59 Search Results for "Wagner, Dorothea"


Document
Buffered Streaming Edge Partitioning

Authors: Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Addressing the challenges of processing massive graphs, which are prevalent in diverse fields such as social, biological, and technical networks, we introduce HeiStreamE and FreightE, two innovative (buffered) streaming algorithms designed for efficient edge partitioning of large-scale graphs. HeiStreamE utilizes an adapted Split-and-Connect graph model and a Fennel-based multilevel partitioning scheme, while FreightE partitions a hypergraph representation of the input graph. Besides ensuring superior solution quality, these approaches also overcome the limitations of existing algorithms by maintaining linear dependency on the graph size in both time and memory complexity with no dependence on the number of blocks of partition. Our comprehensive experimental analysis demonstrates that HeiStreamE outperforms current streaming algorithms and the re-streaming algorithm 2PS in partitioning quality (replication factor), and is more memory-efficient for real-world networks where the number of edges is far greater than the number of vertices. Further, FreightE is shown to produce fast and efficient partitions, particularly for higher numbers of partition blocks.

Cite as

Adil Chhabra, Marcelo Fonseca Faraj, Christian Schulz, and Daniel Seemaier. Buffered Streaming Edge Partitioning. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 5:1-5:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{chhabra_et_al:LIPIcs.SEA.2024.5,
  author =	{Chhabra, Adil and Fonseca Faraj, Marcelo and Schulz, Christian and Seemaier, Daniel},
  title =	{{Buffered Streaming Edge Partitioning}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{5:1--5:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.5},
  URN =		{urn:nbn:de:0030-drops-203701},
  doi =		{10.4230/LIPIcs.SEA.2024.5},
  annote =	{Keywords: graph partitioning, edge partitioning, streaming, online, buffered partitioning}
}
Document
Faster Treewidth-Based Approximations for Wiener Index

Authors: Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
The Wiener index of a graph G is the sum of distances between all pairs of its vertices. It is a widely-used graph property in chemistry, initially introduced to examine the link between boiling points and structural properties of alkanes, which later found notable applications in drug design. Thus, computing or approximating the Wiener index of molecular graphs, i.e. graphs in which every vertex models an atom of a molecule and every edge models a bond, is of significant interest to the computational chemistry community. In this work, we build upon the observation that molecular graphs are sparse and tree-like and focus on developing efficient algorithms parameterized by treewidth to approximate the Wiener index. We present a new randomized approximation algorithm using a combination of tree decompositions and centroid decompositions. Our algorithm approximates the Wiener index within any desired multiplicative factor (1 ± ε) in time O(n ⋅ log n ⋅ k³ + √n ⋅ k/ε²), where n is the number of vertices of the graph and k is the treewidth. This time bound is almost-linear in n. Finally, we provide experimental results over standard benchmark molecules from PubChem and the Protein Data Bank, showcasing the applicability and scalability of our approach on real-world chemical graphs and comparing it with previous methods.

Cite as

Giovanna Kobus Conrado, Amir Kafshdar Goharshady, Pavel Hudec, Pingjiang Li, and Harshit Jitendra Motwani. Faster Treewidth-Based Approximations for Wiener Index. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{conrado_et_al:LIPIcs.SEA.2024.6,
  author =	{Conrado, Giovanna Kobus and Goharshady, Amir Kafshdar and Hudec, Pavel and Li, Pingjiang and Motwani, Harshit Jitendra},
  title =	{{Faster Treewidth-Based Approximations for Wiener Index}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{6:1--6:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.6},
  URN =		{urn:nbn:de:0030-drops-203718},
  doi =		{10.4230/LIPIcs.SEA.2024.6},
  annote =	{Keywords: Computational Chemistry, Treewidth, Wiener Index}
}
Document
Engineering Weighted Connectivity Augmentation Algorithms

Authors: Marcelo Fonseca Faraj, Ernestine Großmann, Felix Joos, Thomas Möller, and Christian Schulz

Published in: LIPIcs, Volume 301, 22nd International Symposium on Experimental Algorithms (SEA 2024)


Abstract
Increasing the connectivity of a graph is a pivotal challenge in robust network design. The weighted connectivity augmentation problem is a common version of the problem that takes link costs into consideration. The problem is then to find a minimum cost subset of a given set of weighted links that increases the connectivity of a graph by one when the links are added to the edge set of the input instance. In this work, we give a first implementation of recently discovered better-than-2 approximations. Furthermore, we propose three new heuristics and one exact approach. These include a greedy algorithm considering link costs and the number of unique cuts covered, an approach based on minimum spanning trees and a local search algorithm that may improve a given solution by swapping links of paths. Our exact approach uses an ILP formulation with efficient cut enumeration as well as a fast initialization routine. We then perform an extensive experimental evaluation which shows that our algorithms are faster and yield the best solutions compared to the current state-of-the-art as well as the recently discovered better-than-2 approximation algorithms. Our novel local search algorithm can improve solution quality even further.

Cite as

Marcelo Fonseca Faraj, Ernestine Großmann, Felix Joos, Thomas Möller, and Christian Schulz. Engineering Weighted Connectivity Augmentation Algorithms. In 22nd International Symposium on Experimental Algorithms (SEA 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 301, pp. 11:1-11:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{faraj_et_al:LIPIcs.SEA.2024.11,
  author =	{Faraj, Marcelo Fonseca and Gro{\ss}mann, Ernestine and Joos, Felix and M\"{o}ller, Thomas and Schulz, Christian},
  title =	{{Engineering Weighted Connectivity Augmentation Algorithms}},
  booktitle =	{22nd International Symposium on Experimental Algorithms (SEA 2024)},
  pages =	{11:1--11:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-325-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{301},
  editor =	{Liberti, Leo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2024.11},
  URN =		{urn:nbn:de:0030-drops-203768},
  doi =		{10.4230/LIPIcs.SEA.2024.11},
  annote =	{Keywords: weighted connectivity augmentation, approximation, heuristic, integer linear program, algorithm engineering}
}
Document
Track A: Algorithms, Complexity and Games
The Discrepancy of Shortest Paths

Authors: Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
The hereditary discrepancy of a set system is a quantitative measure of the pseudorandom properties of the system. Roughly speaking, hereditary discrepancy measures how well one can 2-color the elements of the system so that each set contains approximately the same number of elements of each color. Hereditary discrepancy has numerous applications in computational geometry, communication complexity and derandomization. More recently, the hereditary discrepancy of the set system of shortest paths has found applications in differential privacy [Chen et al. SODA 23]. The contribution of this paper is to improve the upper and lower bounds on the hereditary discrepancy of set systems of unique shortest paths in graphs. In particular, we show that any system of unique shortest paths in an undirected weighted graph has hereditary discrepancy O(n^{1/4}), and we construct lower bound examples demonstrating that this bound is tight up to polylog n factors. Our lower bounds hold even for planar graphs and bipartite graphs, and improve a previous lower bound of Ω(n^{1/6}) obtained by applying the trace bound of Chazelle and Lvov [SoCG'00] to a classical point-line system of Erdős. As applications, we improve the lower bound on the additive error for differentially-private all pairs shortest distances from Ω(n^{1/6}) [Chen et al. SODA 23] to Ω̃(n^{1/4}), and we improve the lower bound on additive error for the differentially-private all sets range queries problem to Ω̃(n^{1/4}), which is tight up to polylog n factors [Deng et al. WADS 23].

Cite as

Greg Bodwin, Chengyuan Deng, Jie Gao, Gary Hoppenworth, Jalaj Upadhyay, and Chen Wang. The Discrepancy of Shortest Paths. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 27:1-27:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bodwin_et_al:LIPIcs.ICALP.2024.27,
  author =	{Bodwin, Greg and Deng, Chengyuan and Gao, Jie and Hoppenworth, Gary and Upadhyay, Jalaj and Wang, Chen},
  title =	{{The Discrepancy of Shortest Paths}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{27:1--27:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.27},
  URN =		{urn:nbn:de:0030-drops-201705},
  doi =		{10.4230/LIPIcs.ICALP.2024.27},
  annote =	{Keywords: Discrepancy, hereditary discrepancy, shortest paths, differential privacy}
}
Document
Track A: Algorithms, Complexity and Games
On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch

Authors: Tsvi Kopelowitz, Ariel Korin, and Liam Roditty

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
For an undirected unweighted graph G = (V,E) with n vertices and m edges, let d(u,v) denote the distance from u ∈ V to v ∈ V in G. An (α,β)-stretch approximate distance oracle (ADO) for G is a data structure that given u,v ∈ V returns in constant (or near constant) time a value dˆ(u,v) such that d(u,v) ≤ dˆ(u,v) ≤ α⋅ d(u,v) + β, for some reals α > 1, β. Thorup and Zwick [Mikkel Thorup and Uri Zwick, 2005] showed that one cannot beat stretch 3 with subquadratic space (in terms of n) for general graphs. Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one can obtain stretch 2 using O(m^{1/3}n^{4/3}) space, and so if m is subquadratic in n then the space usage is also subquadratic. Moreover, Pǎtraşcu and Roditty [Mihai Pǎtraşcu and Liam Roditty, 2010] showed that one cannot beat stretch 2 with subquadratic space even for graphs where m = Õ(n), based on the set-intersection hypothesis. In this paper we explore the conditions for which an ADO can beat stretch 2 while using subquadratic space. In particular, we show that if the maximum degree in G is Δ_G ≤ O(n^{1/k-ε}) for some 0 < ε ≤ 1/k, then there exists an ADO for G that uses Õ(n^{2-(kε)/3) space and has a (2,1-k)-stretch. For k = 2 this result implies a subquadratic sub-2 stretch ADO for graphs with Δ_G ≤ O(n^{1/2-ε}). Moreover, we prove a conditional lower bound, based on the set intersection hypothesis, which states that for any positive integer k ≤ log n, obtaining a sub-(k+2)/k stretch for graphs with Δ_G = Θ(n^{1/k}) requires Ω̃(n²) space. Thus, for graphs with maximum degree Θ(n^{1/2}), obtaining a sub-2 stretch requires Ω̃(n²) space.

Cite as

Tsvi Kopelowitz, Ariel Korin, and Liam Roditty. On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 101:1-101:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{kopelowitz_et_al:LIPIcs.ICALP.2024.101,
  author =	{Kopelowitz, Tsvi and Korin, Ariel and Roditty, Liam},
  title =	{{On the Space Usage of Approximate Distance Oracles with Sub-2 Stretch}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{101:1--101:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.101},
  URN =		{urn:nbn:de:0030-drops-202443},
  doi =		{10.4230/LIPIcs.ICALP.2024.101},
  annote =	{Keywords: Graph algorithms, Approximate distance oracle, data structures, shortest path}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
On Homomorphism Indistinguishability and Hypertree Depth

Authors: Benjamin Scheidt

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
GC^k is a logic introduced by Scheidt and Schweikardt (2023) to express properties of hypergraphs. It is similar to first-order logic with counting quantifiers (C) adapted to the hypergraph setting. It has distinct sets of variables for vertices and for hyperedges and requires vertex variables to be guarded by hyperedge variables on every quantification. We prove that two hypergraphs G, H satisfy the same sentences in the logic GC^k with guard depth at most k if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of strict hypertree depth at most k. This lifts the analogous result for tree depth ≤ k and sentences of first-order logic with counting quantifiers of quantifier rank at most k due to Grohe (2020) from graphs to hypergraphs. The guard depth of a formula is the quantifier rank with respect to hyperedge variables, and strict hypertree depth is a restriction of hypertree depth as defined by Adler, Gavenčiak and Klimošová (2012). To justify this restriction, we show that for every H, the strict hypertree depth of H is at most 1 larger than its hypertree depth, and we give additional evidence that strict hypertree depth can be viewed as a reasonable generalisation of tree depth for hypergraphs.

Cite as

Benjamin Scheidt. On Homomorphism Indistinguishability and Hypertree Depth. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 152:1-152:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{scheidt:LIPIcs.ICALP.2024.152,
  author =	{Scheidt, Benjamin},
  title =	{{On Homomorphism Indistinguishability and Hypertree Depth}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{152:1--152:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.152},
  URN =		{urn:nbn:de:0030-drops-202958},
  doi =		{10.4230/LIPIcs.ICALP.2024.152},
  annote =	{Keywords: homomorphism indistinguishability, counting logics, guarded logics, hypergraphs, incidence graphs, tree depth, elimination forest, hypertree width}
}
Document
Nearest-Neighbor Queries in Customizable Contraction Hierarchies and Applications

Authors: Valentin Buchhold and Dorothea Wagner

Published in: LIPIcs, Volume 190, 19th International Symposium on Experimental Algorithms (SEA 2021)


Abstract
Customizable contraction hierarchies are one of the most popular route planning frameworks in practice, due to their simplicity and versatility. In this work, we present a novel algorithm for finding k-nearest neighbors in customizable contraction hierarchies by systematically exploring the associated separator decomposition tree. Compared to previous bucket-based approaches, our algorithm requires much less target-dependent preprocessing effort. Moreover, we use our novel approach in two concrete applications. The first application are online k-closest point-of-interest queries, where the points of interest are only revealed at query time. We achieve query times of about 25 milliseconds on a continental road network, which is fast enough for interactive systems. The second application is travel demand generation. We show how to accelerate a recently introduced travel demand generator by a factor of more than 50 using our novel nearest-neighbor algorithm.

Cite as

Valentin Buchhold and Dorothea Wagner. Nearest-Neighbor Queries in Customizable Contraction Hierarchies and Applications. In 19th International Symposium on Experimental Algorithms (SEA 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 190, pp. 18:1-18:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{buchhold_et_al:LIPIcs.SEA.2021.18,
  author =	{Buchhold, Valentin and Wagner, Dorothea},
  title =	{{Nearest-Neighbor Queries in Customizable Contraction Hierarchies and Applications}},
  booktitle =	{19th International Symposium on Experimental Algorithms (SEA 2021)},
  pages =	{18:1--18:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-185-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{190},
  editor =	{Coudert, David and Natale, Emanuele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2021.18},
  URN =		{urn:nbn:de:0030-drops-137908},
  doi =		{10.4230/LIPIcs.SEA.2021.18},
  annote =	{Keywords: Nearest neighbors, points of interest, travel demand generation, radiation model, customizable contraction hierarchies}
}
Document
An Efficient Solution for One-To-Many Multi-Modal Journey Planning

Authors: Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

Published in: OASIcs, Volume 85, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)


Abstract
We study the one-to-many journey planning problem in multi-modal transportation networks consisting of a public transit network and an additional, non-schedule-based mode of transport. Given a departure time and a single source vertex, we aim to compute optimal journeys to all vertices in a set of targets, optimizing both travel time and the number of transfers used. Solving this problem yields a crucial component in many other problems, such as efficient point-of-interest queries, computation of isochrones, or multi-modal traffic assignments. While many algorithms for multi-modal journey planning exist, none of them are applicable to one-to-many scenarios. Our solution is based on the combination of two state-of-the-art approaches: ULTRA, which enables efficient journey planning in multi-modal networks, but only for one-to-one queries, and (R)PHAST, which enables efficient one-to-many queries, but only in time-independent networks. Similarly to ULTRA, our new approach can be combined with any existing public transit algorithm that allows a search to all stops, which we demonstrate for CSA and RAPTOR. For small to moderately sized target sets, the resulting algorithms are nearly as fast as the pure public transit algorithms they are based on. For large target sets, we achieve a speedup of up to 7 compared to a naive one-to-many extension of a state-of-the-art multi-modal approach.

Cite as

Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. An Efficient Solution for One-To-Many Multi-Modal Journey Planning. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 1:1-1:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sauer_et_al:OASIcs.ATMOS.2020.1,
  author =	{Sauer, Jonas and Wagner, Dorothea and Z\"{u}ndorf, Tobias},
  title =	{{An Efficient Solution for One-To-Many Multi-Modal Journey Planning}},
  booktitle =	{20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)},
  pages =	{1:1--1:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-170-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{85},
  editor =	{Huisman, Dennis and Zaroliagis, Christos D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2020.1},
  URN =		{urn:nbn:de:0030-drops-131371},
  doi =		{10.4230/OASIcs.ATMOS.2020.1},
  annote =	{Keywords: Algorithm Engineering, Route Planning, Public Transit, One-to-Many}
}
Document
Integrating ULTRA and Trip-Based Routing

Authors: Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

Published in: OASIcs, Volume 85, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)


Abstract
We study a bi-modal journey planning scenario consisting of a public transit network and a transfer graph representing a secondary transportation mode (e.g., walking or cycling). Given a pair of source and target locations, the objective is to find a Pareto set of journeys optimizing arrival time and the number of required transfers. For public transit networks with a restricted, transitively closed transfer graph, one of the fastest known algorithms solving this bi-criteria problem is Trip-Based Routing [Witt, 2015]. However, this algorithm cannot be trivially extended to unrestricted transfer graphs. In this work, we combine Trip-Based Routing with ULTRA [Baum et al., 2019], a preprocessing technique that allows any public transit algorithm that requires transitive transfers to handle an unrestricted transfer graph. Since both ULTRA and Trip-Based Routing precompute transfer shortcuts in a preprocessing phase, a naive combination of the two leads to a three-phase algorithm that performs redundant work and produces superfluous shortcuts. We therefore propose a new, integrated preprocessing phase that combines the advantages of both and reduces the number of computed shortcuts by up to a factor of 9 compared to a naive combination. The resulting query algorithm, ULTRA-Trip-Based is the fastest known algorithm for the considered problem setting, achieving a speedup of up to 4 compared to the fastest previously known approach, ULTRA-RAPTOR.

Cite as

Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Integrating ULTRA and Trip-Based Routing. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sauer_et_al:OASIcs.ATMOS.2020.4,
  author =	{Sauer, Jonas and Wagner, Dorothea and Z\"{u}ndorf, Tobias},
  title =	{{Integrating ULTRA and Trip-Based Routing}},
  booktitle =	{20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)},
  pages =	{4:1--4:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-170-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{85},
  editor =	{Huisman, Dennis and Zaroliagis, Christos D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2020.4},
  URN =		{urn:nbn:de:0030-drops-131408},
  doi =		{10.4230/OASIcs.ATMOS.2020.4},
  annote =	{Keywords: Algorithms, Journey Planning, Multi-Modal, Public Transportation}
}
Document
Customizable Contraction Hierarchies with Turn Costs

Authors: Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf

Published in: OASIcs, Volume 85, 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)


Abstract
We incorporate turn restrictions and turn costs into the route planning algorithm customizable contraction hierarchies (CCH). There are two common ways to represent turn costs and restrictions. The edge-based model expands the network so that road segments become vertices and allowed turns become edges. The compact model keeps intersections as vertices, but associates a turn table with each vertex. Although CCH can be used as is on the edge-based model, the performance of preprocessing and customization is severely affected. While the expanded network is only three times larger, both preprocessing and customization time increase by up to an order of magnitude. In this work, we carefully engineer CCH to exploit different properties of the expanded graph. We reduce the increase in customization time from up to an order of magnitude to a factor of about 3. The increase in preprocessing time is reduced even further. Moreover, we present a CCH variant that works on the compact model, and show that it performs worse than the variant on the edge-based model. Surprisingly, the variant on the edge-based model even uses less space than the one on the compact model, although the compact model was developed to keep the space requirement low.

Cite as

Valentin Buchhold, Dorothea Wagner, Tim Zeitz, and Michael Zündorf. Customizable Contraction Hierarchies with Turn Costs. In 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Open Access Series in Informatics (OASIcs), Volume 85, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{buchhold_et_al:OASIcs.ATMOS.2020.9,
  author =	{Buchhold, Valentin and Wagner, Dorothea and Zeitz, Tim and Z\"{u}ndorf, Michael},
  title =	{{Customizable Contraction Hierarchies with Turn Costs}},
  booktitle =	{20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020)},
  pages =	{9:1--9:15},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-170-2},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{85},
  editor =	{Huisman, Dennis and Zaroliagis, Christos D.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.ATMOS.2020.9},
  URN =		{urn:nbn:de:0030-drops-131453},
  doi =		{10.4230/OASIcs.ATMOS.2020.9},
  annote =	{Keywords: Turn costs, realistic road networks, customizable contraction hierarchies, route planning, shortest paths}
}
Document
Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks

Authors: Ben Strasser, Dorothea Wagner, and Tim Zeitz

Published in: LIPIcs, Volume 173, 28th Annual European Symposium on Algorithms (ESA 2020)


Abstract
We study the problem of computing shortest paths in massive road networks with traffic predictions. Incorporating traffic predictions into routing allows, for example, to avoid commuter traffic congestions. Existing techniques follow a two-phase approach: In a preprocessing step, an index is built. The index depends on the road network and the traffic patterns but not on the path start and end. The latter are the input of the query phase, in which shortest paths are computed. All existing techniques have either large index size, slow query running times, or may compute suboptimal paths. In this work, we introduce CATCHUp (Customizable Approximated Time-dependent Contraction Hierarchies through Unpacking), the first algorithm that simultaneously achieves all three objectives. The core idea of CATCHUp is to store paths instead of travel times at shortcuts. Shortcut travel times are derived lazily from the stored paths. We perform an experimental study on a set of real world instances and compare our approach with state-of-the-art techniques. Our approach achieves the fastest preprocessing, competitive query running times and up to 30 times smaller indexes than competing approaches.

Cite as

Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks. In 28th Annual European Symposium on Algorithms (ESA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 173, pp. 81:1-81:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{strasser_et_al:LIPIcs.ESA.2020.81,
  author =	{Strasser, Ben and Wagner, Dorothea and Zeitz, Tim},
  title =	{{Space-Efficient, Fast and Exact Routing in Time-Dependent Road Networks}},
  booktitle =	{28th Annual European Symposium on Algorithms (ESA 2020)},
  pages =	{81:1--81:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-162-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{173},
  editor =	{Grandoni, Fabrizio and Herman, Grzegorz and Sanders, Peter},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2020.81},
  URN =		{urn:nbn:de:0030-drops-129479},
  doi =		{10.4230/LIPIcs.ESA.2020.81},
  annote =	{Keywords: realistic road networks, time-dependent route planning, shortest paths}
}
Document
Engineering Exact Quasi-Threshold Editing

Authors: Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea Wagner, and Sven Zühlsdorf

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
Quasi-threshold graphs are {C₄, P₄}-free graphs, i.e., they do not contain any cycle or path of four nodes as an induced subgraph. We study the {C₄, P₄}-free editing problem, which is the problem of finding a minimum number of edge insertions or deletions to transform an input graph into a quasi-threshold graph. This problem is NP-hard but fixed-parameter tractable (FPT) in the number of edits by using a branch-and-bound algorithm and admits a simple integer linear programming formulation (ILP). Both methods are also applicable to the general ℱ-free editing problem for any finite set of graphs ℱ. For the FPT algorithm, we introduce a fast heuristic for computing high-quality lower bounds and an improved branching strategy. For the ILP, we engineer several variants of row generation. We evaluate both methods for quasi-threshold editing on a large set of protein similarity graphs. For most instances, our optimizations speed up the FPT algorithm by one to three orders of magnitude. The running time of the ILP, that we solve using Gurobi, becomes only slightly faster. With all optimizations, the FPT algorithm is slightly faster than the ILP, even when listing all solutions. Additionally, we show that for almost all graphs, solutions of the previously proposed quasi-threshold editing heuristic QTM are close to optimal.

Cite as

Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea Wagner, and Sven Zühlsdorf. Engineering Exact Quasi-Threshold Editing. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.SEA.2020.10,
  author =	{Gottesb\"{u}ren, Lars and Hamann, Michael and Schoch, Philipp and Strasser, Ben and Wagner, Dorothea and Z\"{u}hlsdorf, Sven},
  title =	{{Engineering Exact Quasi-Threshold Editing}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{10:1--10:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.10},
  URN =		{urn:nbn:de:0030-drops-120849},
  doi =		{10.4230/LIPIcs.SEA.2020.10},
  annote =	{Keywords: Edge Editing, Integer Linear Programming, FPT algorithm, Quasi-Threshold Editing}
}
Document
Advanced Flow-Based Multilevel Hypergraph Partitioning

Authors: Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea Wagner

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
The balanced hypergraph partitioning problem is to partition a hypergraph into k disjoint blocks of bounded size such that the sum of the number of blocks connected by each hyperedge is minimized. We present an improvement to the flow-based refinement framework of KaHyPar-MF, the current state-of-the-art multilevel k-way hypergraph partitioning algorithm for high-quality solutions. Our improvement is based on the recently proposed HyperFlowCutter algorithm for computing bipartitions of unweighted hypergraphs by solving a sequence of incremental maximum flow problems. Since vertices and hyperedges are aggregated during the coarsening phase, refinement algorithms employed in the multilevel setting must be able to handle both weighted hyperedges and weighted vertices - even if the initial input hypergraph is unweighted. We therefore enhance HyperFlowCutter to handle weighted instances and propose a technique for computing maximum flows directly on weighted hypergraphs. We compare the performance of two configurations of our new algorithm with KaHyPar-MF and seven other partitioning algorithms on a comprehensive benchmark set with instances from application areas such as VLSI design, scientific computing, and SAT solving. Our first configuration, KaHyPar-HFC, computes slightly better solutions than KaHyPar-MF using significantly less running time. The second configuration, KaHyPar-HFC*, computes solutions of significantly better quality and is still slightly faster than KaHyPar-MF. Furthermore, in terms of solution quality, both configurations also outperform all other competing partitioners.

Cite as

Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea Wagner. Advanced Flow-Based Multilevel Hypergraph Partitioning. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gottesburen_et_al:LIPIcs.SEA.2020.11,
  author =	{Gottesb\"{u}ren, Lars and Hamann, Michael and Schlag, Sebastian and Wagner, Dorothea},
  title =	{{Advanced Flow-Based Multilevel Hypergraph Partitioning}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{11:1--11:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.11},
  URN =		{urn:nbn:de:0030-drops-120859},
  doi =		{10.4230/LIPIcs.SEA.2020.11},
  annote =	{Keywords: Hypergraph Partitioning, Maximum Flows, Refinement}
}
Document
Faster Multi-Modal Route Planning With Bike Sharing Using ULTRA

Authors: Jonas Sauer, Dorothea Wagner, and Tobias Zündorf

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
We study multi-modal route planning in a network comprised of schedule-based public transportation, unrestricted walking, and cycling with bikes available from bike sharing stations. So far this problem has only been considered for scenarios with at most one bike sharing operator, for which MCR is the best known algorithm [Delling et al., 2013]. However, for practical applications, algorithms should be able to distinguish between bike sharing stations of multiple competing bike sharing operators. Furthermore, MCR has recently been outperformed by ULTRA for multi-modal route planning scenarios without bike sharing [Baum et al., 2019]. In this paper, we present two approaches for modeling multi-modal transportation networks with multiple bike sharing operators: The operator-dependent model requires explicit handling of bike sharing stations within the algorithm, which we demonstrate with an adapted version of MCR. In the operator-expanded model, all relevant information is encoded within an expanded network. This allows for applying any multi-modal public transit algorithm without modification, which we show for ULTRA. We proceed by describing an additional preprocessing step called operator pruning, which can be used to accelerate both approaches. We conclude our work with an extensive experimental evaluation on the networks of London, Switzerland, and Germany. Our experiments show that the new preprocessing technique accelerates both approaches significantly, with the fastest algorithm (ULTRA-RAPTOR with operator pruning) being more than an order of magnitude faster than the basic MCR approach. Moreover, the ULTRA preprocessing step also benefits from operator pruning, as its running time is reduced by a factor of 14 to 20.

Cite as

Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Faster Multi-Modal Route Planning With Bike Sharing Using ULTRA. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{sauer_et_al:LIPIcs.SEA.2020.16,
  author =	{Sauer, Jonas and Wagner, Dorothea and Z\"{u}ndorf, Tobias},
  title =	{{Faster Multi-Modal Route Planning With Bike Sharing Using ULTRA}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{16:1--16:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.16},
  URN =		{urn:nbn:de:0030-drops-120905},
  doi =		{10.4230/LIPIcs.SEA.2020.16},
  annote =	{Keywords: Algorithms, Route Planning, Bike Sharing, Public Transportation}
}
Document
Zipping Segment Trees

Authors: Lukas Barth and Dorothea Wagner

Published in: LIPIcs, Volume 160, 18th International Symposium on Experimental Algorithms (SEA 2020)


Abstract
Stabbing queries in sets of intervals are usually answered using segment trees. A dynamic variant of segment trees has been presented by van Kreveld and Overmars, which uses red-black trees to do rebalancing operations. This paper presents zipping segment trees - dynamic segment trees based on zip trees, which were recently introduced by Tarjan et al. To facilitate zipping segment trees, we show how to uphold certain segment tree properties during the operations of a zip tree. We present an in-depth experimental evaluation and comparison of dynamic segment trees based on red-black trees, weight-balanced trees and several variants of the novel zipping segment trees. Our results indicate that zipping segment trees perform better than rotation-based alternatives.

Cite as

Lukas Barth and Dorothea Wagner. Zipping Segment Trees. In 18th International Symposium on Experimental Algorithms (SEA 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 160, pp. 25:1-25:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{barth_et_al:LIPIcs.SEA.2020.25,
  author =	{Barth, Lukas and Wagner, Dorothea},
  title =	{{Zipping Segment Trees}},
  booktitle =	{18th International Symposium on Experimental Algorithms (SEA 2020)},
  pages =	{25:1--25:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-148-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{160},
  editor =	{Faro, Simone and Cantone, Domenico},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2020.25},
  URN =		{urn:nbn:de:0030-drops-120990},
  doi =		{10.4230/LIPIcs.SEA.2020.25},
  annote =	{Keywords: Segment Trees, Dynamic Segment Trees, Zip Trees, Data Structures}
}
  • Refine by Author
  • 44 Wagner, Dorothea
  • 8 Zündorf, Tobias
  • 5 Baum, Moritz
  • 5 Sauer, Jonas
  • 4 Buchhold, Valentin
  • Show More...

  • Refine by Classification
  • 9 Mathematics of computing → Graph algorithms
  • 9 Theory of computation → Shortest paths
  • 7 Applied computing → Transportation
  • 3 Theory of computation → Graph algorithms analysis
  • 2 Mathematics of computing → Hypergraphs
  • Show More...

  • Refine by Keyword
  • 8 Algorithms
  • 8 shortest paths
  • 4 Optimization
  • 4 algorithm engineering
  • 3 Algorithm Engineering
  • Show More...

  • Refine by Type
  • 59 document

  • Refine by Publication Year
  • 15 2006
  • 8 2020
  • 6 2024
  • 5 2017
  • 4 2014
  • Show More...