7 Search Results for "Xu, Jun"


Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Survey
Semantic Web: Past, Present, and Future

Authors: Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Ever since the vision was formulated, the Semantic Web has inspired many generations of innovations. Semantic technologies have been used to share vast amounts of information on the Web, enhance them with semantics to give them meaning, and enable inference and reasoning on them. Throughout the years, semantic technologies, and in particular knowledge graphs, have been used in search engines, data integration, enterprise settings, and machine learning. In this paper, we recap the classical concepts and foundations of the Semantic Web as well as modern and recent concepts and applications, building upon these foundations. The classical topics we cover include knowledge representation, creating and validating knowledge on the Web, reasoning and linking, and distributed querying. We enhance this classical view of the so-called "Semantic Web Layer Cake" with an update of recent concepts that include provenance, security and trust, as well as a discussion of practical impacts from industry-led contributions. We conclude with an outlook on the future directions of the Semantic Web. This is a living document. If you like to contribute, please contact the first author and visit: https://github.com/ascherp/semantic-web-primer

Cite as

Ansgar Scherp, Gerd Groener, Petr Škoda, Katja Hose, and Maria-Esther Vidal. Semantic Web: Past, Present, and Future. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 3:1-3:37, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{scherp_et_al:TGDK.2.1.3,
  author =	{Scherp, Ansgar and Groener, Gerd and \v{S}koda, Petr and Hose, Katja and Vidal, Maria-Esther},
  title =	{{Semantic Web: Past, Present, and Future}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:37},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.3},
  URN =		{urn:nbn:de:0030-drops-198607},
  doi =		{10.4230/TGDK.2.1.3},
  annote =	{Keywords: Linked Open Data, Semantic Web Graphs, Knowledge Graphs}
}
Document
Position
Standardizing Knowledge Engineering Practices with a Reference Architecture

Authors: Bradley P. Allen and Filip Ilievski

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
Knowledge engineering is the process of creating and maintaining knowledge-producing systems. Throughout the history of computer science and AI, knowledge engineering workflows have been widely used given the importance of high-quality knowledge for reliable intelligent agents. Meanwhile, the scope of knowledge engineering, as apparent from its target tasks and use cases, has been shifting, together with its paradigms such as expert systems, semantic web, and language modeling. The intended use cases and supported user requirements between these paradigms have not been analyzed globally, as new paradigms often satisfy prior pain points while possibly introducing new ones. The recent abstraction of systemic patterns into a boxology provides an opening for aligning the requirements and use cases of knowledge engineering with the systems, components, and software that can satisfy them best, however, this direction has not been explored to date. This paper proposes a vision of harmonizing the best practices in the field of knowledge engineering by leveraging the software engineering methodology of creating reference architectures. We describe how a reference architecture can be iteratively designed and implemented to associate user needs with recurring systemic patterns, building on top of existing knowledge engineering workflows and boxologies. We provide a six-step roadmap that can enable the development of such an architecture, consisting of scope definition, selection of information sources, architectural analysis, synthesis of an architecture based on the information source analysis, evaluation through instantiation, and, ultimately, instantiation into a concrete software architecture. We provide an initial design and outcome of the definition of architectural scope, selection of information sources, and analysis. As the remaining steps of design, evaluation, and instantiation of the architecture are largely use-case specific, we provide a detailed description of their procedures and point to relevant examples. We expect that following through on this vision will lead to well-grounded reference architectures for knowledge engineering, will advance the ongoing initiatives of organizing the neurosymbolic knowledge engineering space, and will build new links to the software architectures and data science communities.

Cite as

Bradley P. Allen and Filip Ilievski. Standardizing Knowledge Engineering Practices with a Reference Architecture. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 5:1-5:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.2.1.5,
  author =	{Allen, Bradley P. and Ilievski, Filip},
  title =	{{Standardizing Knowledge Engineering Practices with a Reference Architecture}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:23},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.5},
  URN =		{urn:nbn:de:0030-drops-198623},
  doi =		{10.4230/TGDK.2.1.5},
  annote =	{Keywords: knowledge engineering, knowledge graphs, quality attributes, software architectures, sociotechnical systems}
}
Document
Track A: Algorithms, Complexity and Games
Ellipsoid Fitting up to a Constant

Authors: Jun-Ting Hsieh, Pravesh K. Kothari, Aaron Potechin, and Jeff Xu

Published in: LIPIcs, Volume 261, 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)


Abstract
In [Saunderson, 2011; Saunderson et al., 2013], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is the largest m = m(d) such that there is an ellipsoid in ℝ^d that passes through v_1, v_2, …, v_m with high probability when the v_is are chosen independently from the standard Gaussian distribution N(0,I_d)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite matrix X such that v_i^⊤ X v_i = 1 for every 1 ⩽ i ⩽ m - a natural example of a random semidefinite program. SPW conjectured that m = (1-o(1)) d²/4 with high probability. Very recently, Potechin, Turner, Venkat and Wein [Potechin et al., 2022] and Kane and Diakonikolas [Kane and Diakonikolas, 2022] proved that m ≳ d²/log^O(1) d via a certain natural, explicit construction. In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d²/C for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant. Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been used to analyze correlated random matrices arising in various areas [Barak et al., 2019; Bafna et al., 2022]. Our key new technical tool is a refined method to prove singular value upper bounds on certain correlated random matrices that are tight up to absolute dimension-independent constants. In contrast, all previous methods that analyze such matrices lose logarithmic factors in the dimension.

Cite as

Jun-Ting Hsieh, Pravesh K. Kothari, Aaron Potechin, and Jeff Xu. Ellipsoid Fitting up to a Constant. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 78:1-78:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{hsieh_et_al:LIPIcs.ICALP.2023.78,
  author =	{Hsieh, Jun-Ting and Kothari, Pravesh K. and Potechin, Aaron and Xu, Jeff},
  title =	{{Ellipsoid Fitting up to a Constant}},
  booktitle =	{50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)},
  pages =	{78:1--78:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-278-5},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{261},
  editor =	{Etessami, Kousha and Feige, Uriel and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.78},
  URN =		{urn:nbn:de:0030-drops-181304},
  doi =		{10.4230/LIPIcs.ICALP.2023.78},
  annote =	{Keywords: Semidefinite programming, random matrices, average-case complexity}
}
Document
On Efficient Range-Summability of IID Random Variables in Two or Higher Dimensions

Authors: Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara

Published in: LIPIcs, Volume 255, 26th International Conference on Database Theory (ICDT 2023)


Abstract
d-dimensional (for d > 1) efficient range-summability (dD-ERS) of random variables (RVs) is a fundamental algorithmic problem that has applications to two important families of database problems, namely, fast approximate wavelet tracking (FAWT) on data streams and approximately answering range-sum queries over a data cube. Whether there are efficient solutions to the dD-ERS problem, or to the latter database problem, have been two long-standing open problems. Both are solved in this work. Specifically, we propose a novel solution framework to dD-ERS on RVs that have Gaussian or Poisson distribution. Our dD-ERS solutions are the first ones that have polylogarithmic time complexities. Furthermore, we develop a novel k-wise independence theory that allows our dD-ERS solutions to have both high computational efficiencies and strong provable independence guarantees. Finally, we show that under a sufficient and likely necessary condition, certain existing solutions for 1D-ERS can be generalized to higher dimensions.

Cite as

Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara. On Efficient Range-Summability of IID Random Variables in Two or Higher Dimensions. In 26th International Conference on Database Theory (ICDT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 255, pp. 21:1-21:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{meng_et_al:LIPIcs.ICDT.2023.21,
  author =	{Meng, Jingfan and Wang, Huayi and Xu, Jun and Ogihara, Mitsunori},
  title =	{{On Efficient Range-Summability of IID Random Variables in Two or Higher Dimensions}},
  booktitle =	{26th International Conference on Database Theory (ICDT 2023)},
  pages =	{21:1--21:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-270-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{255},
  editor =	{Geerts, Floris and Vandevoort, Brecht},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2023.21},
  URN =		{urn:nbn:de:0030-drops-177624},
  doi =		{10.4230/LIPIcs.ICDT.2023.21},
  annote =	{Keywords: fast range-summation, multidimensional data streams, Haar wavelet transform}
}
Document
Certifying Solution Geometry in Random CSPs: Counts, Clusters and Balance

Authors: Jun-Ting Hsieh, Sidhanth Mohanty, and Jeff Xu

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
An active topic in the study of random constraint satisfaction problems (CSPs) is the geometry of the space of satisfying or almost satisfying assignments as the function of the density, for which a precise landscape of predictions has been made via statistical physics-based heuristics. In parallel, there has been a recent flurry of work on refuting random constraint satisfaction problems, via nailing refutation thresholds for spectral and semidefinite programming-based algorithms, and also on counting solutions to CSPs. Inspired by this, the starting point for our work is the following question: What does the solution space for a random CSP look like to an efficient algorithm? In pursuit of this inquiry, we focus on the following problems about random Boolean CSPs at the densities where they are unsatisfiable but no refutation algorithm is known. 1) Counts. For every Boolean CSP we give algorithms that with high probability certify a subexponential upper bound on the number of solutions. We also give algorithms to certify a bound on the number of large cuts in a Gaussian-weighted graph, and the number of large independent sets in a random d-regular graph. 2) Clusters. For Boolean 3CSPs we give algorithms that with high probability certify an upper bound on the number of clusters of solutions. 3) Balance. We also give algorithms that with high probability certify that there are no "unbalanced" solutions, i.e., solutions where the fraction of +1s deviates significantly from 50%. Finally, we also provide hardness evidence suggesting that our algorithms for counting are optimal.

Cite as

Jun-Ting Hsieh, Sidhanth Mohanty, and Jeff Xu. Certifying Solution Geometry in Random CSPs: Counts, Clusters and Balance. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 11:1-11:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{hsieh_et_al:LIPIcs.CCC.2022.11,
  author =	{Hsieh, Jun-Ting and Mohanty, Sidhanth and Xu, Jeff},
  title =	{{Certifying Solution Geometry in Random CSPs: Counts, Clusters and Balance}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{11:1--11:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.11},
  URN =		{urn:nbn:de:0030-drops-165735},
  doi =		{10.4230/LIPIcs.CCC.2022.11},
  annote =	{Keywords: constraint satisfaction problems, certified counting, random graphs}
}
Document
A Dyadic Simulation Approach to Efficient Range-Summability

Authors: Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara

Published in: LIPIcs, Volume 220, 25th International Conference on Database Theory (ICDT 2022)


Abstract
Efficient range-summability (ERS) of a long list of random variables is a fundamental algorithmic problem that has applications to three important database applications, namely, data stream processing, space-efficient histogram maintenance (SEHM), and approximate nearest neighbor searches (ANNS). In this work, we propose a novel dyadic simulation framework and develop three novel ERS solutions, namely Gaussian-dyadic simulation tree (DST), Cauchy-DST and Random Walk-DST, using it. We also propose novel rejection sampling techniques to make these solutions computationally efficient. Furthermore, we develop a novel k-wise independence theory that allows our ERS solutions to have both high computational efficiencies and strong provable independence guarantees.

Cite as

Jingfan Meng, Huayi Wang, Jun Xu, and Mitsunori Ogihara. A Dyadic Simulation Approach to Efficient Range-Summability. In 25th International Conference on Database Theory (ICDT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 220, pp. 17:1-17:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{meng_et_al:LIPIcs.ICDT.2022.17,
  author =	{Meng, Jingfan and Wang, Huayi and Xu, Jun and Ogihara, Mitsunori},
  title =	{{A Dyadic Simulation Approach to Efficient Range-Summability}},
  booktitle =	{25th International Conference on Database Theory (ICDT 2022)},
  pages =	{17:1--17:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-223-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{220},
  editor =	{Olteanu, Dan and Vortmeier, Nils},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2022.17},
  URN =		{urn:nbn:de:0030-drops-158915},
  doi =		{10.4230/LIPIcs.ICDT.2022.17},
  annote =	{Keywords: fast range-summation, locality-sensitive hashing, rejection sampling}
}
  • Refine by Author
  • 2 Hsieh, Jun-Ting
  • 2 Meng, Jingfan
  • 2 Ogihara, Mitsunori
  • 2 Wang, Huayi
  • 2 Xu, Jeff
  • Show More...

  • Refine by Classification
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Information systems → Semantic web description languages
  • 2 Theory of computation → Streaming, sublinear and near linear time algorithms
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Ontology engineering
  • Show More...

  • Refine by Keyword
  • 2 fast range-summation
  • 1 Continuous query processing
  • 1 Databases
  • 1 Haar wavelet transform
  • 1 High-performance computing
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 3 2024
  • 2 2022
  • 2 2023

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail