21 Search Results for "Lazic, Ranko"


Document
Mutation-Based Lifted Repair of Software Product Lines

Authors: Aleksandar S. Dimovski

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
This paper presents a novel lifted repair algorithm for program families (Software Product Lines - SPLs) based on code mutations. The inputs of our algorithm are an erroneous SPL and a specification given in the form of assertions. We use variability encoding to transform the given SPL into a single program, called family simulator, which is translated into a set of SMT formulas whose conjunction is satisfiable iff the simulator (i.e., the input SPL) violates an assertion. We use a predefined set of mutations applied to feature and program expressions of the given SPL. The algorithm repeatedly mutates the erroneous family simulator and checks if it becomes (bounded) correct. Since mutating an expression corresponds to mutating a formula in the set of SMT formulas encoding the family simulator, the search for a correct mutant is reduced to searching an unsatisfiable set of SMT formulas. To efficiently explore the huge state space of mutants, we call SAT and SMT solvers in an incremental way. The outputs of our algorithm are all minimal repairs in the form of minimal number of (feature and program) expression replacements such that the repaired SPL is (bounded) correct with respect to a given set of assertions. We have implemented our algorithm in a prototype tool and evaluated it on a set of #ifdef-based C programs (i.e., annotative SPLs). The experimental results show that our approach is able to successfully repair various interesting SPLs.

Cite as

Aleksandar S. Dimovski. Mutation-Based Lifted Repair of Software Product Lines. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 12:1-12:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{dimovski:LIPIcs.ECOOP.2024.12,
  author =	{Dimovski, Aleksandar S.},
  title =	{{Mutation-Based Lifted Repair of Software Product Lines}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{12:1--12:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.12},
  URN =		{urn:nbn:de:0030-drops-208613},
  doi =		{10.4230/LIPIcs.ECOOP.2024.12},
  annote =	{Keywords: Program repair, Software Product Lines, Code mutations, Variability encoding}
}
Document
An Operational Semantics in Isabelle/HOL-CSP

Authors: Benoît Ballenghien and Burkhart Wolff

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
The theory of Communicating Sequential Processes going back to Hoare and Roscoe is still today a reference model for concurrency. In the fairly rich literature, several versions of operational semantics have been discussed, which should be consistent with the denotational one. This work is based on Isabelle/HOL-CSP 2.0, a shallow embedding of the failure-divergence model of denotational semantics proposed by Hoare, Roscoe and Brookes in the eighties. In several ways, HOL-CSP is actually an extension of the original setting in the sense that it admits higher-order processes and infinite alphabets. In this paper, we present a construction and formal equivalence proofs between operational CSP semantics and the underlying denotational failure-divergence semantics. The construction is based on a definition of the operational transition operator P ⇝e P’ basically via the After operator and the classical failure-divergence refinement. Several choices are discussed to formally derive the operational semantics leading to subtle differences. The derived operational semantics for symbolic Labelled Transition Systems (LTSs) can be potentially used for certifications of model-checker logs as well as combined proof techniques.

Cite as

Benoît Ballenghien and Burkhart Wolff. An Operational Semantics in Isabelle/HOL-CSP. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 7:1-7:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ballenghien_et_al:LIPIcs.ITP.2024.7,
  author =	{Ballenghien, Beno\^{i}t and Wolff, Burkhart},
  title =	{{An Operational Semantics in Isabelle/HOL-CSP}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{7:1--7:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.7},
  URN =		{urn:nbn:de:0030-drops-207355},
  doi =		{10.4230/LIPIcs.ITP.2024.7},
  annote =	{Keywords: Process-Algebra, Semantics, Concurrency, Computational Models, Theorem Proving, Isabelle/HOL}
}
Document
Invariants for One-Counter Automata with Disequality Tests

Authors: Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We study the reachability problem for one-counter automata in which transitions can carry disequality tests. A disequality test is a guard that prohibits a specified counter value. This reachability problem has been known to be NP-hard and in PSPACE, and characterising its computational complexity has been left as a challenging open question by Almagor, Cohen, Pérez, Shirmohammadi, and Worrell (2020). We reduce the complexity gap, placing the problem into the second level of the polynomial hierarchy, namely into the class coNP^NP. In the presence of both equality and disequality tests, our upper bound is at the third level, P^NP^NP. To prove this result, we show that non-reachability can be witnessed by a pair of invariants (forward and backward). These invariants are almost inductive. They aim to over-approximate only a "core" of the reachability set instead of the entire set. The invariants are also leaky: it is possible to escape the set. We complement this with separate checks as the leaks can only occur in a controlled way.

Cite as

Dmitry Chistikov, Jérôme Leroux, Henry Sinclair-Banks, and Nicolas Waldburger. Invariants for One-Counter Automata with Disequality Tests. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 17:1-17:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2024.17,
  author =	{Chistikov, Dmitry and Leroux, J\'{e}r\^{o}me and Sinclair-Banks, Henry and Waldburger, Nicolas},
  title =	{{Invariants for One-Counter Automata with Disequality Tests}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.17},
  URN =		{urn:nbn:de:0030-drops-207898},
  doi =		{10.4230/LIPIcs.CONCUR.2024.17},
  annote =	{Keywords: Inductive invariant, Vector addition system, One-counter automaton}
}
Document
Bi-Reachability in Petri Nets with Data

Authors: Łukasz Kamiński and Sławomir Lasota

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
We investigate Petri nets with data, an extension of plain Petri nets where tokens carry values from an infinite data domain, and executability of transitions is conditioned by equalities between data values. We provide a decision procedure for the bi-reachability problem: given a Petri net and its two configurations, we ask if each of the configurations is reachable from the other. This pushes forward the decidability borderline, as the bi-reachability problem subsumes the coverability problem (which is known to be decidable) and is subsumed by the reachability problem (whose decidability status is unknown).

Cite as

Łukasz Kamiński and Sławomir Lasota. Bi-Reachability in Petri Nets with Data. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kaminski_et_al:LIPIcs.CONCUR.2024.31,
  author =	{Kami\'{n}ski, {\L}ukasz and Lasota, S{\l}awomir},
  title =	{{Bi-Reachability in Petri Nets with Data}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.31},
  URN =		{urn:nbn:de:0030-drops-208038},
  doi =		{10.4230/LIPIcs.CONCUR.2024.31},
  annote =	{Keywords: Petri nets, Petri nets with data, reachability, bi-reachability, reversible reachability, mutual reachability, orbit-finite sets}
}
Document
On Continuous Pushdown VASS in One Dimension

Authors: Guillermo A. Pérez and Shrisha Rao

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
A pushdown vector addition system with states (PVASS) extends the model of vector addition systems with a pushdown stack. The algorithmic analysis of PVASS has applications such as static analysis of recursive programs manipulating integer variables. Unfortunately, reachability analysis, even for one-dimensional PVASS is not known to be decidable. So, we relax the model of one-dimensional PVASS to make the counter updates continuous and show that in this case reachability, coverability, and boundedness are decidable in polynomial time. In addition, for the extension of the model with lower-bound guards on the states, we show that coverability and reachability are NP-complete, and boundedness is coNP-complete.

Cite as

Guillermo A. Pérez and Shrisha Rao. On Continuous Pushdown VASS in One Dimension. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 34:1-34:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{perez_et_al:LIPIcs.CONCUR.2024.34,
  author =	{P\'{e}rez, Guillermo A. and Rao, Shrisha},
  title =	{{On Continuous Pushdown VASS in One Dimension}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{34:1--34:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.34},
  URN =		{urn:nbn:de:0030-drops-208065},
  doi =		{10.4230/LIPIcs.CONCUR.2024.34},
  annote =	{Keywords: Vector addition systems, Pushdown automata, Reachability}
}
Document
Nominal Tree Automata with Name Allocation

Authors: Simon Prucker and Lutz Schröder

Published in: LIPIcs, Volume 311, 35th International Conference on Concurrency Theory (CONCUR 2024)


Abstract
Data trees serve as an abstraction of structured data, such as XML documents. A number of specification formalisms for languages of data trees have been developed, many of them adhering to the paradigm of register automata, which is based on storing data values encountered on the tree in registers for subsequent comparison with further data values. Already on word languages, the expressiveness of such automata models typically increases with the power of control (e.g. deterministic, non-deterministic, alternating). Language inclusion is typically undecidable for non-deterministic or alternating models unless the number of registers is radically restricted, and even then often remains non-elementary. We present an automaton model for data trees that retains a reasonable level of expressiveness, in particular allows non-determinism and any number of registers, while admitting language inclusion checking in elementary complexity, in fact in parametrized exponential time. We phrase the description of our automaton model in the language of nominal sets, building on the recently introduced paradigm of explicit name allocation in nominal automata.

Cite as

Simon Prucker and Lutz Schröder. Nominal Tree Automata with Name Allocation. In 35th International Conference on Concurrency Theory (CONCUR 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 311, pp. 35:1-35:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{prucker_et_al:LIPIcs.CONCUR.2024.35,
  author =	{Prucker, Simon and Schr\"{o}der, Lutz},
  title =	{{Nominal Tree Automata with Name Allocation}},
  booktitle =	{35th International Conference on Concurrency Theory (CONCUR 2024)},
  pages =	{35:1--35:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-339-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{311},
  editor =	{Majumdar, Rupak and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2024.35},
  URN =		{urn:nbn:de:0030-drops-208071},
  doi =		{10.4230/LIPIcs.CONCUR.2024.35},
  annote =	{Keywords: Data languages, tree automata, nominal automata, inclusion checking}
}
Document
Invited Paper
Challenges of the Reachability Problem in Infinite-State Systems (Invited Paper)

Authors: Wojciech Czerwiński

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
The reachability problem is a central problem for various infinite state systems like automata with pushdown, with different kinds of counters or combinations thereof. Despite its centrality and decades of research the community still lacks a lot of answers for fundamental and basic questions of that type. I briefly describe my personal viewpoint on the current state of art and emphasise interesting directions, which are worth investigating in my opinion. I also formulate several easy to formulate and understand challenges, which might be pretty hard to solve but at the same time illustrate fundamental lack of our understanding in the area.

Cite as

Wojciech Czerwiński. Challenges of the Reachability Problem in Infinite-State Systems (Invited Paper). In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 2:1-2:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{czerwinski:LIPIcs.MFCS.2024.2,
  author =	{Czerwi\'{n}ski, Wojciech},
  title =	{{Challenges of the Reachability Problem in Infinite-State Systems}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{2:1--2:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.2},
  URN =		{urn:nbn:de:0030-drops-205582},
  doi =		{10.4230/LIPIcs.MFCS.2024.2},
  annote =	{Keywords: reachability problem, infinite-state systems, vector addition systems, pushdown}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Lookahead Games and Efficient Determinisation of History-Deterministic Büchi Automata

Authors: Rohan Acharya, Marcin Jurdziński, and Aditya Prakash

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Our main technical contribution is a polynomial-time determinisation procedure for history-deterministic Büchi automata, which settles an open question of Kuperberg and Skrzypczak, 2015. A key conceptual contribution is the lookahead game, which is a variant of Bagnol and Kuperberg’s token game, in which Adam is given a fixed lookahead. We prove that the lookahead game is equivalent to the 1-token game. This allows us to show that the 1-token game characterises history-determinism for semantically-deterministic Büchi automata, which paves the way to our polynomial-time determinisation procedure.

Cite as

Rohan Acharya, Marcin Jurdziński, and Aditya Prakash. Lookahead Games and Efficient Determinisation of History-Deterministic Büchi Automata. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 124:1-124:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{acharya_et_al:LIPIcs.ICALP.2024.124,
  author =	{Acharya, Rohan and Jurdzi\'{n}ski, Marcin and Prakash, Aditya},
  title =	{{Lookahead Games and Efficient Determinisation of History-Deterministic B\"{u}chi Automata}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{124:1--124:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.124},
  URN =		{urn:nbn:de:0030-drops-202672},
  doi =		{10.4230/LIPIcs.ICALP.2024.124},
  annote =	{Keywords: History determinism, Good-for-games, Automata over infinite words, Games}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Improved Algorithm for Reachability in d-VASS

Authors: Yuxi Fu, Qizhe Yang, and Yangluo Zheng

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
An 𝖥_{d} upper bound for the reachability problem in vector addition systems with states (VASS) in fixed dimension is given, where 𝖥_d is the d-th level of the Grzegorczyk hierarchy of complexity classes. The new algorithm combines the idea of the linear path scheme characterization of the reachability in the 2-dimension VASSes with the general decomposition algorithm by Mayr, Kosaraju and Lambert. The result improves the 𝖥_{d + 4} upper bound due to Leroux and Schmitz (LICS 2019).

Cite as

Yuxi Fu, Qizhe Yang, and Yangluo Zheng. Improved Algorithm for Reachability in d-VASS. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 136:1-136:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.ICALP.2024.136,
  author =	{Fu, Yuxi and Yang, Qizhe and Zheng, Yangluo},
  title =	{{Improved Algorithm for Reachability in d-VASS}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{136:1--136:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.136},
  URN =		{urn:nbn:de:0030-drops-202799},
  doi =		{10.4230/LIPIcs.ICALP.2024.136},
  annote =	{Keywords: Petri net, vector addition system, reachability}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Flattability of Priority Vector Addition Systems

Authors: Roland Guttenberg

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Vector addition systems (VAS), also known as Petri nets, are a popular model of concurrent systems. Many problems from many areas reduce to the reachability problem for VAS, which consists of deciding whether a target configuration of a VAS is reachable from a given initial configuration. One of the main approaches to solve the problem on practical instances is called flattening, intuitively removing nested loops. This technique is known to terminate for semilinear VAS due to [Jérôme Leroux, 2013]. In this paper, we prove that also for VAS with nested zero tests, called Priority VAS, flattening does in fact terminate for all semilinear reachability relations. Furthermore, we prove that Priority VAS admit semilinear inductive invariants. Both of these results are obtained by defining a well-quasi-order on runs of Priority VAS which has good pumping properties.

Cite as

Roland Guttenberg. Flattability of Priority Vector Addition Systems. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 141:1-141:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guttenberg:LIPIcs.ICALP.2024.141,
  author =	{Guttenberg, Roland},
  title =	{{Flattability of Priority Vector Addition Systems}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{141:1--141:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.141},
  URN =		{urn:nbn:de:0030-drops-202848},
  doi =		{10.4230/LIPIcs.ICALP.2024.141},
  annote =	{Keywords: Priority Vector Addition Systems, Semilinear, Inductive Invariants, Geometry, Flattability, Almost Semilinear, Transformer Relation}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On the Length of Strongly Monotone Descending Chains over ℕ^d

Authors: Sylvain Schmitz and Lia Schütze

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A recent breakthrough by Künnemann, Mazowiecki, Schütze, Sinclair-Banks, and Węgrzycki (ICALP 2023) bounds the running time for the coverability problem in d-dimensional vector addition systems under unary encoding to n^{2^{O(d)}}, improving on Rackoff’s n^{2^{O(dlg d)}} upper bound (Theor. Comput. Sci. 1978), and provides conditional matching lower bounds. In this paper, we revisit Lazić and Schmitz' "ideal view" of the backward coverability algorithm (Inform. Comput. 2021) in the light of this breakthrough. We show that the controlled strongly monotone descending chains of downwards-closed sets over ℕ^d that arise from the dual backward coverability algorithm of Lazić and Schmitz on d-dimensional unary vector addition systems also enjoy this tight n^{2^{O(d)}} upper bound on their length, and that this also translates into the same bound on the running time of the backward coverability algorithm. Furthermore, our analysis takes place in a more general setting than that of Lazić and Schmitz, which allows to show the same results and improve on the 2EXPSPACE upper bound derived by Benedikt, Duff, Sharad, and Worrell (LICS 2017) for the coverability problem in invertible affine nets.

Cite as

Sylvain Schmitz and Lia Schütze. On the Length of Strongly Monotone Descending Chains over ℕ^d. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 153:1-153:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schmitz_et_al:LIPIcs.ICALP.2024.153,
  author =	{Schmitz, Sylvain and Sch\"{u}tze, Lia},
  title =	{{On the Length of Strongly Monotone Descending Chains over \mathbb{N}^d}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{153:1--153:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.153},
  URN =		{urn:nbn:de:0030-drops-202964},
  doi =		{10.4230/LIPIcs.ICALP.2024.153},
  annote =	{Keywords: Vector addition system, coverability, well-quasi-order, order ideal, affine net}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Verification of Population Protocols with Unordered Data

Authors: Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas Waldburger, and Chana Weil-Kennedy

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Population protocols are a well-studied model of distributed computation in which a group of anonymous finite-state agents communicates via pairwise interactions. Together they decide whether their initial configuration, i. e., the initial distribution of agents in the states, satisfies a property. As an extension in order to express properties of multisets over an infinite data domain, Blondin and Ladouceur (ICALP'23) introduced population protocols with unordered data (PPUD). In PPUD, each agent carries a fixed data value, and the interactions between agents depend on whether their data are equal or not. Blondin and Ladouceur also identified the interesting subclass of immediate observation PPUD (IOPPUD), where in every transition one of the two agents remains passive and does not move, and they characterised its expressive power. We study the decidability and complexity of formally verifying these protocols. The main verification problem for population protocols is well-specification, that is, checking whether the given PPUD computes some function. We show that well-specification is undecidable in general. By contrast, for IOPPUD, we exhibit a large yet natural class of problems, which includes well-specification among other classic problems, and establish that these problems are in ExpSpace. We also provide a lower complexity bound, namely coNExpTime-hardness.

Cite as

Steffen van Bergerem, Roland Guttenberg, Sandra Kiefer, Corto Mascle, Nicolas Waldburger, and Chana Weil-Kennedy. Verification of Population Protocols with Unordered Data. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 156:1-156:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{vanbergerem_et_al:LIPIcs.ICALP.2024.156,
  author =	{van Bergerem, Steffen and Guttenberg, Roland and Kiefer, Sandra and Mascle, Corto and Waldburger, Nicolas and Weil-Kennedy, Chana},
  title =	{{Verification of Population Protocols with Unordered Data}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{156:1--156:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.156},
  URN =		{urn:nbn:de:0030-drops-202993},
  doi =		{10.4230/LIPIcs.ICALP.2024.156},
  annote =	{Keywords: Population protocols, Parameterized verification, Distributed computing, Well-specification}
}
Document
Invited Talk
Branching in Well-Structured Transition Systems (Invited Talk)

Authors: Sylvain Schmitz

Published in: LIPIcs, Volume 183, 29th EACSL Annual Conference on Computer Science Logic (CSL 2021)


Abstract
The framework of well-structured transition systems has been highly successful in providing generic algorithms to show the decidability of verification problems for infinite-state systems. In some of these applications, the executions in the system at hand are actually trees, and need to be "lifted" to executions over sets of configurations in order to fit in the framework. The downside of this approach is that we might lose precision when analysing the computational complexity of the algorithms, compared to reasoning over branching executions.

Cite as

Sylvain Schmitz. Branching in Well-Structured Transition Systems (Invited Talk). In 29th EACSL Annual Conference on Computer Science Logic (CSL 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 183, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{schmitz:LIPIcs.CSL.2021.3,
  author =	{Schmitz, Sylvain},
  title =	{{Branching in Well-Structured Transition Systems}},
  booktitle =	{29th EACSL Annual Conference on Computer Science Logic (CSL 2021)},
  pages =	{3:1--3:3},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-175-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{183},
  editor =	{Baier, Christel and Goubault-Larrecq, Jean},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2021.3},
  URN =		{urn:nbn:de:0030-drops-134377},
  doi =		{10.4230/LIPIcs.CSL.2021.3},
  annote =	{Keywords: fast-growing complexity, well-structured transition system}
}
Document
Reachability in Fixed Dimension Vector Addition Systems with States

Authors: Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
The reachability problem is a central decision problem in verification of vector addition systems with states (VASS). In spite of recent progress, the complexity of the reachability problem remains unsettled, and it is closely related to the lengths of shortest VASS runs that witness reachability. We obtain three main results for VASS of fixed dimension. For the first two, we assume that the integers in the input are given in unary, and that the control graph of the given VASS is flat (i.e., without nested cycles). We obtain a family of VASS in dimension 3 whose shortest runs are exponential, and we show that the reachability problem is NP-hard in dimension 7. These results resolve negatively questions that had been posed by the works of Blondin et al. in LICS 2015 and Englert et al. in LICS 2016, and contribute a first construction that distinguishes 3-dimensional flat VASS from 2-dimensional ones. Our third result, by means of a novel family of products of integer fractions, shows that 4-dimensional VASS can have doubly exponentially long shortest runs. The smallest dimension for which this was previously known is 14.

Cite as

Wojciech Czerwiński, Sławomir Lasota, Ranko Lazić, Jérôme Leroux, and Filip Mazowiecki. Reachability in Fixed Dimension Vector Addition Systems with States. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 48:1-48:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{czerwinski_et_al:LIPIcs.CONCUR.2020.48,
  author =	{Czerwi\'{n}ski, Wojciech and Lasota, S{\l}awomir and Lazi\'{c}, Ranko and Leroux, J\'{e}r\^{o}me and Mazowiecki, Filip},
  title =	{{Reachability in Fixed Dimension Vector Addition Systems with States}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{48:1--48:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.48},
  URN =		{urn:nbn:de:0030-drops-128605},
  doi =		{10.4230/LIPIcs.CONCUR.2020.48},
  annote =	{Keywords: reachability problem, vector addition systems, Petri nets}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Complexity of Bounded Context Switching with Dynamic Thread Creation

Authors: Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
Dynamic networks of concurrent pushdown systems (DCPS) are a theoretical model for multi-threaded recursive programs with shared global state and dynamical creation of threads. The (global) state reachability problem for DCPS is undecidable in general, but Atig et al. (2009) showed that it becomes decidable, and is in 2EXPSPACE, when each thread is restricted to a fixed number of context switches. The best known lower bound for the problem is EXPSPACE-hard and this lower bound follows already when each thread is a finite-state machine and runs atomically to completion (i.e., does not switch contexts). In this paper, we close the gap by showing that state reachability is 2EXPSPACE-hard already with only one context switch. Interestingly, state reachability analysis is in EXPSPACE both for pushdown threads without context switches as well as for finite-state threads with arbitrary context switches. Thus, recursive threads together with a single context switch provide an exponential advantage. Our proof techniques are of independent interest for 2EXPSPACE-hardness results. We introduce transducer-defined Petri nets, a succinct representation for Petri nets, and show coverability is 2EXPSPACE-hard for this model. To show 2EXPSPACE-hardness, we present a modified version of Lipton’s simulation of counter machines by Petri nets, where the net programs can make explicit recursive procedure calls up to a bounded depth.

Cite as

Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. The Complexity of Bounded Context Switching with Dynamic Thread Creation. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 111:1-111:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baumann_et_al:LIPIcs.ICALP.2020.111,
  author =	{Baumann, Pascal and Majumdar, Rupak and Thinniyam, Ramanathan S. and Zetzsche, Georg},
  title =	{{The Complexity of Bounded Context Switching with Dynamic Thread Creation}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{111:1--111:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.111},
  URN =		{urn:nbn:de:0030-drops-125187},
  doi =		{10.4230/LIPIcs.ICALP.2020.111},
  annote =	{Keywords: Dynamic thread creation, Bounded context switching, Asynchronous Programs, Safety verification, State reachability, Petri nets, Complexity, Succinctness, Counter Programs}
}
  • Refine by Author
  • 4 Lazic, Ranko
  • 3 Leroux, Jérôme
  • 3 Mazowiecki, Filip
  • 2 Czerwiński, Wojciech
  • 2 Guttenberg, Roland
  • Show More...

  • Refine by Classification
  • 4 Theory of computation → Verification by model checking
  • 3 Theory of computation → Concurrency
  • 3 Theory of computation → Distributed computing models
  • 3 Theory of computation → Logic and verification
  • 3 Theory of computation → Models of computation
  • Show More...

  • Refine by Keyword
  • 5 Petri nets
  • 4 reachability
  • 3 reachability problem
  • 3 vector addition systems
  • 2 Vector addition system
  • Show More...

  • Refine by Type
  • 21 document

  • Refine by Publication Year
  • 12 2024
  • 2 2019
  • 2 2020
  • 1 2009
  • 1 2016
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail