38 Search Results for "Sharir, Micha"


Document
Track A: Algorithms, Complexity and Games
Parameterized Algorithms for Coordinated Motion Planning: Minimizing Energy

Authors: Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We study the parameterized complexity of a generalization of the coordinated motion planning problem on graphs, where the goal is to route a specified subset of a given set of k robots to their destinations with the aim of minimizing the total energy (i.e., the total length traveled). We develop novel techniques to push beyond previously-established results that were restricted to solid grids. We design a fixed-parameter additive approximation algorithm for this problem parameterized by k alone. This result, which is of independent interest, allows us to prove the following two results pertaining to well-studied coordinated motion planning problems: (1) A fixed-parameter algorithm, parameterized by k, for routing a single robot to its destination while avoiding the other robots, which is related to the famous Rush-Hour Puzzle; and (2) a fixed-parameter algorithm, parameterized by k plus the treewidth of the input graph, for the standard Coordinated Motion Planning (CMP) problem in which we need to route all the k robots to their destinations. The latter of these results implies, among others, the fixed-parameter tractability of CMP parameterized by k on graphs of bounded outerplanarity, which include bounded-height subgrids. We complement the above results with a lower bound which rules out the fixed-parameter tractability for CMP when parameterized by the total energy. This contrasts the recently-obtained tractability of the problem on solid grids under the same parameterization. As our final result, we strengthen the aforementioned fixed-parameter tractability to hold not only on solid grids but all graphs of bounded local treewidth - a class including, among others, all graphs of bounded genus.

Cite as

Argyrios Deligkas, Eduard Eiben, Robert Ganian, Iyad Kanj, and M. S. Ramanujan. Parameterized Algorithms for Coordinated Motion Planning: Minimizing Energy. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 53:1-53:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{deligkas_et_al:LIPIcs.ICALP.2024.53,
  author =	{Deligkas, Argyrios and Eiben, Eduard and Ganian, Robert and Kanj, Iyad and Ramanujan, M. S.},
  title =	{{Parameterized Algorithms for Coordinated Motion Planning: Minimizing Energy}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{53:1--53:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.53},
  URN =		{urn:nbn:de:0030-drops-201968},
  doi =		{10.4230/LIPIcs.ICALP.2024.53},
  annote =	{Keywords: coordinated motion planning, multi-agent path finding, parameterized complexity}
}
Document
Track A: Algorithms, Complexity and Games
Õptimal Dynamic Time Warping on Run-Length Encoded Strings

Authors: Itai Boneh, Shay Golan, Shay Mozes, and Oren Weimann

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
Dynamic Time Warping (DTW) distance is the optimal cost of matching two strings when extending runs of letters is for free. Therefore, it is natural to measure the time complexity of DTW in terms of the number of runs n (rather than the string lengths N). In this paper, we give an Õ(n²) time algorithm for computing the DTW distance. This matches (up to log factors) the known (conditional) lower bound, and should be compared with the previous fastest O(n³) time exact algorithm and the Õ(n²) time approximation algorithm. Our method also immediately implies an Õ(nk) time algorithm when the distance is bounded by k. This should be compared with the previous fastest O(n²k) and O(Nk) time exact algorithms and the Õ(nk) time approximation algorithm.

Cite as

Itai Boneh, Shay Golan, Shay Mozes, and Oren Weimann. Õptimal Dynamic Time Warping on Run-Length Encoded Strings. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 30:1-30:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{boneh_et_al:LIPIcs.ICALP.2024.30,
  author =	{Boneh, Itai and Golan, Shay and Mozes, Shay and Weimann, Oren},
  title =	{{\~{O}ptimal Dynamic Time Warping on Run-Length Encoded Strings}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{30:1--30:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.30},
  URN =		{urn:nbn:de:0030-drops-201730},
  doi =		{10.4230/LIPIcs.ICALP.2024.30},
  annote =	{Keywords: Dynamic time warping, Fr\'{e}chet distance, edit distance, run-length encoding}
}
Document
Track A: Algorithms, Complexity and Games
Fully Dynamic Strongly Connected Components in Planar Digraphs

Authors: Adam Karczmarz and Marcin Smulewicz

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
In this paper we consider maintaining strongly connected components (SCCs) of a directed planar graph subject to edge insertions and deletions. We show a data structure maintaining an implicit representation of the SCCs within Õ(n^{6/7}) worst-case time per update. The data structure supports, in O(log²{n}) time, reporting vertices of any specified SCC (with constant overhead per reported vertex) and aggregating vertex information (e.g., computing the maximum label) over all the vertices of that SCC. Furthermore, it can maintain global information about the structure of SCCs, such as the number of SCCs, or the size of the largest SCC. To the best of our knowledge, no fully dynamic SCCs data structures with sublinear update time have been previously known for any major subclass of digraphs. Our result should be contrasted with the n^{1-o(1)} amortized update time lower bound conditional on SETH, which holds even for dynamically maintaining whether a general digraph has more than two SCCs.

Cite as

Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components in Planar Digraphs. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 95:1-95:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{karczmarz_et_al:LIPIcs.ICALP.2024.95,
  author =	{Karczmarz, Adam and Smulewicz, Marcin},
  title =	{{Fully Dynamic Strongly Connected Components in Planar Digraphs}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{95:1--95:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95},
  URN =		{urn:nbn:de:0030-drops-202388},
  doi =		{10.4230/LIPIcs.ICALP.2024.95},
  annote =	{Keywords: dynamic strongly connected components, dynamic strong connectivity, dynamic reachability, planar graphs}
}
Document
Semi-Algebraic Off-Line Range Searching and Biclique Partitions in the Plane

Authors: Pankaj K. Agarwal, Esther Ezra, and Micha Sharir

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
Let P be a set of m points in ℝ², let Σ be a set of n semi-algebraic sets of constant complexity in ℝ², let (S,+) be a semigroup, and let w: P → S be a weight function on the points of P. We describe a randomized algorithm for computing w(P∩σ) for every σ ∈ Σ in overall expected time O^*(m^{2s/(5s-4)}n^{(5s-6)/(5s-4)} + m^{2/3}n^{2/3} + m + n), where s > 0 is a constant that bounds the maximum complexity of the regions of Σ, and where the O^*(⋅) notation hides subpolynomial factors. For s ≥ 3, surprisingly, this bound is smaller than the best-known bound for answering m such queries in an on-line manner. The latter takes O^*(m^{s/(2s-1)}n^{(2s-2)/(2s-1)} + m + n) time. Let Φ: Σ × P → {0,1} be the Boolean predicate (of constant complexity) such that Φ(σ,p) = 1 if p ∈ σ and 0 otherwise, and let Σ_Φ P = {(σ,p) ∈ Σ× P ∣ Φ(σ,p) = 1}. Our algorithm actually computes a partition ℬ_Φ of Σ_Φ P into bipartite cliques (bicliques) of size (i.e., sum of the sizes of the vertex sets of its bicliques) O^*(m^{2s/(5s-4)}n^{(5s-6)/(5s-4)} + m^{2/3}n^{2/3} + m + n). It is straightforward to compute w(P∩σ) for all σ ∈ Σ from ℬ_Φ. Similarly, if η: Σ → S is a weight function on the regions of Σ, ∑_{σ ∈ Σ: p ∈ σ} η(σ), for every point p ∈ P, can be computed from ℬ_Φ in a straightforward manner. We also mention a few other applications of computing ℬ_Φ.

Cite as

Pankaj K. Agarwal, Esther Ezra, and Micha Sharir. Semi-Algebraic Off-Line Range Searching and Biclique Partitions in the Plane. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2024.4,
  author =	{Agarwal, Pankaj K. and Ezra, Esther and Sharir, Micha},
  title =	{{Semi-Algebraic Off-Line Range Searching and Biclique Partitions in the Plane}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.4},
  URN =		{urn:nbn:de:0030-drops-199497},
  doi =		{10.4230/LIPIcs.SoCG.2024.4},
  annote =	{Keywords: Range-searching, semi-algebraic sets, pseudo-lines, duality, geometric cuttings}
}
Document
The Unweighted and Weighted Reverse Shortest Path Problem for Disk Graphs

Authors: Haim Kaplan, Matthew J. Katz, Rachel Saban, and Micha Sharir

Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)


Abstract
We study the reverse shortest path problem on disk graphs in the plane. In this problem we consider the proximity graph of a set of n disks in the plane of arbitrary radii: In this graph two disks are connected if the distance between them is at most some threshold parameter r. The case of intersection graphs is a special case with r = 0. We give an algorithm that, given a target length k, computes the smallest value of r for which there is a path of length at most k between some given pair of disks in the proximity graph. Our algorithm runs in O^*(n^{5/4}) randomized expected time, which improves to O^*(n^{6/5}) for unit disk graphs, where all the disks have the same radius. Our technique is robust and can be applied to many variants of the problem. One significant variant is the case of weighted proximity graphs, where edges are assigned real weights equal to the distance between the disks or between their centers, and k is replaced by a target weight w. In other variants, we want to optimize a parameter different from r, such as a scale factor of the radii of the disks. The main technique for the decision version of the problem (determining whether the graph with a given r has the desired property) is based on efficient implementations of BFS (for the unweighted case) and of Dijkstra’s algorithm (for the weighted case), using efficient data structures for maintaining the bichromatic closest pair for certain bicliques and several distance functions. The optimization problem is then solved by combining the resulting decision procedure with enhanced variants of the interval shrinking and bifurcation technique of [R. Ben Avraham et al., 2015].

Cite as

Haim Kaplan, Matthew J. Katz, Rachel Saban, and Micha Sharir. The Unweighted and Weighted Reverse Shortest Path Problem for Disk Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 67:1-67:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{kaplan_et_al:LIPIcs.ESA.2023.67,
  author =	{Kaplan, Haim and Katz, Matthew J. and Saban, Rachel and Sharir, Micha},
  title =	{{The Unweighted and Weighted Reverse Shortest Path Problem for Disk Graphs}},
  booktitle =	{31st Annual European Symposium on Algorithms (ESA 2023)},
  pages =	{67:1--67:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-295-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{274},
  editor =	{G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.67},
  URN =		{urn:nbn:de:0030-drops-187208},
  doi =		{10.4230/LIPIcs.ESA.2023.67},
  annote =	{Keywords: Computational geometry, geometric optimization, disk graphs, BFS, Dijkstra’s algorithm, reverse shortest path}
}
Document
Lower Bounds for Intersection Reporting Among Flat Objects

Authors: Peyman Afshani and Pingan Cheng

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
Recently, Ezra and Sharir [Esther Ezra and Micha Sharir, 2022] showed an O(n^{3/2+σ}) space and O(n^{1/2+σ}) query time data structure for ray shooting among triangles in ℝ³. This improves the upper bound given by the classical S(n)Q(n)⁴ = O(n^{4+σ}) space-time tradeoff for the first time in almost 25 years and in fact lies on the tradeoff curve of S(n)Q(n)³ = O(n^{3+σ}). However, it seems difficult to apply their techniques beyond this specific space and time combination. This pheonomenon appears persistently in almost all recent advances of flat object intersection searching, e.g., line-tetrahedron intersection in ℝ⁴ [Esther Ezra and Micha Sharir, 2022], triangle-triangle intersection in ℝ⁴ [Esther Ezra and Micha Sharir, 2022], or even among flat semialgebraic objects [Agarwal et al., 2022]. We give a timely explanation to this phenomenon from a lower bound perspective. We prove that given a set 𝒮 of (d-1)-dimensional simplicies in ℝ^d, any data structure that can report all intersections with a query line in small (n^o(1)) query time must use Ω(n^{2(d-1)-o(1)}) space. This dashes the hope of any significant improvement to the tradeoff curves for small query time and almost matches the classical upper bound. We also obtain an almost matching space lower bound of Ω(n^{6-o(1)}) for triangle-triangle intersection reporting in ℝ⁴ when the query time is small. Along the way, we further develop the previous lower bound techniques by Afshani and Cheng [Afshani and Cheng, 2021; Afshani and Cheng, 2022].

Cite as

Peyman Afshani and Pingan Cheng. Lower Bounds for Intersection Reporting Among Flat Objects. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 3:1-3:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.SoCG.2023.3,
  author =	{Afshani, Peyman and Cheng, Pingan},
  title =	{{Lower Bounds for Intersection Reporting Among Flat Objects}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{3:1--3:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.3},
  URN =		{urn:nbn:de:0030-drops-178536},
  doi =		{10.4230/LIPIcs.SoCG.2023.3},
  annote =	{Keywords: Computational Geometry, Intersection Searching, Data Structure Lower Bounds}
}
Document
Improved Algebraic Degeneracy Testing

Authors: Jean Cardinal and Micha Sharir

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
In the classical linear degeneracy testing problem, we are given n real numbers and a k-variate linear polynomial F, for some constant k, and have to determine whether there exist k numbers a_1,…,a_k from the set such that F(a_1,…,a_k) = 0. We consider a generalization of this problem in which F is an arbitrary constant-degree polynomial, we are given k sets of n real numbers, and have to determine whether there exists a k-tuple of numbers, one in each set, on which F vanishes. We give the first improvement over the naïve O^*(n^{k-1}) algorithm for this problem (where the O^*(⋅) notation omits subpolynomial factors). We show that the problem can be solved in time O^*(n^{k - 2 + 4/(k+2)}) for even k and in time O^*(n^{k - 2 + (4k-8)/(k²-5)}) for odd k in the real RAM model of computation. We also prove that for k = 4, the problem can be solved in time O^*(n^2.625) in the algebraic decision tree model, and for k = 5 it can be solved in time O^*(n^3.56) in the same model, both improving on the above uniform bounds. All our results rely on an algebraic generalization of the standard meet-in-the-middle algorithm for k-SUM, powered by recent algorithmic advances in the polynomial method for semi-algebraic range searching. In fact, our main technical result is much more broadly applicable, as it provides a general tool for detecting incidences and other interactions between points and algebraic surfaces in any dimension. In particular, it yields an efficient algorithm for a general, algebraic version of Hopcroft’s point-line incidence detection problem in any dimension.

Cite as

Jean Cardinal and Micha Sharir. Improved Algebraic Degeneracy Testing. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 22:1-22:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{cardinal_et_al:LIPIcs.SoCG.2023.22,
  author =	{Cardinal, Jean and Sharir, Micha},
  title =	{{Improved Algebraic Degeneracy Testing}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{22:1--22:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.22},
  URN =		{urn:nbn:de:0030-drops-178723},
  doi =		{10.4230/LIPIcs.SoCG.2023.22},
  annote =	{Keywords: Degeneracy testing, k-SUM problem, incidence bounds, Hocroft’s problem, polynomial method, algebraic decision trees}
}
Document
On Reverse Shortest Paths in Geometric Proximity Graphs

Authors: Pankaj K. Agarwal, Matthew J. Katz, and Micha Sharir

Published in: LIPIcs, Volume 248, 33rd International Symposium on Algorithms and Computation (ISAAC 2022)


Abstract
Let S be a set of n geometric objects of constant complexity (e.g., points, line segments, disks, ellipses) in ℝ², and let ϱ: S× S → ℝ_{≥ 0} be a distance function on S. For a parameter r ≥ 0, we define the proximity graph G(r) = (S,E) where E = {(e₁,e₂) ∈ S×S ∣ e₁≠e₂, ϱ(e₁,e₂) ≤ r}. Given S, s,t ∈ S, and an integer k ≥ 1, the reverse-shortest-path (RSP) problem asks for computing the smallest value r^* ≥ 0 such that G(r^*) contains a path from s to t of length at most k. In this paper we present a general randomized technique that solves the RSP problem efficiently for a large family of geometric objects and distance functions. Using standard, and sometimes more involved, semi-algebraic range-searching techniques, we first give an efficient algorithm for the decision problem, namely, given a value r ≥ 0, determine whether G(r) contains a path from s to t of length at most k. Next, we adapt our decision algorithm and combine it with a random-sampling method to compute r^*, by efficiently performing a binary search over an implicit set of O(n²) candidate values that contains r^*. We illustrate the versatility of our general technique by applying it to a variety of geometric proximity graphs. For example, we obtain (i) an O^*(n^{4/3}) expected-time randomized algorithm (where O^*(⋅) hides polylog(n) factors) for the case where S is a set of pairwise-disjoint line segments in ℝ² and ϱ(e₁,e₂) = min_{x ∈ e₁, y ∈ e₂} ‖x-y‖ (where ‖⋅‖ is the Euclidean distance), and (ii) an O^*(n+m^{4/3}) expected-time randomized algorithm for the case where S is a set of m points lying on an x-monotone polygonal chain T with n vertices, and ϱ(p,q), for p,q ∈ S, is the smallest value h such that the points p' := p+(0,h) and q' := q+(0,h) are visible to each other, i.e., all points on the segment p'q' lie above or on the polygonal chain T.

Cite as

Pankaj K. Agarwal, Matthew J. Katz, and Micha Sharir. On Reverse Shortest Paths in Geometric Proximity Graphs. In 33rd International Symposium on Algorithms and Computation (ISAAC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 248, pp. 42:1-42:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.ISAAC.2022.42,
  author =	{Agarwal, Pankaj K. and Katz, Matthew J. and Sharir, Micha},
  title =	{{On Reverse Shortest Paths in Geometric Proximity Graphs}},
  booktitle =	{33rd International Symposium on Algorithms and Computation (ISAAC 2022)},
  pages =	{42:1--42:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-258-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{248},
  editor =	{Bae, Sang Won and Park, Heejin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2022.42},
  URN =		{urn:nbn:de:0030-drops-173277},
  doi =		{10.4230/LIPIcs.ISAAC.2022.42},
  annote =	{Keywords: Geometric optimization, proximity graphs, semi-algebraic range searching, reverse shortest path}
}
Document
Intersection Searching Amid Tetrahedra in 4-Space and Efficient Continuous Collision Detection

Authors: Esther Ezra and Micha Sharir

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
We develop data structures for intersection detection queries in four dimensions that involve segments, triangles and tetrahedra. Specifically, we study two main problems: (i) Preprocess a set of n tetrahedra in {ℝ}⁴ into a data structure for answering segment-intersection queries amid the given tetrahedra (referred to as segment-tetrahedron intersection queries), and (ii) Preprocess a set of n triangles in {ℝ}⁴ into a data structure that supports triangle-intersection queries amid the input triangles (referred to as triangle-triangle intersection queries). As far as we can tell, these problems have not been previously studied. For problem (i), we first present a "standard" solution which, for any prespecified value n ≤ s ≤ n⁶ of a so-called storage parameter s, yields a data structure with O^*(s) storage and expected preprocessing, which answers an intersection query in O^*(n/s^{1/6}) time (here and in what follows, the O^*(⋅) notation hides subpolynomial factors). For problem (ii), using similar arguments, we present a solution that has the same asymptotic performance bounds. We then improve the solution for problem (i), and present a more intricate data structure that uses O^*(n²) storage and expected preprocessing, and answers a segment-tetrahedron intersection query in O^*(n^{1/2}) time. Using the parametric search technique of Agarwal and Matoušek [P. K. Agarwal and J. Matoušek, 1993], we can obtain data structures with similar performance bounds for the ray-shooting problem amid tetrahedra in {ℝ}⁴. Unfortunately, so far we do not know how to obtain a similar improvement for problem (ii). Our algorithms are based on a primal-dual technique for range searching with semi-algebraic sets, based on recent advances in this area [P. K. Agarwal et al., 2021; J. Matoušek and Z. Patáková, 2015]. As this is a result of independent interest, we spell out the details of this technique. As an application, we present a solution to the problem of "continuous collision detection" amid moving tetrahedra in 3-space. That is, the workspace consists of n tetrahedra, each moving at its own fixed velocity, and the goal is to detect a collision between some pair of moving tetrahedra. Using our solutions to problems (i) and (ii), we obtain an algorithm that detects a collision in O^*(n^{12/7}) expected time. We also present further applications, including an output-sensitive algorithm for constructing the arrangement of n tetrahedra in ℝ⁴ and an output-sensitive algorithm for constructing the intersection or union of two or several nonconvex polyhedra in ℝ⁴.

Cite as

Esther Ezra and Micha Sharir. Intersection Searching Amid Tetrahedra in 4-Space and Efficient Continuous Collision Detection. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 51:1-51:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{ezra_et_al:LIPIcs.ESA.2022.51,
  author =	{Ezra, Esther and Sharir, Micha},
  title =	{{Intersection Searching Amid Tetrahedra in 4-Space and Efficient Continuous Collision Detection}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{51:1--51:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.51},
  URN =		{urn:nbn:de:0030-drops-169895},
  doi =		{10.4230/LIPIcs.ESA.2022.51},
  annote =	{Keywords: Computational geometry, Ray shooting, Tetrahedra in \{\mathbb{R}\}⁴, Intersection queries in \{\mathbb{R}\}⁴, Polynomial partitioning, Range searching, Semi-algebraic sets, Tradeoff}
}
Document
Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems

Authors: Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
Let 𝒯 be a set of n planar semi-algebraic regions in ℝ³ of constant complexity (e.g., triangles, disks), which we call plates. We wish to preprocess 𝒯 into a data structure so that for a query object γ, which is also a plate, we can quickly answer various intersection queries, such as detecting whether γ intersects any plate of 𝒯, reporting all the plates intersected by γ, or counting them. We focus on two simpler cases of this general setting: (i) the input objects are plates and the query objects are constant-degree algebraic arcs in ℝ³ (arcs, for short), or (ii) the input objects are arcs and the query objects are plates in ℝ³. These interesting special cases form the building blocks for the general case. By combining the polynomial-partitioning technique with additional tools from real algebraic geometry, we obtain a variety of results with different storage and query-time bounds, depending on the complexity of the input and query objects. For example, if 𝒯 is a set of plates and the query objects are arcs, we obtain a data structure that uses O^*(n^{4/3}) storage (where the O^*(⋅) notation hides subpolynomial factors) and answers an intersection query in O^*(n^{2/3}) time. Alternatively, by increasing the storage to O^*(n^{3/2}), the query time can be decreased to O^*(n^{ρ}), where ρ = (2t-3)/3(t-1) < 2/3 and t ≥ 3 is the number of parameters needed to represent the query arcs.

Cite as

Pankaj K. Agarwal, Boris Aronov, Esther Ezra, Matthew J. Katz, and Micha Sharir. Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 4:1-4:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{agarwal_et_al:LIPIcs.SoCG.2022.4,
  author =	{Agarwal, Pankaj K. and Aronov, Boris and Ezra, Esther and Katz, Matthew J. and Sharir, Micha},
  title =	{{Intersection Queries for Flat Semi-Algebraic Objects in Three Dimensions and Related Problems}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{4:1--4:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.4},
  URN =		{urn:nbn:de:0030-drops-160126},
  doi =		{10.4230/LIPIcs.SoCG.2022.4},
  annote =	{Keywords: Intersection searching, Semi-algebraic range searching, Point-enclosure queries, Ray-shooting queries, Polynomial partitions, Cylindrical algebraic decomposition, Multi-level partition trees, Collision detection}
}
Document
Covering Points by Hyperplanes and Related Problems

Authors: Zuzana Patáková and Micha Sharir

Published in: LIPIcs, Volume 224, 38th International Symposium on Computational Geometry (SoCG 2022)


Abstract
For a set P of n points in ℝ^d, for any d ≥ 2, a hyperplane h is called k-rich with respect to P if it contains at least k points of P. Answering and generalizing a question asked by Peyman Afshani, we show that if the number of k-rich hyperplanes in ℝ^d, d ≥ 3, is at least Ω(n^d/k^α + n/k), with a sufficiently large constant of proportionality and with d ≤ α < 2d-1, then there exists a (d-2)-flat that contains Ω(k^{(2d-1-α)/(d-1)}) points of P. We also present upper bound constructions that give instances in which the above lower bound is tight. An extension of our analysis yields similar lower bounds for k-rich spheres.

Cite as

Zuzana Patáková and Micha Sharir. Covering Points by Hyperplanes and Related Problems. In 38th International Symposium on Computational Geometry (SoCG 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 224, pp. 57:1-57:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{patakova_et_al:LIPIcs.SoCG.2022.57,
  author =	{Pat\'{a}kov\'{a}, Zuzana and Sharir, Micha},
  title =	{{Covering Points by Hyperplanes and Related Problems}},
  booktitle =	{38th International Symposium on Computational Geometry (SoCG 2022)},
  pages =	{57:1--57:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-227-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{224},
  editor =	{Goaoc, Xavier and Kerber, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2022.57},
  URN =		{urn:nbn:de:0030-drops-160652},
  doi =		{10.4230/LIPIcs.SoCG.2022.57},
  annote =	{Keywords: Rich hyperplanes, Incidences, Covering points by hyperplanes}
}
Document
Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model

Authors: Boris Aronov, Mark de Berg, Jean Cardinal, Esther Ezra, John Iacono, and Micha Sharir

Published in: LIPIcs, Volume 212, 32nd International Symposium on Algorithms and Computation (ISAAC 2021)


Abstract
We present subquadratic algorithms in the algebraic decision-tree model for several 3Sum-hard geometric problems, all of which can be reduced to the following question: Given two sets A, B, each consisting of n pairwise disjoint segments in the plane, and a set C of n triangles in the plane, we want to count, for each triangle Δ ∈ C, the number of intersection points between the segments of A and those of B that lie in Δ. The problems considered in this paper have been studied by Chan (2020), who gave algorithms that solve them, in the standard real-RAM model, in O((n²/log²n) log^O(1) log n) time. We present solutions in the algebraic decision-tree model whose cost is O(n^{60/31+ε}), for any ε > 0. Our approach is based on a primal-dual range searching mechanism, which exploits the multi-level polynomial partitioning machinery recently developed by Agarwal, Aronov, Ezra, and Zahl (2020). A key step in the procedure is a variant of point location in arrangements, say of lines in the plane, which is based solely on the order type of the lines, a "handicap" that turns out to be beneficial for speeding up our algorithm.

Cite as

Boris Aronov, Mark de Berg, Jean Cardinal, Esther Ezra, John Iacono, and Micha Sharir. Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model. In 32nd International Symposium on Algorithms and Computation (ISAAC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 212, pp. 3:1-3:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{aronov_et_al:LIPIcs.ISAAC.2021.3,
  author =	{Aronov, Boris and de Berg, Mark and Cardinal, Jean and Ezra, Esther and Iacono, John and Sharir, Micha},
  title =	{{Subquadratic Algorithms for Some 3Sum-Hard Geometric Problems in the Algebraic Decision Tree Model}},
  booktitle =	{32nd International Symposium on Algorithms and Computation (ISAAC 2021)},
  pages =	{3:1--3:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-214-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{212},
  editor =	{Ahn, Hee-Kap and Sadakane, Kunihiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2021.3},
  URN =		{urn:nbn:de:0030-drops-154363},
  doi =		{10.4230/LIPIcs.ISAAC.2021.3},
  annote =	{Keywords: Computational geometry, Algebraic decision-tree model, Polynomial partitioning, Primal-dual range searching, Order types, Point location, Hierarchical partitions}
}
Document
On Ray Shooting for Triangles in 3-Space and Related Problems

Authors: Esther Ezra and Micha Sharir

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We consider several problems that involve lines in three dimensions, and present improved algorithms for solving them. The problems include (i) ray shooting amid triangles in ℝ³, (ii) reporting intersections between query lines (segments, or rays) and input triangles, as well as approximately counting the number of such intersections, (iii) computing the intersection of two nonconvex polyhedra, (iv) detecting, counting, or reporting intersections in a set of lines in ℝ³, and (v) output-sensitive construction of an arrangement of triangles in three dimensions. Our approach is based on the polynomial partitioning technique. For example, our ray-shooting algorithm processes a set of n triangles in ℝ³ into a data structure for answering ray shooting queries amid the given triangles, which uses O(n^{3/2+ε}) storage and preprocessing, and answers a query in O(n^{1/2+ε}) time, for any ε > 0. This is a significant improvement over known results, obtained more than 25 years ago, in which, with this amount of storage, the query time bound is roughly n^{5/8}. The algorithms for the other problems have similar performance bounds, with similar improvements over previous results. We also derive a nontrivial improved tradeoff between storage and query time. Using it, we obtain algorithms that answer m queries on n objects in max{O(m^{2/3}n^{5/6+{ε}} + n^{1+ε}), O(m^{5/6+ε}n^{2/3} + m^{1+ε})} time, for any ε > 0, again an improvement over the earlier bounds.

Cite as

Esther Ezra and Micha Sharir. On Ray Shooting for Triangles in 3-Space and Related Problems. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 34:1-34:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ezra_et_al:LIPIcs.SoCG.2021.34,
  author =	{Ezra, Esther and Sharir, Micha},
  title =	{{On Ray Shooting for Triangles in 3-Space and Related Problems}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{34:1--34:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.34},
  URN =		{urn:nbn:de:0030-drops-138332},
  doi =		{10.4230/LIPIcs.SoCG.2021.34},
  annote =	{Keywords: Ray shooting, Three dimensions, Polynomial partitioning, Tradeoff}
}
Document
On Rich Lenses in Planar Arrangements of Circles and Related Problems

Authors: Esther Ezra, Orit E. Raz, Micha Sharir, and Joshua Zahl

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We show that the maximum number of pairwise non-overlapping k-rich lenses (lenses formed by at least k circles) in an arrangement of n circles in the plane is O(n^{3/2}log(n / k^3) k^{-5/2} + n/k), and the sum of the degrees of the lenses of such a family (where the degree of a lens is the number of circles that form it) is O(n^{3/2}log(n/k^3) k^{-3/2} + n). Two independent proofs of these bounds are given, each interesting in its own right (so we believe). We then show that these bounds lead to the known bound of Agarwal et al. (JACM 2004) and Marcus and Tardos (JCTA 2006) on the number of point-circle incidences in the plane. Extensions to families of more general algebraic curves and some other related problems are also considered.

Cite as

Esther Ezra, Orit E. Raz, Micha Sharir, and Joshua Zahl. On Rich Lenses in Planar Arrangements of Circles and Related Problems. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 35:1-35:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{ezra_et_al:LIPIcs.SoCG.2021.35,
  author =	{Ezra, Esther and Raz, Orit E. and Sharir, Micha and Zahl, Joshua},
  title =	{{On Rich Lenses in Planar Arrangements of Circles and Related Problems}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{35:1--35:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.35},
  URN =		{urn:nbn:de:0030-drops-138343},
  doi =		{10.4230/LIPIcs.SoCG.2021.35},
  annote =	{Keywords: Lenses, Circles, Polynomial partitioning, Incidences}
}
Document
Throwing a Sofa Through the Window

Authors: Dan Halperin, Micha Sharir, and Itay Yehuda

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
We study several variants of the problem of moving a convex polytope K, with n edges, in three dimensions through a flat rectangular (and sometimes more general) window. Specifically: ii) We study variants where the motion is restricted to translations only, discuss situations where such a motion can be reduced to sliding (translation in a fixed direction), and present efficient algorithms for those variants, which run in time close to O(n^{8/3}). iii) We consider the case of a gate (an unbounded window with two parallel infinite edges), and show that K can pass through such a window, by any collision-free rigid motion, iff it can slide through it, an observation that leads to an efficient algorithm for this variant too. iv) We consider arbitrary compact convex windows, and show that if K can pass through such a window W (by any motion) then K can slide through a slab of width equal to the diameter of W. v) We show that if a purely translational motion for K through a rectangular window W exists, then K can also slide through W keeping the same orientation as in the translational motion. For a given fixed orientation of K we can determine in linear time whether K can translate (and hence slide) through W keeping the given orientation, and if so plan the motion, also in linear time. vi) We give an example of a polytope that cannot pass through a certain window by translations only, but can do so when rotations are allowed. vii) We study the case of a circular window W, and show that, for the regular tetrahedron K of edge length 1, there are two thresholds 1 > δ₁≈ 0.901388 > δ₂≈ 0.895611, such that (a) K can slide through W if the diameter d of W is ≥ 1, (b) K cannot slide through W but can pass through it by a purely translational motion when δ₁ ≤ d < 1, (c) K cannot pass through W by a purely translational motion but can do it when rotations are allowed when δ₂ ≤ d < δ₁, and (d) K cannot pass through W at all when d < δ₂. viii) Finally, we explore the general setup, where we want to plan a general motion (with all six degrees of freedom) for K through a rectangular window W, and present an efficient algorithm for this problem, with running time close to O(n⁴).

Cite as

Dan Halperin, Micha Sharir, and Itay Yehuda. Throwing a Sofa Through the Window. In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 41:1-41:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{halperin_et_al:LIPIcs.SoCG.2021.41,
  author =	{Halperin, Dan and Sharir, Micha and Yehuda, Itay},
  title =	{{Throwing a Sofa Through the Window}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{41:1--41:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.41},
  URN =		{urn:nbn:de:0030-drops-138409},
  doi =		{10.4230/LIPIcs.SoCG.2021.41},
  annote =	{Keywords: Motion planning, Convex polytopes in 3D}
}
  • Refine by Author
  • 32 Sharir, Micha
  • 10 Kaplan, Haim
  • 8 Ezra, Esther
  • 7 Agarwal, Pankaj K.
  • 4 Mulzer, Wolfgang
  • Show More...

  • Refine by Classification
  • 19 Theory of computation → Computational geometry
  • 4 Mathematics of computing → Combinatorics
  • 3 Theory of computation → Design and analysis of algorithms
  • 2 Theory of computation
  • 1 Information systems → Information retrieval
  • Show More...

  • Refine by Keyword
  • 7 Incidences
  • 5 Computational geometry
  • 5 Polynomial partitioning
  • 2 Algebraic Geometry
  • 2 Approximate incidences
  • Show More...

  • Refine by Type
  • 38 document

  • Refine by Publication Year
  • 8 2017
  • 5 2021
  • 4 2019
  • 4 2020
  • 4 2022
  • Show More...