{urn:nbn:de:0030-drops-144666},
  doi =		{10.4230/LIPIcs.MFCS.2021.26},
  annote =	{Keywords: Curves, Uncertainty, Simplification, Fr\'{e}chet Distance, Hausdorff Distance}
}
Document
Chasing Puppies: Mobile Beacon Routing on Closed Curves

Authors: Mikkel Abrahamsen, Jeff Erickson, Irina Kostitsyna, Maarten Löffler, Tillmann Miltzow, Jérôme Urhausen, Jordi Vermeulen, and Giovanni Viglietta

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We solve an open problem posed by Michael Biro at CCCG 2013 that was inspired by his and others’ work on beacon-based routing. Consider a human and a puppy on a simple closed curve in the plane. The human can walk along the curve at bounded speed and change direction as desired. The puppy runs with unbounded speed along the curve as long as the Euclidean straight-line distance to the human is decreasing, so that it is always at a point on the curve where the distance is locally minimal. Assuming that the curve is smooth (with some mild genericity constraints) or a simple polygon, we prove that the human can always catch the puppy in finite time.

Cite as

Mikkel Abrahamsen, Jeff Erickson, Irina Kostitsyna, Maarten Löffler, Tillmann Miltzow, Jérôme Urhausen, Jordi Vermeulen, and Giovanni Viglietta. Chasing Puppies: Mobile Beacon Routing on Closed Curves. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 5:1-5:19, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{abrahamsen_et_al:LIPIcs.SoCG.2021.5,
  author =	{Abrahamsen, Mikkel and Erickson, Jeff and Kostitsyna, Irina and L\"{o}ffler, Maarten and Miltzow, Tillmann and Urhausen, J\'{e}r\^{o}me and Vermeulen, Jordi and Viglietta, Giovanni},
  title =	{{Chasing Puppies: Mobile Beacon Routing on Closed Curves}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.5},
  URN =		{urn:nbn:de:0030-drops-138046},
  doi =		{10.4230/LIPIcs.SoCG.2021.5},
  annote =	{Keywords: Beacon routing, navigation, generic smooth curves, puppies}
}
Document
Adjacency Graphs of Polyhedral Surfaces

Authors: Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, and Alexander Wolff

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in ℝ³. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains K_5, K_{5,81}, or any nonplanar 3-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, K_{4,4}, and K_{3,5} can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable n-vertex graphs is in Ω(n log n). From the non-realizability of K_{5,81}, we obtain that any realizable n-vertex graph has 𝒪(n^{9/5}) edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.

Cite as

Elena Arseneva, Linda Kleist, Boris Klemz, Maarten Löffler, André Schulz, Birgit Vogtenhuber, and Alexander Wolff. Adjacency Graphs of Polyhedral Surfaces. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 11:1-11:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{arseneva_et_al:LIPIcs.SoCG.2021.11,
  author =	{Arseneva, Elena and Kleist, Linda and Klemz, Boris and L\"{o}ffler, Maarten and Schulz, Andr\'{e} and Vogtenhuber, Birgit and Wolff, Alexander},
  title =	{{Adjacency Graphs of Polyhedral Surfaces}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.11},
  URN =		{urn:nbn:de:0030-drops-138107},
  doi =		{10.4230/LIPIcs.SoCG.2021.11},
  annote =	{Keywords: polyhedral complexes, realizability, contact representation}
}
Document
Restricted Constrained Delaunay Triangulations

Authors: Marc Khoury and Jonathan Richard Shewchuk

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We introduce the restricted constrained Delaunay triangulation (restricted CDT), a generalization of both the restricted Delaunay triangulation and the constrained Delaunay triangulation. The restricted CDT is a triangulation of a surface whose edges include a set of user-specified constraining segments. We define the restricted CDT to be the dual of a restricted Voronoi diagram defined on a surface that we have extended by topological surgery. We prove several properties of restricted CDTs, including sampling conditions under which the restricted CDT contains every constraining segment and is homeomorphic to the underlying surface.

Cite as

Marc Khoury and Jonathan Richard Shewchuk. Restricted Constrained Delaunay Triangulations. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 49:1-49:16, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{khoury_et_al:LIPIcs.SoCG.2021.49,
  author =	{Khoury, Marc and Shewchuk, Jonathan Richard},
  title =	{{Restricted Constrained Delaunay Triangulations}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{49:1--49:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.49},
  URN =		{urn:nbn:de:0030-drops-138481},
  doi =		{10.4230/LIPIcs.SoCG.2021.49},
  annote =	{Keywords: restricted Delaunay triangulation, constrained Delaunay triangulation, surface meshing, surface reconstruction, topological surgery, portals}
}
Document
Track A: Algorithms, Complexity and Games
Fréchet Distance for Uncertain Curves

Authors: Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel, and Marcel Roeloffzen

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
In this paper we study a wide range of variants for computing the (discrete and continuous) Fréchet distance between uncertain curves. We define an uncertain curve as a sequence of uncertainty regions, where each region is a disk, a line segment, or a set of points. A realisation of a curve is a polyline connecting one point from each region. Given an uncertain curve and a second (certain or uncertain) curve, we seek to compute the lower and upper bound Fréchet distance, which are the minimum and maximum Fréchet distance for any realisations of the curves. We prove that both problems are NP-hard for the continuous Fréchet distance, and the upper bound problem remains hard for the discrete Fréchet distance. In contrast, the lower bound discrete Fréchet distance can be computed in polynomial time using dynamic programming. Furthermore, we show that computing the expected discrete or continuous Fréchet distance is #P-hard when the uncertainty regions are modelled as point sets or line segments. On the positive side, we argue that in any constant dimension there is a FPTAS for the lower bound problem when Δ/δ is polynomially bounded, where δ is the Fréchet distance and Δ bounds the diameter of the regions. We then argue there is a near-linear-time 3-approximation for the decision problem when the regions are convex and roughly δ-separated. Finally, we study the setting with Sakoe - Chiba bands, restricting the alignment of the two curves, and give polynomial-time algorithms for upper bound and expected (discrete) Fréchet distance for point-set-modelled uncertainty regions.

Cite as

Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel, and Marcel Roeloffzen. Fréchet Distance for Uncertain Curves. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 20:1-20:20, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{buchin_et_al:LIPIcs.ICALP.2020.20,
  author =	{Buchin, Kevin and Fan, Chenglin and L\"{o}ffler, Maarten and Popov, Aleksandr and Raichel, Benjamin and Roeloffzen, Marcel},
  title =	{{Fr\'{e}chet Distance for Uncertain Curves}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.20},
  URN =		{urn:nbn:de:0030-drops-124276},
  doi =		{10.4230/LIPIcs.ICALP.2020.20},
  annote =	{Keywords: Curves, Uncertainty, Fr\'{e}chet Distance, Hardness}
}
Document
Track A: Algorithms, Complexity and Games
Approximate Nearest Neighbor for Curves - Simple, Efficient, and Deterministic

Authors: Arnold Filtser, Omrit Filtser, and Matthew J. Katz

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
In the (1+ε,r)-approximate near-neighbor problem for curves (ANNC) under some similarity measure δ, the goal is to construct a data structure for a given set 𝒞 of curves that supports approximate near-neighbor queries: Given a query curve Q, if there exists a curve C ∈ 𝒞 such that δ(Q,C)≤ r, then return a curve C' ∈ 𝒞 with δ(Q,C') ≤ (1+ε)r. There exists an efficient reduction from the (1+ε)-approximate nearest-neighbor problem to ANNC, where in the former problem the answer to a query is a curve C ∈ 𝒞 with δ(Q,C) ≤ (1+ε)⋅δ(Q,C^*), where C^* is the curve of 𝒞 most similar to Q. Given a set 𝒞 of n curves, each consisting of m points in d dimensions, we construct a data structure for ANNC that uses n⋅ O(1/ε)^{md} storage space and has O(md) query time (for a query curve of length m), where the similarity measure between two curves is their discrete Fréchet or dynamic time warping distance. Our method is simple to implement, deterministic, and results in an exponential improvement in both query time and storage space compared to all previous bounds. Further, we also consider the asymmetric version of ANNC, where the length of the query curves is k ≪ m, and obtain essentially the same storage and query bounds as above, except that m is replaced by k. Finally, we apply our method to a version of approximate range counting for curves and achieve similar bounds.

Cite as

Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate Nearest Neighbor for Curves - Simple, Efficient, and Deterministic. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 48:1-48:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{filtser_et_al:LIPIcs.ICALP.2020.48,
  author =	{Filtser, Arnold and Filtser, Omrit and Katz, Matthew J.},
  title =	{{Approximate Nearest Neighbor for Curves - Simple, Efficient, and Deterministic}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{48:1--48:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.48},
  URN =		{urn:nbn:de:0030-drops-124555},
  doi =		{10.4230/LIPIcs.ICALP.2020.48},
  annote =	{Keywords: polygonal curves, Fr\'{e}chet distance, dynamic time warping, approximation algorithms, (asymmetric) approximate nearest neighbor, range counting}
}
  • Refine by Author
  • 32 Löffler, Maarten
  • 12 Staals, Frank
  • 7 Kostitsyna, Irina
  • 5 Buchin, Kevin
  • 5 van Kreveld, Marc
  • Show More...

  • Refine by Classification
  • 16 Theory of computation → Computational geometry
  • 5 Theory of computation → Design and analysis of algorithms
  • 1 Computing methodologies → Model development and analysis
  • 1 Mathematics of computing → Combinatoric problems
  • 1 Mathematics of computing → Discrete mathematics
  • Show More...

  • Refine by Keyword
  • 4 computational geometry
  • 3 Fréchet distance
  • 3 Uncertainty
  • 3 trajectories
  • 2 Curves
  • Show More...

  • Refine by Type
  • 36 document

  • Refine by Publication Year
  • 6 2022
  • 5 2016
  • 5 2019
  • 5 2021
  • 4 2018
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail