200 Search Results for "Mitzenmacher, Michael"


Volume

OASIcs, Volume 69

2nd Symposium on Simplicity in Algorithms (SOSA 2019)

SOSA 2019, January 8-9, 2019, San Diego, CA, USA

Editors: Jeremy T. Fineman and Michael Mitzenmacher

Volume

LIPIcs, Volume 55

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)

ICALP 2016, July 11-15, 2016, Rome, Italy

Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi

Document
Bit-Array-Based Alternatives to HyperLogLog

Authors: Svante Janson, Jérémie Lumbroso, and Robert Sedgewick

Published in: LIPIcs, Volume 302, 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)


Abstract
We present a family of algorithms for the problem of estimating the number of distinct items in an input stream that are simple to implement and are appropriate for practical applications. Our algorithms are a logical extension of the series of algorithms developed by Flajolet and his coauthors starting in 1983 that culminated in the widely used HyperLogLog algorithm. These algorithms divide the input stream into M substreams and lead to a time-accuracy tradeoff where a constant number of bits per substream are saved to achieve a relative accuracy proportional to 1/√M. Our algorithms use just one or two bits per substream. Their effectiveness is demonstrated by a proof of approximate normality, with explicit expressions for standard errors that inform parameter settings and allow proper quantitative comparisons with other methods. Hypotheses about performance are validated through experiments using a realistic input stream, with the conclusion that our algorithms are more accurate than HyperLogLog when using the same amount of memory, and they use two-thirds as much memory as HyperLogLog to achieve a given accuracy.

Cite as

Svante Janson, Jérémie Lumbroso, and Robert Sedgewick. Bit-Array-Based Alternatives to HyperLogLog. In 35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 302, pp. 5:1-5:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{janson_et_al:LIPIcs.AofA.2024.5,
  author =	{Janson, Svante and Lumbroso, J\'{e}r\'{e}mie and Sedgewick, Robert},
  title =	{{Bit-Array-Based Alternatives to HyperLogLog}},
  booktitle =	{35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2024)},
  pages =	{5:1--5:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-329-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{302},
  editor =	{Mailler, C\'{e}cile and Wild, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2024.5},
  URN =		{urn:nbn:de:0030-drops-204402},
  doi =		{10.4230/LIPIcs.AofA.2024.5},
  annote =	{Keywords: Cardinality estimation, sketching, Hyperloglog}
}
Document
Streaming Zero-Knowledge Proofs

Authors: Graham Cormode, Marcel Dall'Agnol, Tom Gur, and Chris Hickey

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
Streaming interactive proofs (SIPs) enable a space-bounded algorithm with one-pass access to a massive stream of data to verify a computation that requires large space, by communicating with a powerful but untrusted prover. This work initiates the study of zero-knowledge proofs for data streams. We define the notion of zero-knowledge in the streaming setting and construct zero-knowledge SIPs for the two main algorithmic building blocks in the streaming interactive proofs literature: the sumcheck and polynomial evaluation protocols. To the best of our knowledge all known streaming interactive proofs are based on either of these tools, and indeed, this allows us to obtain zero-knowledge SIPs for central streaming problems such as index, point and range queries, median, frequency moments, and inner product. Our protocols are efficient in terms of time and space, as well as communication: the verifier algorithm’s space complexity is polylog(n) and, after a non-interactive setup that uses a random string of near-linear length, the remaining parameters are n^o(1). En route, we develop an algorithmic toolkit for designing zero-knowledge data stream protocols, consisting of an algebraic streaming commitment protocol and a temporal commitment protocol. Our analyses rely on delicate algebraic and information-theoretic arguments and reductions from average-case communication complexity.

Cite as

Graham Cormode, Marcel Dall'Agnol, Tom Gur, and Chris Hickey. Streaming Zero-Knowledge Proofs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 2:1-2:66, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cormode_et_al:LIPIcs.CCC.2024.2,
  author =	{Cormode, Graham and Dall'Agnol, Marcel and Gur, Tom and Hickey, Chris},
  title =	{{Streaming Zero-Knowledge Proofs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{2:1--2:66},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.2},
  URN =		{urn:nbn:de:0030-drops-203988},
  doi =		{10.4230/LIPIcs.CCC.2024.2},
  annote =	{Keywords: Zero-knowledge proofs, streaming algorithms, computational complexity}
}
Document
Lower Bounds for Set-Multilinear Branching Programs

Authors: Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear algebraic branching programs, each with a possibly different ordering (∑smABP). Specifically, we give an explicit nd-variate polynomial of degree d such that any ∑smABP computing it must have size n^ω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a single ordered set-multilinear ABP. The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered set-multilinear branching programs - for a polynomial of sufficiently low degree - would imply super-polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n), then it would imply super-polynomial lower bounds against general ABPs. Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput. Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each of which established lower bounds for related or restricted versions of this model. They also strongly answer a question from the former two, which asked to prove super-polynomial lower bounds for general ∑smABP.

Cite as

Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka. Lower Bounds for Set-Multilinear Branching Programs. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chatterjee_et_al:LIPIcs.CCC.2024.20,
  author =	{Chatterjee, Prerona and Kush, Deepanshu and Saraf, Shubhangi and Shpilka, Amir},
  title =	{{Lower Bounds for Set-Multilinear Branching Programs}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.20},
  URN =		{urn:nbn:de:0030-drops-204167},
  doi =		{10.4230/LIPIcs.CCC.2024.20},
  annote =	{Keywords: Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials}
}
Document
Baby PIH: Parameterized Inapproximability of Min CSP

Authors: Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep

Published in: LIPIcs, Volume 300, 39th Computational Complexity Conference (CCC 2024)


Abstract
The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable 2CSP instance from one which is only (1-ε)-satisfiable (where the parameter is the number of variables) for some constant 0 < ε < 1. We consider a minimization version of CSPs (Min-CSP), where one may assign r values to each variable, and the goal is to ensure that every constraint is satisfied by some choice among the r × r pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable). We prove the following strong parameterized inapproximability for Min CSP: For every r ≥ 1, it is W[1]-hard to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer to this statement as "Baby PIH", following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time polynomially bounded in both the number of variables and the alphabet size, and thus implies the Baby PCP theorem as well.

Cite as

Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep. Baby PIH: Parameterized Inapproximability of Min CSP. In 39th Computational Complexity Conference (CCC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 300, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.CCC.2024.27,
  author =	{Guruswami, Venkatesan and Ren, Xuandi and Sandeep, Sai},
  title =	{{Baby PIH: Parameterized Inapproximability of Min CSP}},
  booktitle =	{39th Computational Complexity Conference (CCC 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-331-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{300},
  editor =	{Santhanam, Rahul},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2024.27},
  URN =		{urn:nbn:de:0030-drops-204237},
  doi =		{10.4230/LIPIcs.CCC.2024.27},
  annote =	{Keywords: Parameterized Inapproximability Hypothesis, Constraint Satisfaction Problems}
}
Document
Separator Based Data Reduction for the Maximum Cut Problem

Authors: Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Preprocessing is an important ingredient for solving the maximum cut problem to optimality on real-world graphs. In our work, we derive a new framework for data reduction rules based on vertex separators. Vertex separators are sets of vertices, whose removal increases the number of connected components of a graph. Certain small separators can be found in linear time, allowing for an efficient combination of our framework with existing data reduction rules. Additionally, we complement known data reduction rules for triangles with a new one. In our computational experiments on established benchmark instances, we clearly show the effectiveness and efficiency of our proposed data reduction techniques. The resulting graphs are significantly smaller than in earlier studies and sometimes no vertex is left, so preprocessing has fully solved the instance to optimality. The introduced techniques are also shown to offer significant speedup potential for an exact state-of-the-art solver and to help a state-of-the-art heuristic to produce solutions of higher quality.

Cite as

Jonas Charfreitag, Christine Dahn, Michael Kaibel, Philip Mayer, Petra Mutzel, and Lukas Schürmann. Separator Based Data Reduction for the Maximum Cut Problem. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 4:1-4:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{charfreitag_et_al:LIPIcs.SEA.2024.4,
  author =	{Charfreitag, Jonas and Dahn, Christine and Kaibel, Michael and Mayer, Philip and Mutzel, Petra and Sch\"{u}rmann, Lukas},
  title =	{{Separator Based Data Reduction for the Maximum Cut Problem}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{4:1--4:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.4},
  URN =		{urn:nbn:de:0030-drops-203698},
  doi =		{10.4230/LIPIcs.SEA.2024.4},
  annote =	{Keywords: Data Reduction, Maximum Cut, Vertex Separators}
}
Document
Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks

Authors: Kenneth Langedal, Demian Hespe, and Peter Sanders

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Identifying a maximum independent set is a fundamental NP-hard problem. This problem has several real-world applications and requires finding the largest possible set of vertices not adjacent to each other in an undirected graph. Over the past few years, branch-and-bound and branch-and-reduce algorithms have emerged as some of the most effective methods for solving the problem exactly. Specifically, the branch-and-reduce approach, which combines branch-and-bound principles with reduction rules, has proven particularly successful in tackling previously unmanageable real-world instances. This progress was largely made possible by the development of more effective reduction rules. Nevertheless, other key components that can impact the efficiency of these algorithms have not received the same level of interest. Among these is the branching strategy, which determines which vertex to branch on next. Until recently, the most widely used strategy was to choose the vertex of the highest degree. In this work, we present a graph neural network approach for selecting the next branching vertex. The intricate nature of current branch-and-bound solvers makes supervised and reinforcement learning difficult. Therefore, we use a population-based genetic algorithm to evolve the model’s parameters instead. Our proposed approach results in a speedup on 73% of the benchmark instances with a median speedup of 24%.

Cite as

Kenneth Langedal, Demian Hespe, and Peter Sanders. Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{langedal_et_al:LIPIcs.SEA.2024.20,
  author =	{Langedal, Kenneth and Hespe, Demian and Sanders, Peter},
  title =	{{Targeted Branching for the Maximum Independent Set Problem Using Graph Neural Networks}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{20:1--20:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.20},
  URN =		{urn:nbn:de:0030-drops-203853},
  doi =		{10.4230/LIPIcs.SEA.2024.20},
  annote =	{Keywords: Graphs, Independent Set, Vertex Cover, Graph Neural Networks, Branch-and-Reduce}
}
Document
SPIDER: Improved Succinct Rank and Select Performance

Authors: Matthew D. Laws, Jocelyn Bliven, Kit Conklin, Elyes Laalai, Samuel McCauley, and Zach S. Sturdevant

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Rank and select data structures seek to preprocess a bit vector to quickly answer two kinds of queries: Rank(i) gives the number of 1 bits in slots 0 through i, and Select(j) gives the first slot s with Rank(s) = j. A succinct data structure can answer these queries while using space much smaller than the size of the original bit vector. State of the art succinct rank and select data structures use as little as 4% extra space (over the underlying bit vector) while answering rank and select queries very quickly. Rank queries can be answered using only a handful of array accesses. Select queries can be answered by starting with similar array accesses, followed by a linear scan through the bit vector. Nonetheless, a tradeoff remains: data structures that use under 4% space are significantly slower at answering rank and select queries than less-space-efficient data structures (using, say, over 20% extra space). In this paper we make significantly progress towards closing this gap. We give a new data structure, SPIDER, which uses 3.82% extra space. SPIDER gives the best known rank query time for data sets of 8 billion or more bits, even compared to much less space-efficient data structures. For select queries, SPIDER outperforms all data structures that use less than 4% space, and significantly closes the gap in select performance between data structures with less than 4% space, and those that use more (over 20% for both rank and select) space. SPIDER makes two main technical contributions. For rank queries, it improves performance by interleaving the metadata with the bit vector to improve cache efficiency. For select queries, it uses predictions to almost eliminate the cost of the linear scan. These predictions are inspired by recent results on data structures with machine-learned predictions, adapted to the succinct data structure setting. Our results hold on both real and synthetic data, showing that these predictions are effective in practice.

Cite as

Matthew D. Laws, Jocelyn Bliven, Kit Conklin, Elyes Laalai, Samuel McCauley, and Zach S. Sturdevant. SPIDER: Improved Succinct Rank and Select Performance. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{laws_et_al:LIPIcs.SEA.2024.21,
  author =	{Laws, Matthew D. and Bliven, Jocelyn and Conklin, Kit and Laalai, Elyes and McCauley, Samuel and Sturdevant, Zach S.},
  title =	{{SPIDER: Improved Succinct Rank and Select Performance}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.21},
  URN =		{urn:nbn:de:0030-drops-203865},
  doi =		{10.4230/LIPIcs.SEA.2024.21},
  annote =	{Keywords: Rank and Select, Succinct Data Structures, Data Structres, Cache Performance, Predictions}
}
Document
Track A: Algorithms, Complexity and Games
List Update with Delays or Time Windows

Authors: Yossi Azar, Shahar Lewkowicz, and Danny Vainstein

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We address the problem of List Update, which is considered one of the fundamental problems in online algorithms and competitive analysis. In this context, we are presented with a list of elements and receive requests for these elements over time. Our objective is to fulfill these requests, incurring a cost proportional to their position in the list. Additionally, we can swap any two consecutive elements at a cost of 1. The renowned "Move to Front" algorithm, introduced by Sleator and Tarjan, immediately moves any requested element to the front of the list. They demonstrated that this algorithm achieves a competitive ratio of 2. While this bound is impressive, the actual cost of the algorithm’s solution can be excessively high. For example, if we request the last half of the list, the resulting solution cost becomes quadratic in the list’s length. To address this issue, we consider a more generalized problem called List Update with Time Windows. In this variant, each request arrives with a specific deadline by which it must be served, rather than being served immediately. Moreover, we allow the algorithm to process multiple requests simultaneously, accessing the corresponding elements in a single pass. The cost incurred in this case is determined by the position of the furthest element accessed, leading to a significant reduction in the total solution cost. We introduce this problem to explore lower solution costs, but it necessitates the development of new algorithms. For instance, Move-to-Front fails when handling the simple scenario of requesting the last half of the list with overlapping time windows. In our work, we present a natural O(1) competitive algorithm for this problem. While the algorithm itself is intuitive, its analysis is intricate, requiring the use of a novel potential function. Additionally, we delve into a more general problem called List Update with Delays, where the fixed deadlines are replaced with arbitrary delay functions. In this case, the cost includes not only the access and swapping costs, but also penalties for the delays incurred until the requests are served. This problem encompasses a special case known as the prize collecting version, where a request may go unserved up to a given deadline, resulting in a specified penalty. For this more comprehensive problem, we establish an O(1) competitive algorithm. However, the algorithm for the delay version is more complex, and its analysis involves significantly more intricate considerations.

Cite as

Yossi Azar, Shahar Lewkowicz, and Danny Vainstein. List Update with Delays or Time Windows. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{azar_et_al:LIPIcs.ICALP.2024.15,
  author =	{Azar, Yossi and Lewkowicz, Shahar and Vainstein, Danny},
  title =	{{List Update with Delays or Time Windows}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.15},
  URN =		{urn:nbn:de:0030-drops-201583},
  doi =		{10.4230/LIPIcs.ICALP.2024.15},
  annote =	{Keywords: Online, List Update, Delay, Time Window, Deadline}
}
Document
Track A: Algorithms, Complexity and Games
Better Space-Time-Robustness Trade-Offs for Set Reconciliation

Authors: Djamal Belazzougui, Gregory Kucherov, and Stefan Walzer

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the problem of reconstructing the symmetric difference between similar sets from their representations (sketches) of size linear in the number of differences. Exact solutions to this problem are based on error-correcting coding techniques and suffer from a large decoding time. Existing probabilistic solutions based on Invertible Bloom Lookup Tables (IBLTs) are time-efficient but offer insufficient success guarantees for many applications. Here we propose a tunable trade-off between the two approaches combining the efficiency of IBLTs with exponentially decreasing failure probability. The proof relies on a refined analysis of IBLTs proposed in (Bæk Tejs Houen et al. SOSA 2023) which has an independent interest. We also propose a modification of our algorithm that enables telling apart the elements of each set in the symmetric difference.

Cite as

Djamal Belazzougui, Gregory Kucherov, and Stefan Walzer. Better Space-Time-Robustness Trade-Offs for Set Reconciliation. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 20:1-20:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{belazzougui_et_al:LIPIcs.ICALP.2024.20,
  author =	{Belazzougui, Djamal and Kucherov, Gregory and Walzer, Stefan},
  title =	{{Better Space-Time-Robustness Trade-Offs for Set Reconciliation}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{20:1--20:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.20},
  URN =		{urn:nbn:de:0030-drops-201639},
  doi =		{10.4230/LIPIcs.ICALP.2024.20},
  annote =	{Keywords: data structures, hashing, set reconciliation, invertible Bloom lookup tables, random hypergraphs, BCH codes}
}
Document
Track A: Algorithms, Complexity and Games
Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time

Authors: Nick Fischer and Leo Wennmann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this work we revisit the elementary scheduling problem 1||∑ p_j U_j. The goal is to select, among n jobs with processing times and due dates, a subset of jobs with maximum total processing time that can be scheduled in sequence without violating their due dates. This problem is NP-hard, but a classical algorithm by Lawler and Moore from the 60s solves this problem in pseudo-polynomial time O(nP), where P is the total processing time of all jobs. With the aim to develop best-possible pseudo-polynomial-time algorithms, a recent wave of results has improved Lawler and Moore’s algorithm for 1||∑ p_j U_j: First to time Õ(P^{7/4}) [Bringmann, Fischer, Hermelin, Shabtay, Wellnitz; ICALP'20], then to time Õ(P^{5/3}) [Klein, Polak, Rohwedder; SODA'23], and finally to time Õ(P^{7/5}) [Schieber, Sitaraman; WADS'23]. It remained an exciting open question whether these works can be improved further. In this work we develop an algorithm in near-linear time Õ(P) for the 1||∑ p_j U_j problem. This running time not only significantly improves upon the previous results, but also matches conditional lower bounds based on the Strong Exponential Time Hypothesis or the Set Cover Hypothesis and is therefore likely optimal (up to subpolynomial factors). Our new algorithm also extends to the case of m machines in time Õ(P^m). In contrast to the previous improvements, we take a different, more direct approach inspired by the recent reductions from Modular Subset Sum to dynamic string problems. We thereby arrive at a satisfyingly simple algorithm.

Cite as

Nick Fischer and Leo Wennmann. Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 64:1-64:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fischer_et_al:LIPIcs.ICALP.2024.64,
  author =	{Fischer, Nick and Wennmann, Leo},
  title =	{{Minimizing Tardy Processing Time on a Single Machine in Near-Linear Time}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{64:1--64:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.64},
  URN =		{urn:nbn:de:0030-drops-202079},
  doi =		{10.4230/LIPIcs.ICALP.2024.64},
  annote =	{Keywords: Scheduling, Fine-Grained Complexity, Dynamic Strings}
}
Document
Track A: Algorithms, Complexity and Games
Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs

Authors: Sanjeev Khanna, Aaron (Louie) Putterman, and Madhu Sudan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Recently, a number of variants of the notion of cut-preserving hypergraph sparsification have been studied in the literature. These variants include directed hypergraph sparsification, submodular hypergraph sparsification, general notions of approximation including spectral approximations, and more general notions like sketching that can answer cut queries using more general data structures than just sparsifiers. In this work, we provide reductions between these different variants of hypergraph sparsification and establish new upper and lower bounds on the space complexity of preserving their cuts. Specifically, we show that: 1) (1 ± ε) directed hypergraph spectral (respectively cut) sparsification on n vertices efficiently reduces to (1 ± ε) undirected hypergraph spectral (respectively cut) sparsification on n² + 1 vertices. Using the work of Lee and Jambulapati, Liu, and Sidford (STOC 2023) this gives us directed hypergraph spectral sparsifiers with O(n² log²(n) / ε²) hyperedges and directed hypergraph cut sparsifiers with O(n² log(n)/ ε²) hyperedges by using the work of Chen, Khanna, and Nagda (FOCS 2020), both of which improve upon the work of Oko, Sakaue, and Tanigawa (ICALP 2023). 2) Any cut sketching scheme which preserves all cuts in any directed hypergraph on n vertices to a (1 ± ε) factor (for ε = 1/(2^{O(√{log(n)})})) must have worst-case bit complexity n^{3 - o(1)}. Because directed hypergraphs are a subclass of submodular hypergraphs, this also shows a worst-case sketching lower bound of n^{3 - o(1)} bits for sketching cuts in general submodular hypergraphs. 3) (1 ± ε) monotone submodular hypergraph cut sparsification on n vertices efficiently reduces to (1 ± ε) symmetric submodular hypergraph sparsification on n+1 vertices. Using the work of Jambulapati et. al. (FOCS 2023) this gives us monotone submodular hypergraph sparsifiers with Õ(n / ε²) hyperedges, improving on the O(n³ / ε²) hyperedge bound of Kenneth and Krauthgamer (arxiv 2023). At a high level, our results use the same general principle, namely, by showing that cuts in one class of hypergraphs can be simulated by cuts in a simpler class of hypergraphs, we can leverage sparsification results for the simpler class of hypergraphs.

Cite as

Sanjeev Khanna, Aaron (Louie) Putterman, and Madhu Sudan. Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 98:1-98:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{khanna_et_al:LIPIcs.ICALP.2024.98,
  author =	{Khanna, Sanjeev and Putterman, Aaron (Louie) and Sudan, Madhu},
  title =	{{Almost-Tight Bounds on Preserving Cuts in Classes of Submodular Hypergraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{98:1--98:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.98},
  URN =		{urn:nbn:de:0030-drops-202410},
  doi =		{10.4230/LIPIcs.ICALP.2024.98},
  annote =	{Keywords: Sparsification, sketching, hypergraphs}
}
Document
Track A: Algorithms, Complexity and Games
On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch

Authors: Tsvi Kopelowitz, Ariel Korin, and Liam Roditty

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For an undirected unweighted graph G = (V,E) with n vertices and m edges, let d(u,v) denote the distance from u ∈ V to v ∈ V in G. An (α,β)-stretch approximate distance oracle (ADO) for G is a data structure that given u,v ∈ V returns in constant (or near constant) time a value dˆ(u,v) such that d(u,v) ≤ dˆ(u,v) ≤ α⋅ d(u,v) + β, for some reals α > 1, β. Thorup and Zwick [Mikkel Thorup and Uri Zwick, 2005] showed that one cannot beat stretch 3 with subquadratic space (in terms of n) for general graphs. Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one can obtain stretch 2 using O(m^{1/3}n^{4/3}) space, and so if m is subquadratic in n then the space usage is also subquadratic. Moreover, Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one cannot beat stretch 2 with subquadratic space even for graphs where m = Õ(n), based on the set-intersection hypothesis. In this paper we explore the conditions for which an ADO can beat stretch 2 while using subquadratic space. In particular, we show that if the maximum degree in G is Δ_G ≤ O(n^{1/k-ε}) for some 0 < ε ≤ 1/k, then there exists an ADO for G that uses Õ(n^{2-(kε)/3) space and has a (2,1-k)-stretch. For k = 2 this result implies a subquadratic sub-2 stretch ADO for graphs with Δ_G ≤ O(n^{1/2-ε}). Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which states that for any positive integer k ≤ log n, obtaining a sub-(k+2)/k stretch for graphs with Δ_G = Θ(n^{1/k}) requires Ω̃(n²) space. Thus, for graphs with maximum degree Θ(n^{1/2}), obtaining a sub-2 stretch requires Ω̃(n²) space.

Cite as

Tsvi Kopelowitz, Ariel Korin, and Liam Roditty. On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 101:1-101:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kopelowitz_et_al:LIPIcs.ICALP.2024.101,
  author =	{Kopelowitz, Tsvi and Korin, Ariel and Roditty, Liam},
  title =	{{On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.101},
  URN =		{urn:nbn:de:0030-drops-202443},
  doi =		{10.4230/LIPIcs.ICALP.2024.101},
  annote =	{Keywords: Graph algorithms, Approximate distance oracle, data structures, shortest path}
}
Document
Track A: Algorithms, Complexity and Games
Towards an Analysis of Quadratic Probing

Authors: William Kuszmaul and Zoe Xi

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Since 1968, one of the simplest open questions in the theory of hash tables has been to prove anything nontrivial about the correctness of quadratic probing. We make the first tangible progress towards this goal, showing that there exists a positive-constant load factor at which quadratic probing is a constant-expected-time hash table. Our analysis applies more generally to any fixed-offset open-addressing hash table, and extends to higher load factors in the case where the hash table examines blocks of some size B = ω(1).

Cite as

William Kuszmaul and Zoe Xi. Towards an Analysis of Quadratic Probing. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 103:1-103:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kuszmaul_et_al:LIPIcs.ICALP.2024.103,
  author =	{Kuszmaul, William and Xi, Zoe},
  title =	{{Towards an Analysis of Quadratic Probing}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{103:1--103:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.103},
  URN =		{urn:nbn:de:0030-drops-202463},
  doi =		{10.4230/LIPIcs.ICALP.2024.103},
  annote =	{Keywords: quadratic probing, hashing, open addressing, witness trees}
}
  • Refine by Author
  • 12 Mitzenmacher, Michael
  • 3 Galanis, Andreas
  • 3 Goldberg, Leslie Ann
  • 3 Hajiaghayi, Mohammad Taghi
  • 3 Nelson, Jelani
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Online algorithms
  • 3 Theory of computation → Sketching and sampling
  • 2 Mathematics of computing → Queueing theory
  • 2 Theory of computation → Models of computation
  • 2 Theory of computation → Scheduling algorithms
  • Show More...

  • Refine by Keyword
  • 7 Approximation Algorithms
  • 5 communication complexity
  • 4 sketching
  • 3 Approximation algorithm
  • 3 Approximation algorithms
  • Show More...

  • Refine by Type
  • 198 document
  • 2 volume

  • Refine by Publication Year
  • 153 2016
  • 23 2019
  • 17 2024
  • 1 2010
  • 1 2012
  • Show More...