10 Search Results for "Schmidt, Michael"


Document
Short Paper
Usability of Symbolic Regression for Hybrid System Identification - System Classes and Parameters (Short Paper)

Authors: Swantje Plambeck, Maximilian Schmidt, Audine Subias, Louise Travé-Massuyès, and Goerschwin Fey

Published in: OASIcs, Volume 125, 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)


Abstract
Hybrid systems, which combine both continuous and discrete behavior, are used in many fields, including robotics, biological systems, and control systems. However, due to their complexity, finding an accurate model is a challenge. This paper discusses the usage of symbolic regression to learn hybrid systems from data and specifically analyses learning parameters for a recent algorithm. Symbolic regression is a powerful tool that can automatically discover accurate and interpretable mathematical models in the form of symbolic expressions. Models generated by symbolic regression are a valuable tool for system identification and diagnosis, e.g., to predict future system behavior or detect anomalies. A major opportunity of our approach is the ability to detect transitions between different continuous behaviors of a system directly based on the dynamics. From a diagnosis perspective, this can advantageously be used to detect the system entering fault modes and identify their models. This paper presents a parameter study for a symbolic regression based identification algorithm.

Cite as

Swantje Plambeck, Maximilian Schmidt, Audine Subias, Louise Travé-Massuyès, and Goerschwin Fey. Usability of Symbolic Regression for Hybrid System Identification - System Classes and Parameters (Short Paper). In 35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024). Open Access Series in Informatics (OASIcs), Volume 125, pp. 30:1-30:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{plambeck_et_al:OASIcs.DX.2024.30,
  author =	{Plambeck, Swantje and Schmidt, Maximilian and Subias, Audine and Trav\'{e}-Massuy\`{e}s, Louise and Fey, Goerschwin},
  title =	{{Usability of Symbolic Regression for Hybrid System Identification - System Classes and Parameters}},
  booktitle =	{35th International Conference on Principles of Diagnosis and Resilient Systems (DX 2024)},
  pages =	{30:1--30:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-356-0},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{125},
  editor =	{Pill, Ingo and Natan, Avraham and Wotawa, Franz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.DX.2024.30},
  URN =		{urn:nbn:de:0030-drops-221223},
  doi =		{10.4230/OASIcs.DX.2024.30},
  annote =	{Keywords: Hybrid Systems, Symbolic Regression, System Identification}
}
Document
The Line-Based Dial-a-Ride Problem

Authors: Kendra Reiter, Marie Schmidt, and Michael Stiglmayr

Published in: OASIcs, Volume 123, 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)


Abstract
On-demand ridepooling systems offer flexible services pooling multiple passengers into one vehicle, complementing traditional bus services. We propose a transportation system combining the spatial aspects of a fixed sequence of bus stops with the temporal flexibility of ridepooling. In the line-based Dial-a-Ride problem (liDARP), vehicles adhere to a fixed, ordered sequence of stops in their routes, with the possibility of taking shortcuts and turning if they are empty. We propose three MILP formulations for the liDARP with a multi-objective function balancing environmental aspects with customer satisfaction, comparing them on a real-world bus line. Our experiments show that the formulation based on an Event-Based graph is the fastest, solving instances with up to 50 requests in under one second. Compared to the classical DARP, the liDARP is computationally faster, with minimal increases in total distance driven and average ride times.

Cite as

Kendra Reiter, Marie Schmidt, and Michael Stiglmayr. The Line-Based Dial-a-Ride Problem. In 24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024). Open Access Series in Informatics (OASIcs), Volume 123, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{reiter_et_al:OASIcs.ATMOS.2024.14,
  author =	{Reiter, Kendra and Schmidt, Marie and Stiglmayr, Michael},
  title =	{{The Line-Based Dial-a-Ride Problem}},
  booktitle =	{24th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2024)},
  pages =	{14:1--14:20},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-350-8},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{123},
  editor =	{Bouman, Paul C. and Kontogiannis, Spyros C.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2024.14},
  URN =		{urn:nbn:de:0030-drops-212024},
  doi =		{10.4230/OASIcs.ATMOS.2024.14},
  annote =	{Keywords: DARP, ridepooling, liDARP, public transport, on-demand}
}
Document
A Modular Formalization of Superposition in Isabelle/HOL

Authors: Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Superposition is an efficient proof calculus for reasoning about first-order logic with equality that is implemented in many automatic theorem provers. It works by saturating the given set of clauses and is refutationally complete, meaning that if the set is inconsistent, the saturation will contain a contradiction. In this work, we restructured the completeness proof to cleanly separate the ground (i.e., variable-free) and nonground aspects, and we formalized the result in Isabelle/HOL. We relied on the IsaFoR library for first-order terms and on the Isabelle saturation framework.

Cite as

Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret. A Modular Formalization of Superposition in Isabelle/HOL. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{desharnais_et_al:LIPIcs.ITP.2024.12,
  author =	{Desharnais, Martin and Toth, Balazs and Waldmann, Uwe and Blanchette, Jasmin and Tourret, Sophie},
  title =	{{A Modular Formalization of Superposition in Isabelle/HOL}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.12},
  URN =		{urn:nbn:de:0030-drops-207401},
  doi =		{10.4230/LIPIcs.ITP.2024.12},
  annote =	{Keywords: Superposition, verification, first-order logic, higher-order logic}
}
Document
Applying the Safe-And-Complete Framework to Practical Genome Assembly

Authors: Sebastian Schmidt, Santeri Toivonen, Paul Medvedev, and Alexandru I. Tomescu

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
Despite the long history of genome assembly research, there remains a large gap between the theoretical and practical work. There is practical software with little theoretical underpinning of accuracy on one hand and theoretical algorithms which have not been adopted in practice on the other. In this paper we attempt to bridge the gap between theory and practice by showing how the theoretical safe-and-complete framework can be integrated into existing assemblers in order to improve contiguity. The optimal algorithm in this framework, called the omnitig algorithm, has not been used in practice due to its complexity and its lack of robustness to real data. Instead, we pursue a simplified notion of omnitigs (simple omnitigs), giving an efficient algorithm to compute them and demonstrating their safety under certain conditions. We modify two assemblers (wtdbg2 and Flye) by replacing their unitig algorithm with the simple omnitig algorithm. We test our modifications using real HiFi data from the D. melanogaster and the C. elegans genomes. Our modified algorithms lead to a substantial improvement in alignment-based contiguity, with negligible additional computational costs and either no or a small increase in the number of misassemblies.

Cite as

Sebastian Schmidt, Santeri Toivonen, Paul Medvedev, and Alexandru I. Tomescu. Applying the Safe-And-Complete Framework to Practical Genome Assembly. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{schmidt_et_al:LIPIcs.WABI.2024.8,
  author =	{Schmidt, Sebastian and Toivonen, Santeri and Medvedev, Paul and Tomescu, Alexandru I.},
  title =	{{Applying the Safe-And-Complete Framework to Practical Genome Assembly}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.8},
  URN =		{urn:nbn:de:0030-drops-206520},
  doi =		{10.4230/LIPIcs.WABI.2024.8},
  annote =	{Keywords: Genome assembly, Omnitigs, Safe-and-complete framework, graph algorithm, HiFi sequencing data, Assembly evaluation}
}
Document
Reconstructing Rearrangement Phylogenies of Natural Genomes

Authors: Leonard Bohnenkämper, Jens Stoye, and Daniel Dörr

Published in: LIPIcs, Volume 312, 24th International Workshop on Algorithms in Bioinformatics (WABI 2024)


Abstract
We study the classical problem of inferring ancestral genomes from a set of extant genomes under a given phylogeny, known as the Small Parsimony Problem (SPP). Genomes are represented as sequences of oriented markers, organized in one or more linear or circular chromosomes. Any marker may appear in several copies, without restriction on orientation or genomic location, known as the natural genomes model. Evolutionary events along the branches of the phylogeny encompass large scale rearrangements, including segmental inversions, translocations, gain and loss (DCJ-indel model). Even under simpler rearrangement models, such as the classical breakpoint model without duplicates, the SPP is computationally intractable. Nevertheless, the SPP for natural genomes under the DCJ-indel model has been studied recently, with limited success. Here, we improve on that earlier work, giving a highly optimized ILP that is able to solve the SPP for sufficiently small phylogenies and gene families. A notable improvement w.r.t. the previous result is an optimized way of handling both circular and linear chromosomes. This is especially relevant to the SPP, since the chromosomal structure of ancestral genomes is unknown and the solution space for this chromosomal structure is typically large. We benchmark our method on simulated and real data. On simulated phylogenies we observe a considerable performance improvement on problems that include linear chromosomes. And even when the ground truth contains only one circular chromosome per genome, our method outperforms its predecessor due to its optimized handling of the solution space. The practical advantage becomes also visible in an analysis of seven Anopheles taxa.

Cite as

Leonard Bohnenkämper, Jens Stoye, and Daniel Dörr. Reconstructing Rearrangement Phylogenies of Natural Genomes. In 24th International Workshop on Algorithms in Bioinformatics (WABI 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 312, pp. 12:1-12:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bohnenkamper_et_al:LIPIcs.WABI.2024.12,
  author =	{Bohnenk\"{a}mper, Leonard and Stoye, Jens and D\"{o}rr, Daniel},
  title =	{{Reconstructing Rearrangement Phylogenies of Natural Genomes}},
  booktitle =	{24th International Workshop on Algorithms in Bioinformatics (WABI 2024)},
  pages =	{12:1--12:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-340-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{312},
  editor =	{Pissis, Solon P. and Sung, Wing-Kin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2024.12},
  URN =		{urn:nbn:de:0030-drops-206564},
  doi =		{10.4230/LIPIcs.WABI.2024.12},
  annote =	{Keywords: genome rearrangement, ancestral reconstruction, small parsimony, integer linear programming, double-cut-and-join}
}
Document
IMELL Cut Elimination with Linear Overhead

Authors: Beniamino Accattoli and Claudio Sacerdoti Coen

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Recently, Accattoli introduced the Exponential Substitution Calculus (ESC) given by untyped proof terms for Intuitionistic Multiplicative Exponential Linear Logic (IMELL), endowed with rewriting rules at-a-distance for cut elimination. He also introduced a new cut elimination strategy, dubbed the good strategy, and showed that its number of steps is a time cost model with polynomial overhead for ESC/IMELL, and the first such one. Here, we refine Accattoli’s result by introducing an abstract machine for ESC and proving that it implements the good strategy and computes cut-free terms/proofs within a linear overhead.

Cite as

Beniamino Accattoli and Claudio Sacerdoti Coen. IMELL Cut Elimination with Linear Overhead. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 24:1-24:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{accattoli_et_al:LIPIcs.FSCD.2024.24,
  author =	{Accattoli, Beniamino and Sacerdoti Coen, Claudio},
  title =	{{IMELL Cut Elimination with Linear Overhead}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{24:1--24:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.24},
  URN =		{urn:nbn:de:0030-drops-203539},
  doi =		{10.4230/LIPIcs.FSCD.2024.24},
  annote =	{Keywords: Lambda calculus, linear logic, abstract machines}
}
Document
Media Exposition
Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata (Media Exposition)

Authors: Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung, Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi

Published in: LIPIcs, Volume 164, 36th International Symposium on Computational Geometry (SoCG 2020)


Abstract
In this video, we consider recognition and reconfiguration of lattice-based cellular structures by very simple robots with only basic functionality. The underlying motivation is the construction and modification of space facilities of enormous dimensions, where the combination of new materials with extremely simple robots promises structures of previously unthinkable size and flexibility. We present algorithmic methods that are able to detect and reconfigure arbitrary polyominoes, based on finite-state robots, while also preserving connectivity of a structure during reconfiguration. Specific results include methods for determining a bounding box, scaling a given arrangement, and adapting more general algorithms for transforming polyominoes.

Cite as

Amira Abdel-Rahman, Aaron T. Becker, Daniel E. Biediger, Kenneth C. Cheung, Sándor P. Fekete, Neil A. Gershenfeld, Sabrina Hugo, Benjamin Jenett, Phillip Keldenich, Eike Niehs, Christian Rieck, Arne Schmidt, Christian Scheffer, and Michael Yannuzzi. Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata (Media Exposition). In 36th International Symposium on Computational Geometry (SoCG 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 164, pp. 73:1-73:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{abdelrahman_et_al:LIPIcs.SoCG.2020.73,
  author =	{Abdel-Rahman, Amira and Becker, Aaron T. and Biediger, Daniel E. and Cheung, Kenneth C. and Fekete, S\'{a}ndor P. and Gershenfeld, Neil A. and Hugo, Sabrina and Jenett, Benjamin and Keldenich, Phillip and Niehs, Eike and Rieck, Christian and Schmidt, Arne and Scheffer, Christian and Yannuzzi, Michael},
  title =	{{Space Ants: Constructing and Reconfiguring Large-Scale Structures with Finite Automata}},
  booktitle =	{36th International Symposium on Computational Geometry (SoCG 2020)},
  pages =	{73:1--73:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-143-6},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{164},
  editor =	{Cabello, Sergio and Chen, Danny Z.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2020.73},
  URN =		{urn:nbn:de:0030-drops-122310},
  doi =		{10.4230/LIPIcs.SoCG.2020.73},
  annote =	{Keywords: Finite automata, reconfiguration, construction, scaling}
}
Document
Embedded Program Annotations for WCET Analysis

Authors: Bernhard Schommer, Christoph Cullmann, Gernot Gebhard, Xavier Leroy, Michael Schmidt, and Simon Wegener

Published in: OASIcs, Volume 63, 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)


Abstract
We present __builtin_ais_annot(), a user-friendly, versatile way to transfer annotations (also known as flow facts) written on the source code level to the machine code level. To do so, we couple two tools often used during the development of safety-critical hard real-time systems, the formally verified C compiler CompCert and the static WCET analyzer aiT. CompCert stores the AIS annotations given via __builtin_ais_annot() in a special section of the ELF binary, which can later be extracted automatically by aiT.

Cite as

Bernhard Schommer, Christoph Cullmann, Gernot Gebhard, Xavier Leroy, Michael Schmidt, and Simon Wegener. Embedded Program Annotations for WCET Analysis. In 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018). Open Access Series in Informatics (OASIcs), Volume 63, pp. 8:1-8:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{schommer_et_al:OASIcs.WCET.2018.8,
  author =	{Schommer, Bernhard and Cullmann, Christoph and Gebhard, Gernot and Leroy, Xavier and Schmidt, Michael and Wegener, Simon},
  title =	{{Embedded Program Annotations for WCET Analysis}},
  booktitle =	{18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)},
  pages =	{8:1--8:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-073-6},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{63},
  editor =	{Brandner, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2018.8},
  URN =		{urn:nbn:de:0030-drops-97543},
  doi =		{10.4230/OASIcs.WCET.2018.8},
  annote =	{Keywords: Worst-Case Execution Time (WCET) Analysis, Annotation Support, CompCert, Tool Coupling, aiT}
}
Document
Approximation Algorithms for Aversion k-Clustering via Local k-Median

Authors: Anupam Gupta, Guru Guruganesh, and Melanie Schmidt

Published in: LIPIcs, Volume 55, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)


Abstract
In the aversion k-clustering problem, given a metric space, we want to cluster the points into k clusters. The cost incurred by each point is the distance to the furthest point in its cluster, and the cost of the clustering is the sum of all these per-point-costs. This problem is motivated by questions in generating automatic abstractions of extensive-form games. We reduce this problem to a "local" k-median problem where each facility has a prescribed radius and can only connect to clients within that radius. Our main results is a constant-factor approximation algorithm for the aversion k-clustering problem via the local k-median problem. We use a primal-dual approach; our technical contribution is a non-local rounding step which we feel is of broader interest.

Cite as

Anupam Gupta, Guru Guruganesh, and Melanie Schmidt. Approximation Algorithms for Aversion k-Clustering via Local k-Median. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 55, pp. 66:1-66:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.ICALP.2016.66,
  author =	{Gupta, Anupam and Guruganesh, Guru and Schmidt, Melanie},
  title =	{{Approximation Algorithms for Aversion k-Clustering via Local k-Median}},
  booktitle =	{43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016)},
  pages =	{66:1--66:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-013-2},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{55},
  editor =	{Chatzigiannakis, Ioannis and Mitzenmacher, Michael and Rabani, Yuval and Sangiorgi, Davide},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2016.66},
  URN =		{urn:nbn:de:0030-drops-62180},
  doi =		{10.4230/LIPIcs.ICALP.2016.66},
  annote =	{Keywords: Approximation algorithms, clustering, k-median, primal-dual}
}
Document
Weighted L_2 B Discrepancy and Approximation of Integrals over Reproducing Kernel Hilbert Spaces

Authors: Michael Gnewuch

Published in: Dagstuhl Seminar Proceedings, Volume 9391, Algorithms and Complexity for Continuous Problems (2009)


Abstract
We extend the notion of $L_2$ $B$ discrepancy provided in [E. Novak, H. Wo'zniakowski, $L_2$ discrepancy and multivariate integration, in: Analytic number theory. Essays in honour of Klaus Roth. W. W. L. Chen, W. T. Gowers, H. Halberstam, W. M. Schmidt, and R. C. Vaughan (Eds.), Cambridge University Press, Cambridge, 2009, 359 – 388] to the weighted $L_2$ $mathcal{B}$ discrepancy. This newly defined notion allows to consider weights, but also volume measures different from the Lebesgue measure and classes of test sets different from measurable subsets of some Euclidean space. We relate the weighted $L_2$ $mathcal{B}$ discrepancy to numerical integration defined over weighted reproducing kernel Hilbert spaces and settle in this way an open problem posed by Novak and Wo'zniakowski.

Cite as

Michael Gnewuch. Weighted L_2 B Discrepancy and Approximation of Integrals over Reproducing Kernel Hilbert Spaces. In Algorithms and Complexity for Continuous Problems. Dagstuhl Seminar Proceedings, Volume 9391, pp. 1-9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2009)


Copy BibTex To Clipboard

@InProceedings{gnewuch:DagSemProc.09391.5,
  author =	{Gnewuch, Michael},
  title =	{{Weighted L\underline2 B Discrepancy and Approximation of Integrals over Reproducing Kernel Hilbert Spaces}},
  booktitle =	{Algorithms and Complexity for Continuous Problems},
  pages =	{1--9},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2009},
  volume =	{9391},
  editor =	{Thomas M\"{u}ller-Gronbach and Leszek Plaskota and Joseph. F. Traub},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.09391.5},
  URN =		{urn:nbn:de:0030-drops-22966},
  doi =		{10.4230/DagSemProc.09391.5},
  annote =	{Keywords: Discrepancy, Numerical Integration, Quasi-Monte Carlo, Reproducing Kernel Hilbert Space}
}
  • Refine by Author
  • 1 Abdel-Rahman, Amira
  • 1 Accattoli, Beniamino
  • 1 Becker, Aaron T.
  • 1 Biediger, Daniel E.
  • 1 Blanchette, Jasmin
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 1 Annotation Support
  • 1 Approximation algorithms
  • 1 Assembly evaluation
  • 1 CompCert
  • 1 DARP
  • Show More...

  • Refine by Type
  • 10 document

  • Refine by Publication Year
  • 6 2024
  • 1 2009
  • 1 2016
  • 1 2018
  • 1 2020

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail