10 Search Results for "Nguyen, Huy L."


Document
Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion

Authors: Samuel McCauley

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
Approximate nearest neighbor search (ANN) data structures have widespread applications in machine learning, computational biology, and text processing. The goal of ANN is to preprocess a set S so that, given a query q, we can find a point y whose distance from q approximates the smallest distance from q to any point in S. For most distance functions, the best-known ANN bounds for high-dimensional point sets are obtained using techniques based on locality-sensitive hashing (LSH). Unfortunately, space efficiency is a major challenge for LSH-based data structures. Classic LSH techniques require a very large amount of space, oftentimes polynomial in |S|. A long line of work has developed intricate techniques to reduce this space usage, but these techniques suffer from downsides: they must be hand tailored to each specific LSH, are often complicated, and their space reduction comes at the cost of significantly increased query times. In this paper we explore a new way to improve the space efficiency of LSH using function inversion techniques, originally developed in (Fiat and Naor 2000). We begin by describing how function inversion can be used to improve LSH data structures. This gives a fairly simple, black box method to reduce LSH space usage. Then, we give a data structure that leverages function inversion to improve the query time of the best known near-linear space data structure for approximate nearest neighbor search under Euclidean distance: the ALRW data structure of (Andoni, Laarhoven, Razenshteyn, and Waingarten 2017). ALRW was previously shown to be optimal among "list-of-points" data structures for both Euclidean and Manhattan ANN; thus, in addition to giving improved bounds, our results imply that list-of-points data structures are not optimal for Euclidean or Manhattan ANN .

Cite as

Samuel McCauley. Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 88:1-88:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mccauley:LIPIcs.ESA.2024.88,
  author =	{McCauley, Samuel},
  title =	{{Improved Space-Efficient Approximate Nearest Neighbor Search Using Function Inversion}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{88:1--88:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.88},
  URN =		{urn:nbn:de:0030-drops-211590},
  doi =		{10.4230/LIPIcs.ESA.2024.88},
  annote =	{Keywords: similarity search, locality-sensitive hashing, randomized algorithms, data structures, space efficiency, function inversion}
}
Document
Locally Computing Edge Orientations

Authors: Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal

Published in: LIPIcs, Volume 308, 32nd Annual European Symposium on Algorithms (ESA 2024)


Abstract
We consider the question of orienting the edges in a graph G such that every vertex has bounded out-degree. For graphs of arboricity α, there is an orientation in which every vertex has out-degree at most α and, moreover, the best possible maximum out-degree of an orientation is at least α - 1. We are thus interested in algorithms that can achieve a maximum out-degree of close to α. A widely studied approach for this problem in the distributed algorithms setting is a "peeling algorithm" that provides an orientation with maximum out-degree α(2+ε) in a logarithmic number of iterations. We consider this problem in the local computation algorithm (LCA) model, which quickly answers queries of the form "What is the orientation of edge (u,v)?" by probing the input graph. When the peeling algorithm is executed in the LCA setting by applying standard techniques, e.g., the Parnas-Ron paradigm, it requires Ω(n) probes per query on an n-vertex graph. In the case where G has unbounded degree, we show that any LCA that orients its edges to yield maximum out-degree r must use Ω(√ n/r) probes to G per query in the worst case, even if G is known to be a forest (that is, α = 1). We also show several algorithms with sublinear probe complexity when G has unbounded degree. When G is a tree such that the maximum degree Δ of G is bounded, we demonstrate an algorithm that uses Δ n^{1-log_Δ r + o(1)} probes to G per query. To obtain this result, we develop an edge-coloring approach that ultimately yields a graph-shattering-like result. We also use this shattering-like approach to demonstrate an LCA which 4-colors any tree using sublinear probes per query.

Cite as

Slobodan Mitrović, Ronitt Rubinfeld, and Mihir Singhal. Locally Computing Edge Orientations. In 32nd Annual European Symposium on Algorithms (ESA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 308, pp. 89:1-89:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{mitrovic_et_al:LIPIcs.ESA.2024.89,
  author =	{Mitrovi\'{c}, Slobodan and Rubinfeld, Ronitt and Singhal, Mihir},
  title =	{{Locally Computing Edge Orientations}},
  booktitle =	{32nd Annual European Symposium on Algorithms (ESA 2024)},
  pages =	{89:1--89:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-338-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{308},
  editor =	{Chan, Timothy and Fischer, Johannes and Iacono, John and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2024.89},
  URN =		{urn:nbn:de:0030-drops-211603},
  doi =		{10.4230/LIPIcs.ESA.2024.89},
  annote =	{Keywords: local computation algorithms, edge orientation, tree coloring}
}
Document
APPROX
Learning-Augmented Maximum Independent Set

Authors: Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We study the Maximum Independent Set (MIS) problem on general graphs within the framework of learning-augmented algorithms. The MIS problem is known to be NP-hard and is also NP-hard to approximate to within a factor of n^(1-δ) for any δ > 0. We show that we can break this barrier in the presence of an oracle obtained through predictions from a machine learning model that answers vertex membership queries for a fixed MIS with probability 1/2+ε. In the first setting we consider, the oracle can be queried once per vertex to know if a vertex belongs to a fixed MIS, and the oracle returns the correct answer with probability 1/2 + ε. Under this setting, we show an algorithm that obtains an Õ((√Δ)/ε)-approximation in O(m) time where Δ is the maximum degree of the graph. In the second setting, we allow multiple queries to the oracle for a vertex, each of which is correct with probability 1/2 + ε. For this setting, we show an O(1)-approximation algorithm using O(n/ε²) total queries and Õ(m) runtime.

Cite as

Vladimir Braverman, Prathamesh Dharangutte, Vihan Shah, and Chen Wang. Learning-Augmented Maximum Independent Set. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 24:1-24:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{braverman_et_al:LIPIcs.APPROX/RANDOM.2024.24,
  author =	{Braverman, Vladimir and Dharangutte, Prathamesh and Shah, Vihan and Wang, Chen},
  title =	{{Learning-Augmented Maximum Independent Set}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{24:1--24:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.24},
  URN =		{urn:nbn:de:0030-drops-210179},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.24},
  annote =	{Keywords: Learning-augmented algorithms, maximum independent set, graph algorithms}
}
Document
Designing 3D RNA Origami Nanostructures with a Minimum Number of Kissing Loops

Authors: Antti Elonen and Pekka Orponen

Published in: LIPIcs, Volume 314, 30th International Conference on DNA Computing and Molecular Programming (DNA 30) (2024)


Abstract
We present a general design technique for rendering any 3D wireframe model, that is any connected graph linearly embedded in 3D space, as an RNA origami nanostructure with a minimum number of kissing loops. The design algorithm, which applies some ideas and methods from topological graph theory, produces renderings that contain at most one kissing-loop pair for many interesting model families, including for instance all fully triangulated wireframes and the wireframes of all Platonic solids. The design method is already implemented and available for use in the design tool DNAforge (https://dnaforge.org).

Cite as

Antti Elonen and Pekka Orponen. Designing 3D RNA Origami Nanostructures with a Minimum Number of Kissing Loops. In 30th International Conference on DNA Computing and Molecular Programming (DNA 30). Leibniz International Proceedings in Informatics (LIPIcs), Volume 314, pp. 4:1-4:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{elonen_et_al:LIPIcs.DNA.30.4,
  author =	{Elonen, Antti and Orponen, Pekka},
  title =	{{Designing 3D RNA Origami Nanostructures with a Minimum Number of Kissing Loops}},
  booktitle =	{30th International Conference on DNA Computing and Molecular Programming (DNA 30)},
  pages =	{4:1--4:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-344-7},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{314},
  editor =	{Seki, Shinnosuke and Stewart, Jaimie Marie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.30.4},
  URN =		{urn:nbn:de:0030-drops-209325},
  doi =		{10.4230/LIPIcs.DNA.30.4},
  annote =	{Keywords: RNA origami, wireframe nanostructures, polyhedra, kissing loops, topological graph embeddings, self-assembly}
}
Document
Invited Paper
From TCS to Learning Theory (Invited Paper)

Authors: Kasper Green Larsen

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
While machine learning theory and theoretical computer science are both based on a solid mathematical foundation, the two research communities have a smaller overlap than what the proximity of the fields warrant. In this invited abstract, I will argue that traditional theoretical computer scientists have much to offer the learning theory community and vice versa. I will make this argument by telling a personal story of how I broadened my research focus to encompass learning theory, and how my TCS background has been extremely useful in doing so. It is my hope that this personal account may inspire more TCS researchers to tackle the many elegant and important theoretical questions that learning theory has to offer.

Cite as

Kasper Green Larsen. From TCS to Learning Theory (Invited Paper). In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 4:1-4:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{larsen:LIPIcs.MFCS.2024.4,
  author =	{Larsen, Kasper Green},
  title =	{{From TCS to Learning Theory}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{4:1--4:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.4},
  URN =		{urn:nbn:de:0030-drops-205603},
  doi =		{10.4230/LIPIcs.MFCS.2024.4},
  annote =	{Keywords: Theoretical Computer Science, Learning Theory}
}
Document
Track A: Algorithms, Complexity and Games
Adaptive Sparsification for Matroid Intersection

Authors: Kent Quanrud

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We consider the matroid intersection problem in the independence oracle model. Given two matroids over n common elements such that the intersection has rank k, our main technique reduces approximate matroid intersection to logarithmically many primal-dual instances over subsets of size Õ(k). This technique is inspired by recent work by [Assadi, 2024] and requires additional insight into structuring and efficiently approximating the dual LP. This combination of ideas leads to faster approximate maximum cardinality and maximum weight matroid intersection algorithms in the independence oracle model. We obtain the first nearly linear time/query approximation schemes for the regime where k ≤ n^{2/3}.

Cite as

Kent Quanrud. Adaptive Sparsification for Matroid Intersection. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 118:1-118:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{quanrud:LIPIcs.ICALP.2024.118,
  author =	{Quanrud, Kent},
  title =	{{Adaptive Sparsification for Matroid Intersection}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{118:1--118:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.118},
  URN =		{urn:nbn:de:0030-drops-202614},
  doi =		{10.4230/LIPIcs.ICALP.2024.118},
  annote =	{Keywords: Matroid intersection, adaptive sparsification, multiplicative-weight udpates, primal-dual}
}
Document
Track A: Algorithms, Complexity and Games
Faster Submodular Maximization for Several Classes of Matroids

Authors: Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
The maximization of submodular functions have found widespread application in areas such as machine learning, combinatorial optimization, and economics, where practitioners often wish to enforce various constraints; the matroid constraint has been investigated extensively due to its algorithmic properties and expressive power. Though tight approximation algorithms for general matroid constraints exist in theory, the running times of such algorithms typically scale quadratically, and are not practical for truly large scale settings. Recent progress has focused on fast algorithms for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms only exist for graphic and partition matroids [Alina Ene and Huy L. Nguyen, 2019]. In this work, we develop algorithms for monotone submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time near-linear in the size of their representation. Our algorithms achieve an optimal approximation of 1-1/e-ε and both generalize and accelerate the results of Ene and Nguyen [Alina Ene and Huy L. Nguyen, 2019]. In fact, the running time of our algorithm cannot be improved within the fast continuous greedy framework of Badanidiyuru and Vondrák [Ashwinkumar Badanidiyuru and Jan Vondrák, 2014]. To achieve near-linear running time, we make use of dynamic data structures that maintain bases with approximate maximum cardinality and weight under certain element updates. These data structures need to support a weight decrease operation and a novel Freeze operation that allows the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data structure operations. For the laminar matroid, we present a new dynamic data structure using the top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [Stephen Alstrup et al., 2005] that maintains the maximum weight basis under insertions and deletions of elements in O(log n) time. This data structure needs to support certain subtree query and path update operations that are performed every insertion and deletion that are non-trivial to handle in conjunction. For the transversal matroid the Freeze operation corresponds to requiring the data structure to keep a certain set S of vertices matched, a property that we call S-stability. While there is a large body of work on dynamic matching algorithms, none are S-stable and maintain an approximate maximum weight matching under vertex updates. We give the first such algorithm for bipartite graphs with total running time linear (up to log factors) in the number of edges.

Cite as

Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng. Faster Submodular Maximization for Several Classes of Matroids. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 74:1-74:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ICALP.2023.74,
  author =	{Henzinger, Monika and Liu, Paul and Vondr\'{a}k, Jan and Zheng, Da Wei},
  title =	{{Faster Submodular Maximization for Several Classes of Matroids}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{74:1--74:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.74},
  URN =		{urn:nbn:de:0030-drops-181267},
  doi =		{10.4230/LIPIcs.ICALP.2023.74},
  annote =	{Keywords: submodular optimization, dynamic data structures, matching algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Optimal Streaming Algorithms for Submodular Maximization with Cardinality Constraints

Authors: Naor Alaluf, Alina Ene, Moran Feldman, Huy L. Nguyen, and Andrew Suh

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We study the problem of maximizing a non-monotone submodular function subject to a cardinality constraint in the streaming model. Our main contributions are two single-pass (semi-)streaming algorithms that use Õ(k)⋅poly(1/ε) memory, where k is the size constraint. At the end of the stream, both our algorithms post-process their data structures using any offline algorithm for submodular maximization, and obtain a solution whose approximation guarantee is α/(1+α)-ε, where α is the approximation of the offline algorithm. If we use an exact (exponential time) post-processing algorithm, this leads to 1/2-ε approximation (which is nearly optimal). If we post-process with the algorithm of [Niv Buchbinder and Moran Feldman, 2019], that achieves the state-of-the-art offline approximation guarantee of α = 0.385, we obtain 0.2779-approximation in polynomial time, improving over the previously best polynomial-time approximation of 0.1715 due to [Feldman et al., 2018]. One of our algorithms is combinatorial and enjoys fast update and overall running times. Our other algorithm is based on the multilinear extension, enjoys an improved space complexity, and can be made deterministic in some settings of interest.

Cite as

Naor Alaluf, Alina Ene, Moran Feldman, Huy L. Nguyen, and Andrew Suh. Optimal Streaming Algorithms for Submodular Maximization with Cardinality Constraints. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{alaluf_et_al:LIPIcs.ICALP.2020.6,
  author =	{Alaluf, Naor and Ene, Alina and Feldman, Moran and Nguyen, Huy L. and Suh, Andrew},
  title =	{{Optimal Streaming Algorithms for Submodular Maximization with Cardinality Constraints}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.6},
  URN =		{urn:nbn:de:0030-drops-124137},
  doi =		{10.4230/LIPIcs.ICALP.2020.6},
  annote =	{Keywords: Submodular maximization, streaming algorithms, cardinality constraint}
}
Document
Track A: Algorithms, Complexity and Games
A Nearly-Linear Time Algorithm for Submodular Maximization with a Knapsack Constraint

Authors: Alina Ene and Huy L. Nguyen

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We consider the problem of maximizing a monotone submodular function subject to a knapsack constraint. Our main contribution is an algorithm that achieves a nearly-optimal, 1 - 1/e - epsilon approximation, using (1/epsilon)^{O(1/epsilon^4)} n log^2{n} function evaluations and arithmetic operations. Our algorithm is impractical but theoretically interesting, since it overcomes a fundamental running time bottleneck of the multilinear extension relaxation framework. This is the main approach for obtaining nearly-optimal approximation guarantees for important classes of constraints but it leads to Omega(n^2) running times, since evaluating the multilinear extension is expensive. Our algorithm maintains a fractional solution with only a constant number of entries that are strictly fractional, which allows us to overcome this obstacle.

Cite as

Alina Ene and Huy L. Nguyen. A Nearly-Linear Time Algorithm for Submodular Maximization with a Knapsack Constraint. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 53:1-53:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ene_et_al:LIPIcs.ICALP.2019.53,
  author =	{Ene, Alina and Nguyen, Huy L.},
  title =	{{A Nearly-Linear Time Algorithm for Submodular Maximization with a Knapsack Constraint}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{53:1--53:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.53},
  URN =		{urn:nbn:de:0030-drops-106290},
  doi =		{10.4230/LIPIcs.ICALP.2019.53},
  annote =	{Keywords: submodular maximization, knapsack constraint, fast algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Towards Nearly-Linear Time Algorithms for Submodular Maximization with a Matroid Constraint

Authors: Alina Ene and Huy L. Nguyen

Published in: LIPIcs, Volume 132, 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)


Abstract
We consider fast algorithms for monotone submodular maximization subject to a matroid constraint. We assume that the matroid is given as input in an explicit form, and the goal is to obtain the best possible running times for important matroids. We develop a new algorithm for a general matroid constraint with a 1 - 1/e - epsilon approximation that achieves a fast running time provided we have a fast data structure for maintaining an approximately maximum weight base in the matroid through a sequence of decrease weight operations. We construct such data structures for graphic matroids and partition matroids, and we obtain the first algorithms for these classes of matroids that achieve a nearly-optimal, 1 - 1/e - epsilon approximation, using a nearly-linear number of function evaluations and arithmetic operations.

Cite as

Alina Ene and Huy L. Nguyen. Towards Nearly-Linear Time Algorithms for Submodular Maximization with a Matroid Constraint. In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 132, pp. 54:1-54:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{ene_et_al:LIPIcs.ICALP.2019.54,
  author =	{Ene, Alina and Nguyen, Huy L.},
  title =	{{Towards Nearly-Linear Time Algorithms for Submodular Maximization with a Matroid Constraint}},
  booktitle =	{46th International Colloquium on Automata, Languages, and Programming (ICALP 2019)},
  pages =	{54:1--54:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-109-2},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{132},
  editor =	{Baier, Christel and Chatzigiannakis, Ioannis and Flocchini, Paola and Leonardi, Stefano},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.54},
  URN =		{urn:nbn:de:0030-drops-106303},
  doi =		{10.4230/LIPIcs.ICALP.2019.54},
  annote =	{Keywords: submodular maximization, matroid constraints, fast running times}
}
  • Refine by Author
  • 3 Ene, Alina
  • 3 Nguyen, Huy L.
  • 1 Alaluf, Naor
  • 1 Braverman, Vladimir
  • 1 Dharangutte, Prathamesh
  • Show More...

  • Refine by Classification
  • 3 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 2 Theory of computation → Submodular optimization and polymatroids
  • 1 Applied computing → Computational biology
  • 1 Applied computing → Life and medical sciences
  • 1 Computing methodologies → Machine learning
  • Show More...

  • Refine by Keyword
  • 2 submodular maximization
  • 1 Learning Theory
  • 1 Learning-augmented algorithms
  • 1 Matroid intersection
  • 1 RNA origami
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 6 2024
  • 2 2019
  • 1 2020
  • 1 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail