21 Search Results for "Thiemann, René"


Volume

LIPIcs, Volume 268

14th International Conference on Interactive Theorem Proving (ITP 2023)

ITP 2023, July 31 to August 4, 2023, Białystok, Poland

Editors: Adam Naumowicz and René Thiemann

Document
Completeness of Asynchronous Session Tree Subtyping in Coq

Authors: Burak Ekici and Nobuko Yoshida

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Multiparty session types (MPST) serve as a foundational framework for formally specifying and verifying message passing protocols. Asynchronous subtyping in MPST allows for typing optimised programs preserving type safety and deadlock freedom under asynchronous interactions where the message order is preserved and sending is non-blocking. The optimisation is obtained by message reordering, which allows for sending messages earlier or receiving them later. Sound subtyping algorithms have been extensively studied and implemented as part of various programming languages and tools including C, Rust and C-MPI. However, formalising all such permutations under sequencing, selection, branching and recursion in session types is an intricate task. Additionally, checking asynchronous subtyping has been proven to be undecidable. This paper introduces the first formalisation of asynchronous subtyping in MPST within the Coq proof assistant. We first decompose session types into session trees that do not involve branching and selection, and then establish a coinductive refinement relation over them to govern subtyping. To showcase our formalisation, we prove example subtyping schemas that appear in the literature, all of which cannot be verified, at the same time, by any of the existing decidable sound algorithms. Additionally, we take the (inductive) negation of the refinement relation from a prior work by Ghilezan et al. [Ghilezan et al., 2023] and re-implement it, significantly reducing the number of rules (from eighteen to eight). We establish the completeness of subtyping with respect to its negation in Coq, addressing the issues concerning the negation rules outlined in the previous work [Ghilezan et al., 2023]. In the formalisation, we use the greatest fixed point of the least fixed point technique, facilitated by the paco library, to define coinductive predicates. We employ parametrised coinduction to prove their properties. The formalisation consists of roughly 10K lines of Coq code, accessible at: https://github.com/ekiciburak/sessionTreeST/tree/itp2024.

Cite as

Burak Ekici and Nobuko Yoshida. Completeness of Asynchronous Session Tree Subtyping in Coq. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ekici_et_al:LIPIcs.ITP.2024.13,
  author =	{Ekici, Burak and Yoshida, Nobuko},
  title =	{{Completeness of Asynchronous Session Tree Subtyping in Coq}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.13},
  URN =		{urn:nbn:de:0030-drops-207418},
  doi =		{10.4230/LIPIcs.ITP.2024.13},
  annote =	{Keywords: asynchronous multiparty session types, session trees, subtyping, Coq}
}
Document
A Modular Formalization of Superposition in Isabelle/HOL

Authors: Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
Superposition is an efficient proof calculus for reasoning about first-order logic with equality that is implemented in many automatic theorem provers. It works by saturating the given set of clauses and is refutationally complete, meaning that if the set is inconsistent, the saturation will contain a contradiction. In this work, we restructured the completeness proof to cleanly separate the ground (i.e., variable-free) and nonground aspects, and we formalized the result in Isabelle/HOL. We relied on the IsaFoR library for first-order terms and on the Isabelle saturation framework.

Cite as

Martin Desharnais, Balazs Toth, Uwe Waldmann, Jasmin Blanchette, and Sophie Tourret. A Modular Formalization of Superposition in Isabelle/HOL. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 12:1-12:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{desharnais_et_al:LIPIcs.ITP.2024.12,
  author =	{Desharnais, Martin and Toth, Balazs and Waldmann, Uwe and Blanchette, Jasmin and Tourret, Sophie},
  title =	{{A Modular Formalization of Superposition in Isabelle/HOL}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{12:1--12:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.12},
  URN =		{urn:nbn:de:0030-drops-207401},
  doi =		{10.4230/LIPIcs.ITP.2024.12},
  annote =	{Keywords: Superposition, verification, first-order logic, higher-order logic}
}
Document
An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility

Authors: Dohan Kim

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We present an Isabelle/HOL formalization of narrowing for E-unifiability, reachability, and infeasibility. Given a semi-complete rewrite system ℛ and two terms s and t, we show a formalized proof that if narrowing terminates, then it provides a decision procedure for ℛ-unifiability for s and t, where ℛ is viewed as a set of equations. Furthermore, we present multiset narrowing and its formalization for multiset reachability and reachability analysis, providing decision procedures using certain restricted conditions on multiset reachability and reachability problems. Our multiset narrowing also provides a complete method for E-unifiability problems consisting of multiple goals if E can be represented by a complete rewrite system.

Cite as

Dohan Kim. An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility. In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 24:1-24:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kim:LIPIcs.ITP.2024.24,
  author =	{Kim, Dohan},
  title =	{{An Isabelle/HOL Formalization of Narrowing and Multiset Narrowing for E-Unifiability, Reachability and Infeasibility}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.24},
  URN =		{urn:nbn:de:0030-drops-207525},
  doi =		{10.4230/LIPIcs.ITP.2024.24},
  annote =	{Keywords: Narrowing, Multiset Narrowing, Unifiability, Reachability}
}
Document
Short Paper
Graphical Rewriting for Diagrammatic Reasoning in Monoidal Categories in Lean4 (Short Paper)

Authors: Sam Ezeh

Published in: LIPIcs, Volume 309, 15th International Conference on Interactive Theorem Proving (ITP 2024)


Abstract
We present Untangle, a Lean4 extension for Visual Studio Code that displays string diagrams for morphisms inside monoidal categories, allowing users to rewrite expressions by clicking on natural transformations and morphisms in the string diagram. When the the user manipulates the string diagram by clicking on natural transformations in the Graphical User Interface, it attempts to generate relevant tactics to apply which it then inserts into the editor, allowing the user to prove equalities visually by diagram rewriting.

Cite as

Sam Ezeh. Graphical Rewriting for Diagrammatic Reasoning in Monoidal Categories in Lean4 (Short Paper). In 15th International Conference on Interactive Theorem Proving (ITP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 309, pp. 41:1-41:8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ezeh:LIPIcs.ITP.2024.41,
  author =	{Ezeh, Sam},
  title =	{{Graphical Rewriting for Diagrammatic Reasoning in Monoidal Categories in Lean4}},
  booktitle =	{15th International Conference on Interactive Theorem Proving (ITP 2024)},
  pages =	{41:1--41:8},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-337-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{309},
  editor =	{Bertot, Yves and Kutsia, Temur and Norrish, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2024.41},
  URN =		{urn:nbn:de:0030-drops-207690},
  doi =		{10.4230/LIPIcs.ITP.2024.41},
  annote =	{Keywords: Interactive theorem proving, Lean4, Graphical User Interface}
}
Document
Simulating Dependency Pairs by Semantic Labeling

Authors: Teppei Saito and Nao Hirokawa

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
We show that termination proofs by a version of the dependency pair method can be simulated by semantic labeling plus multiset path orders. By incorporating a flattening technique into multiset path orders the simulation result can be extended to the dependency pair method for relative termination, introduced by Iborra et al. This result allows us to improve applicability of their dependency pair method.

Cite as

Teppei Saito and Nao Hirokawa. Simulating Dependency Pairs by Semantic Labeling. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 13:1-13:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{saito_et_al:LIPIcs.FSCD.2024.13,
  author =	{Saito, Teppei and Hirokawa, Nao},
  title =	{{Simulating Dependency Pairs by Semantic Labeling}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{13:1--13:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.13},
  URN =		{urn:nbn:de:0030-drops-203423},
  doi =		{10.4230/LIPIcs.FSCD.2024.13},
  annote =	{Keywords: Term rewriting, Relative termination, Semantic labeling, Dependency pairs}
}
Document
A Verified Algorithm for Deciding Pattern Completeness

Authors: René Thiemann and Akihisa Yamada

Published in: LIPIcs, Volume 299, 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)


Abstract
Pattern completeness is the property that the left-hand sides of a functional program cover all cases w.r.t. pattern matching. In the context of term rewriting a related notion is quasi-reducibility, a prerequisite if one wants to perform ground confluence proofs by rewriting induction. In order to certify such confluence proofs, we develop a novel algorithm that decides pattern completeness and that can be used to ensure quasi-reducibility. One of the advantages of the proposed algorithm is its simple structure: it is similar to that of a regular matching algorithm and, unlike an existing decision procedure for quasi-reducibility, it avoids enumerating all terms up to a given depth. Despite the simple structure, proving the correctness of the algorithm is not immediate. Therefore we formalize the algorithm and verify its correctness using the proof assistant Isabelle/HOL. To this end, we not only verify some auxiliary algorithms, but also design an Isabelle library on sorted term rewriting. Moreover, we export the verified code in Haskell and experimentally evaluate its performance. We observe that our algorithm significantly outperforms existing algorithms, even including the pattern completeness check of the GHC Haskell compiler.

Cite as

René Thiemann and Akihisa Yamada. A Verified Algorithm for Deciding Pattern Completeness. In 9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 299, pp. 27:1-27:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{thiemann_et_al:LIPIcs.FSCD.2024.27,
  author =	{Thiemann, Ren\'{e} and Yamada, Akihisa},
  title =	{{A Verified Algorithm for Deciding Pattern Completeness}},
  booktitle =	{9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024)},
  pages =	{27:1--27:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-323-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{299},
  editor =	{Rehof, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2024.27},
  URN =		{urn:nbn:de:0030-drops-203566},
  doi =		{10.4230/LIPIcs.FSCD.2024.27},
  annote =	{Keywords: Isabelle/HOL, pattern matching, term rewriting}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations

Authors: Raphael Douglas Giles, Vincent Jackson, and Christine Rizkallah

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We introduce a powerful termination algorithm for structurally recursive functions that improves on the core ideas behind lexicographic termination algorithms for functional programs. The algorithm generates linear-lexicographic combinations of primitive measure functions measuring the recursive structure of terms. We introduce a measure language that enables the simplification and comparison of measures and we prove meta-theoretic properties of our measure language. Moreover, we demonstrate our algorithm, on an untyped first-order functional language and prove its soundness and that it runs in polynomial time. We also provide a Haskell implementation. As part of this work, we also show how to solve the maximisation of negative vector-components as a linear program.

Cite as

Raphael Douglas Giles, Vincent Jackson, and Christine Rizkallah. T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 139:1-139:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{giles_et_al:LIPIcs.ICALP.2024.139,
  author =	{Giles, Raphael Douglas and Jackson, Vincent and Rizkallah, Christine},
  title =	{{T-Rex: Termination of Recursive Functions Using Lexicographic Linear Combinations}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{139:1--139:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.139},
  URN =		{urn:nbn:de:0030-drops-202827},
  doi =		{10.4230/LIPIcs.ICALP.2024.139},
  annote =	{Keywords: Termination, Recursive functions}
}
Document
Complete Volume
LIPIcs, Volume 268, ITP 2023, Complete Volume

Authors: Adam Naumowicz and René Thiemann

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
LIPIcs, Volume 268, ITP 2023, Complete Volume

Cite as

14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 1-660, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{naumowicz_et_al:LIPIcs.ITP.2023,
  title =	{{LIPIcs, Volume 268, ITP 2023, Complete Volume}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{1--660},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023},
  URN =		{urn:nbn:de:0030-drops-183747},
  doi =		{10.4230/LIPIcs.ITP.2023},
  annote =	{Keywords: LIPIcs, Volume 268, ITP 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Adam Naumowicz and René Thiemann

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{naumowicz_et_al:LIPIcs.ITP.2023.0,
  author =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{0:i--0:x},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.0},
  URN =		{urn:nbn:de:0030-drops-183755},
  doi =		{10.4230/LIPIcs.ITP.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Certifying the Weighted Path Order (Invited Talk)

Authors: René Thiemann, Jonas Schöpf, Christian Sternagel, and Akihisa Yamada

Published in: LIPIcs, Volume 167, 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)


Abstract
The weighted path order (WPO) unifies and extends several termination proving techniques that are known in term rewriting. Consequently, the first tool implementing WPO could prove termination of rewrite systems for which all previous tools failed. However, we should not blindly trust such results, since there might be problems with the implementation or the paper proof of WPO. In this work, we increase the reliability of these automatically generated proofs. To this end, we first formally prove the properties of WPO in Isabelle/HOL, and then develop a verified algorithm to certify termination proofs that are generated by tools using WPO. We also include support for max-polynomial interpretations, an important ingredient in WPO. Here we establish a connection to an existing verified SMT solver. Moreover, we extend the termination tools NaTT and TTT2, so that they can now generate certifiable WPO proofs.

Cite as

René Thiemann, Jonas Schöpf, Christian Sternagel, and Akihisa Yamada. Certifying the Weighted Path Order (Invited Talk). In 5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 167, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{thiemann_et_al:LIPIcs.FSCD.2020.4,
  author =	{Thiemann, Ren\'{e} and Sch\"{o}pf, Jonas and Sternagel, Christian and Yamada, Akihisa},
  title =	{{Certifying the Weighted Path Order}},
  booktitle =	{5th International Conference on Formal Structures for Computation and Deduction (FSCD 2020)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-155-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{167},
  editor =	{Ariola, Zena M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2020.4},
  URN =		{urn:nbn:de:0030-drops-123263},
  doi =		{10.4230/LIPIcs.FSCD.2020.4},
  annote =	{Keywords: certification, Isabelle/HOL, reduction order, termination analysis}
}
Document
AC Dependency Pairs Revisited

Authors: Akihisa Yamada, Christian Sternagel, René Thiemann, and Keiichirou Kusakari

Published in: LIPIcs, Volume 62, 25th EACSL Annual Conference on Computer Science Logic (CSL 2016)


Abstract
Rewriting modulo AC, i.e., associativity and/or commutativity of certain symbols, is among the most frequently used extensions of term rewriting by equational theories. In this paper we present a generalization of the dependency pair framework for termination analysis to rewriting modulo AC. It subsumes existing variants of AC dependency pairs, admits standard dependency graph analyses, and in particular enjoys the minimality property in the standard sense. As a direct benefit, important termination techniques are easily extended; we describe usable rules and the subterm criterion for AC termination, which properly generalize the non-AC versions. We also perform these extensions within IsaFoR - the Isabelle formalization of rewriting - and thereby provide the first formalization of AC dependency pairs. Consequently, our certifier CeTA now supports checking proofs of AC termination.

Cite as

Akihisa Yamada, Christian Sternagel, René Thiemann, and Keiichirou Kusakari. AC Dependency Pairs Revisited. In 25th EACSL Annual Conference on Computer Science Logic (CSL 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 62, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{yamada_et_al:LIPIcs.CSL.2016.8,
  author =	{Yamada, Akihisa and Sternagel, Christian and Thiemann, Ren\'{e} and Kusakari, Keiichirou},
  title =	{{AC Dependency Pairs Revisited}},
  booktitle =	{25th EACSL Annual Conference on Computer Science Logic (CSL 2016)},
  pages =	{8:1--8:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-022-4},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{62},
  editor =	{Talbot, Jean-Marc and Regnier, Laurent},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2016.8},
  URN =		{urn:nbn:de:0030-drops-65488},
  doi =		{10.4230/LIPIcs.CSL.2016.8},
  annote =	{Keywords: Equational Rewriting, Termination, Dependency Pairs, Certification}
}
Document
Certification of Complexity Proofs using CeTA

Authors: Martin Avanzini, Christian Sternagel, and René Thiemann

Published in: LIPIcs, Volume 36, 26th International Conference on Rewriting Techniques and Applications (RTA 2015)


Abstract
Nowadays certification is widely employed by automated termination tools for term rewriting, where certifiers support most available techniques. In complexity analysis, the situation is quite different. Although tools support certification in principle, current certifiers implement only the most basic technique, namely, suitably tamed versions of reduction orders. As a consequence, only a small fraction of the proofs generated by state-of-the-art complexity tools can be certified. To improve upon this situation, we formalized a framework for the certification of modular complexity proofs and incorporated it into CeTA. We report on this extension and present the newly supported techniques (match-bounds, weak dependency pairs, dependency tuples, usable rules, and usable replacement maps), resulting in a significant increase in the number of certifiable complexity proofs. During our work we detected conflicts in theoretical results as well as bugs in existing complexity tools.

Cite as

Martin Avanzini, Christian Sternagel, and René Thiemann. Certification of Complexity Proofs using CeTA. In 26th International Conference on Rewriting Techniques and Applications (RTA 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 36, pp. 23-39, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{avanzini_et_al:LIPIcs.RTA.2015.23,
  author =	{Avanzini, Martin and Sternagel, Christian and Thiemann, Ren\'{e}},
  title =	{{Certification of Complexity Proofs using CeTA}},
  booktitle =	{26th International Conference on Rewriting Techniques and Applications (RTA 2015)},
  pages =	{23--39},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-85-9},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{36},
  editor =	{Fern\'{a}ndez, Maribel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2015.23},
  URN =		{urn:nbn:de:0030-drops-51875},
  doi =		{10.4230/LIPIcs.RTA.2015.23},
  annote =	{Keywords: complexity analysis, certification, match-bounds, weak dependency pairs, dependency tuples, usable rules, usable replacement maps}
}
Document
Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion

Authors: Christian Sternagel and René Thiemann

Published in: LIPIcs, Volume 21, 24th International Conference on Rewriting Techniques and Applications (RTA 2013)


Abstract
We present extensions of our Isabelle Formalization of Rewriting that cover two historically related concepts: the Knuth-Bendix order and the Knuth-Bendix completion procedure. The former, besides being the first development of its kind in a proof assistant, is based on a generalized version of the Knuth-Bendix order. We compare our version to variants from the literature and show all properties required to certify termination proofs of TRSs. The latter comprises the formalization of important facts that are related to completion, like Birkhoff's theorem, the critical pair theorem, and a soundness proof of completion, showing that the strict encompassment condition is superfluous for finite runs. As a result, we are able to certify completion proofs.

Cite as

Christian Sternagel and René Thiemann. Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion. In 24th International Conference on Rewriting Techniques and Applications (RTA 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 21, pp. 287-302, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{sternagel_et_al:LIPIcs.RTA.2013.287,
  author =	{Sternagel, Christian and Thiemann, Ren\'{e}},
  title =	{{Formalizing Knuth-Bendix Orders and Knuth-Bendix Completion}},
  booktitle =	{24th International Conference on Rewriting Techniques and Applications (RTA 2013)},
  pages =	{287--302},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-53-8},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{21},
  editor =	{van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2013.287},
  URN =		{urn:nbn:de:0030-drops-40685},
  doi =		{10.4230/LIPIcs.RTA.2013.287},
  annote =	{Keywords: certification, completion, confluence, termination}
}
Document
On the Formalization of Termination Techniques based on Multiset Orderings

Authors: René Thiemann, Guillaume Allais, and Julian Nagele

Published in: LIPIcs, Volume 15, 23rd International Conference on Rewriting Techniques and Applications (RTA'12) (2012)


Abstract
Multiset orderings are a key ingredient in certain termination techniques like the recursive path ordering and a variant of size-change termination. In order to integrate these techniques in a certifier for termination proofs, we have added them to the Isabelle Formalization of Rewriting. To this end, it was required to extend the existing formalization on multiset orderings towards a generalized multiset ordering. Afterwards, the soundness proofs of both techniques have been established, although only after fixing some definitions. Concerning efficiency, it is known that the search for suitable parameters for both techniques is NP-hard. We show that checking the correct application of the techniques--where all parameters are provided--is also NP-hard, since the problem of deciding the generalized multiset ordering is NP-hard.

Cite as

René Thiemann, Guillaume Allais, and Julian Nagele. On the Formalization of Termination Techniques based on Multiset Orderings. In 23rd International Conference on Rewriting Techniques and Applications (RTA'12). Leibniz International Proceedings in Informatics (LIPIcs), Volume 15, pp. 339-354, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{thiemann_et_al:LIPIcs.RTA.2012.339,
  author =	{Thiemann, Ren\'{e} and Allais, Guillaume and Nagele, Julian},
  title =	{{On the Formalization of Termination Techniques based on Multiset Orderings}},
  booktitle =	{23rd International Conference on Rewriting Techniques and Applications (RTA'12)},
  pages =	{339--354},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-38-5},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{15},
  editor =	{Tiwari, Ashish},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.RTA.2012.339},
  URN =		{urn:nbn:de:0030-drops-35029},
  doi =		{10.4230/LIPIcs.RTA.2012.339},
  annote =	{Keywords: formalization, term rewriting, termination, orderings}
}
  • Refine by Author
  • 14 Thiemann, René
  • 6 Sternagel, Christian
  • 4 Giesl, Jürgen
  • 4 Schneider-Kamp, Peter
  • 3 Yamada, Akihisa
  • Show More...

  • Refine by Classification

  • Refine by Keyword
  • 6 Termination
  • 4 certification
  • 4 term rewriting
  • 3 Term Rewriting
  • 2 Certification
  • Show More...

  • Refine by Type
  • 20 document
  • 1 volume

  • Refine by Publication Year
  • 7 2024
  • 3 2007
  • 3 2023
  • 1 2006
  • 1 2010
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail