14 Search Results for "Anderson, Matthew"


Document
Navigating Exoplanetary Systems in Augmented Reality: Preliminary Insights on ExoAR

Authors: Bryson Lawton, Frank Maurer, and Daniel Zielasko

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
With thousands of exoplanets now confirmed by space missions such as NASA’s Kepler and TESS, scientific interest and public curiosity about these distant worlds continue to grow. However, current visualization tools for exploring exoplanetary systems often lack sufficient scientific accuracy or interactive features, limiting their educational effectiveness and analytical utility. To help address this gap, we developed ExoAR, an augmented reality tool designed to offer immersive, scientifically sound visualizations of all known exoplanetary systems using data directly sourced from NASA’s Exoplanet Archive. By leveraging augmented reality’s strengths, ExoAR enables users to immerse themselves in interactive, dynamic 3D models of these planetary systems with data-driven representations of planets and their host stars. The application also allows users to adjust various visualization scales independently, a capability designed to aid comprehension of comparative astronomical properties such as orbital mechanics, planetary sizes, and stellar classifications. To begin assessing ExoAR’s potential as an educational and analytical tool and inform future iterations, a pilot user study was conducted. Its findings indicate that participants found ExoAR improved user engagement and spatial understanding compared to NASA’s Eyes on Exoplanets application, a non-immersive exoplanetary system visualization tool. This work-in-progress paper presents these early insights, acknowledges current system limitations, and outlines future directions for more rigorously evaluating and further improving ExoAR’s capabilities for both educational and scientific communities.

Cite as

Bryson Lawton, Frank Maurer, and Daniel Zielasko. Navigating Exoplanetary Systems in Augmented Reality: Preliminary Insights on ExoAR. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 20:1-20:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lawton_et_al:OASIcs.SpaceCHI.2025.20,
  author =	{Lawton, Bryson and Maurer, Frank and Zielasko, Daniel},
  title =	{{Navigating Exoplanetary Systems in Augmented Reality: Preliminary Insights on ExoAR}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{20:1--20:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.20},
  URN =		{urn:nbn:de:0030-drops-240106},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.20},
  annote =	{Keywords: Immersive Analytics, Data Visualization, Astronomy, Astrophysics, Exoplanet, Augmented Reality, AR}
}
Document
Towards Passively Actuated Short-Range Telehaptics for Astronauts

Authors: Matvey Boguslavskiy, Digby Chappell, and Thrishantha Nanayakkara

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Human extra-vehicular activity (EVA) plays a vital role in current and near future space exploration for two reasons: the superior dexterity exhibited by human astronauts, and their flexible problem-solving and decision-making capabilities. However, the dexterity of astronauts during EVA is limited by the flexibility and tactility of their EVA suit gloves, which are primarily designed to provide thermal insulation and pressure for the hand. This creates a compromise between utility and protection. To address this compromise, a Passively Actuated Short-range Telehaptic (PAST) device is proposed. The PAST device couples the motion of fingers between a robotic hand and a human hand through a hydraulically actuated linkage. It also transfers tactile information, including pressure, direction of motion, and position of contact, via a taxel array. Results demonstrate that the proposed prototype PAST device surpasses an unpressurised benchmark heavy work glove (HWG) in tasks involving tactile position and motion direction identification. This provides evidence supporting the feasibility of enhancing astronaut dexterity during EVA through the use of PAST devices as an alternative paradigm to gloves.

Cite as

Matvey Boguslavskiy, Digby Chappell, and Thrishantha Nanayakkara. Towards Passively Actuated Short-Range Telehaptics for Astronauts. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{boguslavskiy_et_al:OASIcs.SpaceCHI.2025.21,
  author =	{Boguslavskiy, Matvey and Chappell, Digby and Nanayakkara, Thrishantha},
  title =	{{Towards Passively Actuated Short-Range Telehaptics for Astronauts}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{21:1--21:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.21},
  URN =		{urn:nbn:de:0030-drops-240115},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.21},
  annote =	{Keywords: Extra-vehicular Activity, Mechanism Design, Haptics, Dexterity, Tactility}
}
Document
Reachability in Deletion-Only Chemical Reaction Networks

Authors: Bin Fu, Timothy Gomez, Ryan Knobel, Austin Luchsinger, Aiden Massie, Marco Rodriguez, Adrian Salinas, Robert Schweller, and Tim Wylie

Published in: LIPIcs, Volume 347, 31st International Conference on DNA Computing and Molecular Programming (DNA 31) (2025)


Abstract
For general discrete Chemical Reaction Networks (CRNs), the fundamental problem of reachability - the question of whether a target configuration can be produced from a given initial configuration - was recently shown to be Ackermann-complete. However, many open questions remain about which features of the CRN model drive this complexity. We study a restricted class of CRNs with void rules, reactions that only decrease species counts. We further examine this regime in the motivated model of step CRNs, which allow additional species to be introduced in discrete stages. With and without steps, we characterize the complexity of the reachability problem for CRNs with void rules. We show that, without steps, reachability remains polynomial-time solvable for bimolecular systems but becomes NP-complete for larger reactions. Conversely, with just a single step, reachability becomes NP-complete even for bimolecular systems. Our results provide a nearly complete classification of void-rule reachability problems into tractable and intractable cases, with only a single exception.

Cite as

Bin Fu, Timothy Gomez, Ryan Knobel, Austin Luchsinger, Aiden Massie, Marco Rodriguez, Adrian Salinas, Robert Schweller, and Tim Wylie. Reachability in Deletion-Only Chemical Reaction Networks. In 31st International Conference on DNA Computing and Molecular Programming (DNA 31). Leibniz International Proceedings in Informatics (LIPIcs), Volume 347, pp. 3:1-3:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.DNA.31.3,
  author =	{Fu, Bin and Gomez, Timothy and Knobel, Ryan and Luchsinger, Austin and Massie, Aiden and Rodriguez, Marco and Salinas, Adrian and Schweller, Robert and Wylie, Tim},
  title =	{{Reachability in Deletion-Only Chemical Reaction Networks}},
  booktitle =	{31st International Conference on DNA Computing and Molecular Programming (DNA 31)},
  pages =	{3:1--3:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-399-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{347},
  editor =	{Schaeffer, Josie and Zhang, Fei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.31.3},
  URN =		{urn:nbn:de:0030-drops-238521},
  doi =		{10.4230/LIPIcs.DNA.31.3},
  annote =	{Keywords: CRN, Chemical Reaction Network, Reachability, Void Reactions}
}
Document
DiVerG: Scalable Distance Index for Validation of Paired-End Alignments in Sequence Graphs

Authors: Ali Ghaffaari, Alexander Schönhuth, and Tobias Marschall

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
Determining the distance between two loci within a genomic region is a recurrent operation in various tasks in computational genomics. A notable example of this task arises in paired-end read mapping as a form of validation of distances between multiple alignments. While straightforward for a single genome, graph-based reference structures render the operation considerably more involved. Given the sheer number of such queries in a typical read mapping experiment, an efficient algorithm for answering distance queries is crucial. In this paper, we introduce DiVerG, a compact data structure as well as a fast and scalable algorithm, for constructing distance indexes for general sequence graphs on multi-core CPU and many-core GPU architectures. DiVerG is based on PairG [Jain et al., 2019], but overcomes the limitations of PairG by exploiting the extensive potential for improvements in terms of scalability and space efficiency. As a consequence, DiVerG can process substantially larger datasets, such as whole human genomes, which are unmanageable by PairG. DiVerG offers faster index construction time and consistently faster query time with gains proportional to the size of the underlying compact data structure. We demonstrate that our method performs favorably on multiple real datasets at various scales. DiVerG achieves superior performance over PairG; e.g. resulting to 2.5-4x speed-up in query time, 44-340x smaller index size, and 3-50x faster construction time for the genome graph of the MHC region, as a particularly variable region of the human genome. The implementation is available at: https://github.com/cartoonist/diverg

Cite as

Ali Ghaffaari, Alexander Schönhuth, and Tobias Marschall. DiVerG: Scalable Distance Index for Validation of Paired-End Alignments in Sequence Graphs. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ghaffaari_et_al:LIPIcs.WABI.2025.10,
  author =	{Ghaffaari, Ali and Sch\"{o}nhuth, Alexander and Marschall, Tobias},
  title =	{{DiVerG: Scalable Distance Index for Validation of Paired-End Alignments in Sequence Graphs}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.10},
  URN =		{urn:nbn:de:0030-drops-239369},
  doi =		{10.4230/LIPIcs.WABI.2025.10},
  annote =	{Keywords: Sequence graph, distance index, read mapping, sparse matrix}
}
Document
Mutational Signature Refitting on Sparse Pan-Cancer Data

Authors: Gal Gilad, Teresa M. Przytycka, and Roded Sharan

Published in: LIPIcs, Volume 344, 25th International Conference on Algorithms for Bioinformatics (WABI 2025)


Abstract
Mutational processes shape cancer genomes, leaving characteristic marks that are termed signatures. The level of activity of each such process, or its signature exposure, provides important information on the disease, improving patient stratification and the prediction of drug response. Thus, there is growing interest in developing refitting methods that decipher those exposures. Previous work in this domain was unsupervised in nature, employing algebraic decomposition and probabilistic inference methods. Here we provide a supervised approach to the problem of signature refitting and show its superiority over current methods. Our method, SuRe, leverages a neural network model to capture correlations between signature exposures in real data. We show that SuRe outperforms previous methods on sparse mutation data from tumor type specific data sets, as well as pan-cancer data sets, with an increasing advantage as the data become sparser. We further demonstrate its utility in clinical settings.

Cite as

Gal Gilad, Teresa M. Przytycka, and Roded Sharan. Mutational Signature Refitting on Sparse Pan-Cancer Data. In 25th International Conference on Algorithms for Bioinformatics (WABI 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 344, pp. 11:1-11:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gilad_et_al:LIPIcs.WABI.2025.11,
  author =	{Gilad, Gal and Przytycka, Teresa M. and Sharan, Roded},
  title =	{{Mutational Signature Refitting on Sparse Pan-Cancer Data}},
  booktitle =	{25th International Conference on Algorithms for Bioinformatics (WABI 2025)},
  pages =	{11:1--11:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-386-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{344},
  editor =	{Brejov\'{a}, Bro\v{n}a and Patro, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.WABI.2025.11},
  URN =		{urn:nbn:de:0030-drops-239374},
  doi =		{10.4230/LIPIcs.WABI.2025.11},
  annote =	{Keywords: mutational signatures, signature refitting, cancer genomics, genomic data analysis, somatic mutations}
}
Document
Theoretical Foundations of Utility Accrual for Real-Time Systems

Authors: Jian-Jia Chen, Junjie Shi, Mario Günzel, Georg von der Brüggen, Kuan-Hsun Chen, and Peter Bella

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
Providing guaranteed quantification of properties of soft real-time systems is important in practice to ensure that a system performs correctly most of the time. We study utility accrual for real-time systems, in which the utility of a real-time job is defined as a time utility function with respect to its response time. Essentially, we answer the fundamental questions: Does the utility accrual of a periodic real-time task in the long run converge to a single value? If yes, to which value? We first show that concrete problem instances exist where evaluating the utility accrual by simulating the scheduling algorithm or conducting scheduling experiments in a long run is erroneous. Afterwards, we show how to construct a Markov chain to model the interactions between the scheduling policy, the probabilistic workload of a periodic real-time task, the service provided by the system to serve the task, and the effect on the utility accrual. For such a Markov chain, we also provide the theoretical fundamentals to determine whether the utility accrual converges in the long run and the derivation of the utility accrual if it converges.

Cite as

Jian-Jia Chen, Junjie Shi, Mario Günzel, Georg von der Brüggen, Kuan-Hsun Chen, and Peter Bella. Theoretical Foundations of Utility Accrual for Real-Time Systems. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 17:1-17:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.ECRTS.2025.17,
  author =	{Chen, Jian-Jia and Shi, Junjie and G\"{u}nzel, Mario and von der Br\"{u}ggen, Georg and Chen, Kuan-Hsun and Bella, Peter},
  title =	{{Theoretical Foundations of Utility Accrual for Real-Time Systems}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{17:1--17:26},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.17},
  URN =		{urn:nbn:de:0030-drops-235950},
  doi =		{10.4230/LIPIcs.ECRTS.2025.17},
  annote =	{Keywords: Soft Real-Time Systems, Utility Accrual, Markov Chains, Dismiss Points}
}
Document
Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees

Authors: Guanqin Zhang, Kota Fukuda, Zhenya Zhang, H.M.N. Dilum Bandara, Shiping Chen, Jianjun Zhao, and Yulei Sui

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
The vulnerability of neural networks to adversarial perturbations has necessitated formal verification techniques that can rigorously certify the quality of neural networks. As the state-of-the-art, branch-and-bound (BaB) is a "divide-and-conquer" strategy that applies off-the-shelf verifiers to sub-problems for which they perform better. While BaB can identify the sub-problems that are necessary to be split, it explores the space of these sub-problems in a naive "first-come-first-served" manner, thereby suffering from an issue of inefficiency to reach a verification conclusion. To bridge this gap, we introduce an order over different sub-problems produced by BaB, concerning with their different likelihoods of containing counterexamples. Based on this order, we propose a novel verification framework Oliva that explores the sub-problem space by prioritizing those sub-problems that are more likely to find counterexamples, in order to efficiently reach the conclusion of the verification. Even if no counterexample can be found in any sub-problem, it only changes the order of visiting different sub-problems and so will not lead to a performance degradation. Specifically, Oliva has two variants, including Oliva^GR, a greedy strategy that always prioritizes the sub-problems that are more likely to find counterexamples, and Oliva^SA, a balanced strategy inspired by simulated annealing that gradually shifts from exploration to exploitation to locate the globally optimal sub-problems. We experimentally evaluate the performance of Oliva on 690 verification problems spanning over 5 models with datasets MNIST and CIFAR-10. Compared to the state-of-the-art approaches, we demonstrate the speedup of Oliva for up to 25× in MNIST, and up to 80× in CIFAR-10.

Cite as

Guanqin Zhang, Kota Fukuda, Zhenya Zhang, H.M.N. Dilum Bandara, Shiping Chen, Jianjun Zhao, and Yulei Sui. Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 36:1-36:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{zhang_et_al:LIPIcs.ECOOP.2025.36,
  author =	{Zhang, Guanqin and Fukuda, Kota and Zhang, Zhenya and Bandara, H.M.N. Dilum and Chen, Shiping and Zhao, Jianjun and Sui, Yulei},
  title =	{{Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{36:1--36:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.36},
  URN =		{urn:nbn:de:0030-drops-233281},
  doi =		{10.4230/LIPIcs.ECOOP.2025.36},
  annote =	{Keywords: neural network verification, branch and bound, counterexample potentiality, simulated annealing, stochastic optimization}
}
Document
A Lightweight Method for Generating Multi-Tier JIT Compilation Virtual Machine in a Meta-Tracing Compiler Framework

Authors: Yusuke Izawa, Hidehiko Masuhara, and Carl Friedrich Bolz-Tereick

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Meta-compiler frameworks, such as RPython and Graal/Truffle, generate high-performance virtual machines (VMs) from interpreter definitions. Although they generate VMs with high-quality just-in-time (JIT) compilers, they still lack an important feature that dedicated VMs (i.e., VMs that are developed for specific languages) have, namely multi-tier compilation. Multi-tier compilation uses light-weight compilers at early stages and highly optimizing compilers at later stages in order to balance between compilation overheads and code quality. We propose a novel approach to enabling multi-tier compilation in the VMs generated by a meta-compiler framework. Instead of extending the JIT compiler backend of the framework, our approach drives an existing (heavyweight) compiler backend in the framework to quickly generate unoptimized native code by merely embedding directives and compile-time operations into interpreter definitions. As a validation of the approach, we developed 2SOM, a Simple Object Machine with a two-tier JIT compiler based on RPython. 2SOM first applies the tier-1 threaded code generator that is generated by our proposed technique, then, to the loops that exceed a threshold, applies the tier-2 tracing JIT compiler that is generated by the original RPython framework. Our performance evaluation that runs a program with a realistic workload showed that 2SOM improved, when compared against an RPython-based VM, warm-up performance by 15%, with merely a 5% reduction in peak performance.

Cite as

Yusuke Izawa, Hidehiko Masuhara, and Carl Friedrich Bolz-Tereick. A Lightweight Method for Generating Multi-Tier JIT Compilation Virtual Machine in a Meta-Tracing Compiler Framework. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 16:1-16:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{izawa_et_al:LIPIcs.ECOOP.2025.16,
  author =	{Izawa, Yusuke and Masuhara, Hidehiko and Bolz-Tereick, Carl Friedrich},
  title =	{{A Lightweight Method for Generating Multi-Tier JIT Compilation Virtual Machine in a Meta-Tracing Compiler Framework}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{16:1--16:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.16},
  URN =		{urn:nbn:de:0030-drops-233090},
  doi =		{10.4230/LIPIcs.ECOOP.2025.16},
  annote =	{Keywords: virtual machine, JIT compiler, multi-tier JIT compiler, meta-tracing JIT compiler, RPython}
}
Document
When Alpha-Complexes Collapse onto Codimension-1 Submanifolds

Authors: Dominique Attali, Mattéo Clémot, Bianca B. Dornelas, and André Lieutier

Published in: LIPIcs, Volume 332, 41st International Symposium on Computational Geometry (SoCG 2025)


Abstract
Given a finite set of points P sampling an unknown smooth surface ℳ ⊆ ℝ³, our goal is to triangulate ℳ based solely on P. Assuming ℳ is a smooth orientable submanifold of codimension 1 in ℝ^d, we introduce a simple algorithm, Naive Squash, which simplifies the α-complex of P by repeatedly applying a new type of collapse called vertical relative to ℳ. Naive Squash also has a practical version that does not require knowledge of ℳ. We establish conditions under which both the naive and practical Squash algorithms output a triangulation of ℳ. We provide a bound on the angle formed by triangles in the α-complex with ℳ, yielding sampling conditions on P that are competitive with existing literature for smooth surfaces embedded in ℝ³, while offering a more compartmentalized proof. As a by-product, we obtain that the restricted Delaunay complex of P triangulates ℳ when ℳ is a smooth surface in ℝ³ under weaker conditions than existing ones.

Cite as

Dominique Attali, Mattéo Clémot, Bianca B. Dornelas, and André Lieutier. When Alpha-Complexes Collapse onto Codimension-1 Submanifolds. In 41st International Symposium on Computational Geometry (SoCG 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 332, pp. 11:1-11:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{attali_et_al:LIPIcs.SoCG.2025.11,
  author =	{Attali, Dominique and Cl\'{e}mot, Matt\'{e}o and Dornelas, Bianca B. and Lieutier, Andr\'{e}},
  title =	{{When Alpha-Complexes Collapse onto Codimension-1 Submanifolds}},
  booktitle =	{41st International Symposium on Computational Geometry (SoCG 2025)},
  pages =	{11:1--11:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-370-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{332},
  editor =	{Aichholzer, Oswin and Wang, Haitao},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2025.11},
  URN =		{urn:nbn:de:0030-drops-231630},
  doi =		{10.4230/LIPIcs.SoCG.2025.11},
  annote =	{Keywords: Submanifold reconstruction, triangulation, abstract simplicial complexes, collapses, convexity}
}
Document
Brief Announcement
Brief Announcement: Reachability in Deletion-Only Chemical Reaction Networks

Authors: Bin Fu, Timothy Gomez, Ryan Knobel, Austin Luchsinger, Aiden Massie, Marco Rodriguez, Adrian Salinas, Robert Schweller, and Tim Wylie

Published in: LIPIcs, Volume 330, 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)


Abstract
For general discrete Chemical Reaction Networks (CRNs), the fundamental problem of reachability - the question of whether a target configuration can be produced from a given initial configuration - was recently shown to be Ackermann-complete. However, many open questions remain about which features of the CRN model drive this complexity. We study a restricted class of CRNs with void rules, reactions that only decrease species counts. We further examine this regime in the motivated model of step CRNs, which allow additional species to be introduced in discrete stages. With and without steps, we characterize the complexity of the reachability problem for CRNs with void rules. We show that, without steps, reachability remains polynomial-time solvable for bimolecular systems but becomes NP-complete for larger reactions. Conversely, with just a single step, reachability becomes NP-complete even for bimolecular systems. Beyond what is contained in this brief announcement, we also investigate optimization variants of reachability, provide approximation results for maximizing species deletion, establish ETH-based lower bounds for NP-complete cases, and prove hardness for counting reaction sequences.

Cite as

Bin Fu, Timothy Gomez, Ryan Knobel, Austin Luchsinger, Aiden Massie, Marco Rodriguez, Adrian Salinas, Robert Schweller, and Tim Wylie. Brief Announcement: Reachability in Deletion-Only Chemical Reaction Networks. In 4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 330, pp. 23:1-23:6, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fu_et_al:LIPIcs.SAND.2025.23,
  author =	{Fu, Bin and Gomez, Timothy and Knobel, Ryan and Luchsinger, Austin and Massie, Aiden and Rodriguez, Marco and Salinas, Adrian and Schweller, Robert and Wylie, Tim},
  title =	{{Brief Announcement: Reachability in Deletion-Only Chemical Reaction Networks}},
  booktitle =	{4th Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2025)},
  pages =	{23:1--23:6},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-368-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{330},
  editor =	{Meeks, Kitty and Scheideler, Christian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAND.2025.23},
  URN =		{urn:nbn:de:0030-drops-230768},
  doi =		{10.4230/LIPIcs.SAND.2025.23},
  annote =	{Keywords: CRN, Chemical Reaction Network, Reachability, Void Reactions}
}
Document
Undefinability of Approximation of 2-To-2 Games

Authors: Anuj Dawar and Bálint Molnár

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
Recent work by Atserias and Dawar [Albert Atserias and Anuj Dawar, 2019] and Tucker-Foltz [Jamie Tucker-Foltz, 2024] has established undefinability results in fixed-point logic with counting (FPC) corresponding to many classical complexity results from the hardness of approximation. In this line of work, NP-hardness results are turned into unconditional FPC undefinability results. We extend this work by showing the FPC undefinability of any constant factor approximation of weighted 2-to-2 games, based on the NP-hardness results of Khot, Minzer and Safra. Our result shows that the completely satisfiable 2-to-2 games are not FPC-separable from those that are not ε-satisfiable, for arbitrarily small ε. The perfect completeness of our inseparability is an improvement on the complexity result, as the NP-hardness of such a separation is still only conjectured. This perfect completeness enables us to show the FPC undefinability of other problems whose NP-hardness is conjectured. In particular, we are able to show that no FPC formula can separate the 3-colourable graphs from those that are not t-colourable, for any constant t.

Cite as

Anuj Dawar and Bálint Molnár. Undefinability of Approximation of 2-To-2 Games. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 16:1-16:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{dawar_et_al:LIPIcs.CSL.2025.16,
  author =	{Dawar, Anuj and Moln\'{a}r, B\'{a}lint},
  title =	{{Undefinability of Approximation of 2-To-2 Games}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{16:1--16:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.16},
  URN =		{urn:nbn:de:0030-drops-227735},
  doi =		{10.4230/LIPIcs.CSL.2025.16},
  annote =	{Keywords: Hardness of Approximation, Unique Games, Descriptive Complexity, Fixed-Point Logic with Counting}
}
Document
Media Exposition
An Interactive Tool for Experimenting with Bounded-Degree Plane Geometric Spanners (Media Exposition)

Authors: Fred Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky

Published in: LIPIcs, Volume 189, 37th International Symposium on Computational Geometry (SoCG 2021)


Abstract
The construction of bounded-degree plane geometric spanners has been a focus of interest in the field of geometric spanners for a long time. To date, several algorithms have been designed with various trade-offs in degree and stretch factor. Using JSXGraph, a state-of-the-art JavaScript library for geometry, we have implemented seven of these sophisticated algorithms so that they can be used for further research and teaching computational geometry. We believe that our interactive tool can be used by researchers from related fields to understand and apply the algorithms in their research. Our tool can be run in any modern browser. The tool will be permanently maintained by the second author at https://ghoshanirban.github.io/bounded-degree-plane-spanners/index.html

Cite as

Fred Anderson, Anirban Ghosh, Matthew Graham, Lucas Mougeot, and David Wisnosky. An Interactive Tool for Experimenting with Bounded-Degree Plane Geometric Spanners (Media Exposition). In 37th International Symposium on Computational Geometry (SoCG 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 189, pp. 61:1-61:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:LIPIcs.SoCG.2021.61,
  author =	{Anderson, Fred and Ghosh, Anirban and Graham, Matthew and Mougeot, Lucas and Wisnosky, David},
  title =	{{An Interactive Tool for Experimenting with Bounded-Degree Plane Geometric Spanners}},
  booktitle =	{37th International Symposium on Computational Geometry (SoCG 2021)},
  pages =	{61:1--61:4},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-184-9},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{189},
  editor =	{Buchin, Kevin and Colin de Verdi\`{e}re, \'{E}ric},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2021.61},
  URN =		{urn:nbn:de:0030-drops-138607},
  doi =		{10.4230/LIPIcs.SoCG.2021.61},
  annote =	{Keywords: graph approximation, Delaunay triangulations, geometric spanners, plane spanners, bounded-degree spanners}
}
Document
Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs

Authors: Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk

Published in: LIPIcs, Volume 50, 31st Conference on Computational Complexity (CCC 2016)


Abstract
Read-k oblivious algebraic branching programs are a natural generalization of the well-studied model of read-once oblivious algebraic branching program (ROABPs). In this work, we give an exponential lower bound of exp(n/k^{O(k)}) on the width of any read-k oblivious ABP computing some explicit multilinear polynomial f that is computed by a polynomial size depth-3 circuit. We also study the polynomial identity testing (PIT) problem for this model and obtain a white-box subexponential-time PIT algorithm. The algorithm runs in time 2^{~O(n^{1-1/2^{k-1}})} and needs white box access only to know the order in which the variables appear in the ABP.

Cite as

Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee Volk. Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs. In 31st Conference on Computational Complexity (CCC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 50, pp. 30:1-30:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:LIPIcs.CCC.2016.30,
  author =	{Anderson, Matthew and Forbes, Michael A. and Saptharishi, Ramprasad and Shpilka, Amir and Volk, Ben Lee},
  title =	{{Identity Testing and Lower Bounds for Read-k Oblivious Algebraic Branching Programs}},
  booktitle =	{31st Conference on Computational Complexity (CCC 2016)},
  pages =	{30:1--30:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-008-8},
  ISSN =	{1868-8969},
  year =	{2016},
  volume =	{50},
  editor =	{Raz, Ran},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2016.30},
  URN =		{urn:nbn:de:0030-drops-58255},
  doi =		{10.4230/LIPIcs.CCC.2016.30},
  annote =	{Keywords: Algebraic Complexity, Lower Bounds, Derandomization, Polynomial Identity Testing}
}
Document
On Symmetric Circuits and Fixed-Point Logics

Authors: Matthew Anderson and Anuj Dawar

Published in: LIPIcs, Volume 25, 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)


Abstract
We study properties of relational structures such as graphs that are decided by families of Boolean circuits. Circuits that decide such properties are necessarily invariant to permutations of the elements of the input structures. We focus on families of circuits that are symmetric, i.e., circuits whose invariance is witnessed by automorphisms of the circuit induced by the permutation of the input structure. We show that the expressive power of such families is closely tied to definability in logic. In particular, we show that the queries defined on structures by uniform families of symmetric Boolean circuits with majority gates are exactly those definable in fixed-point logic with counting. This shows that inexpressibility results in the latter logic lead to lower bounds against polynomial-size families of symmetric circuits.

Cite as

Matthew Anderson and Anuj Dawar. On Symmetric Circuits and Fixed-Point Logics. In 31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014). Leibniz International Proceedings in Informatics (LIPIcs), Volume 25, pp. 41-52, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:LIPIcs.STACS.2014.41,
  author =	{Anderson, Matthew and Dawar, Anuj},
  title =	{{On Symmetric Circuits and Fixed-Point Logics}},
  booktitle =	{31st International Symposium on Theoretical Aspects of Computer Science (STACS 2014)},
  pages =	{41--52},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-65-1},
  ISSN =	{1868-8969},
  year =	{2014},
  volume =	{25},
  editor =	{Mayr, Ernst W. and Portier, Natacha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2014.41},
  URN =		{urn:nbn:de:0030-drops-44455},
  doi =		{10.4230/LIPIcs.STACS.2014.41},
  annote =	{Keywords: symmetric circuit, fixed-point logic, majority, counting, uniformity}
}
  • Refine by Type
  • 14 Document/PDF
  • 11 Document/HTML

  • Refine by Publication Year
  • 11 2025
  • 1 2021
  • 1 2016
  • 1 2014

  • Refine by Author
  • 2 Anderson, Matthew
  • 2 Dawar, Anuj
  • 2 Fu, Bin
  • 2 Gomez, Timothy
  • 2 Knobel, Ryan
  • Show More...

  • Refine by Series/Journal
  • 12 LIPIcs
  • 2 OASIcs

  • Refine by Classification
  • 3 Theory of computation → Problems, reductions and completeness
  • 2 Theory of computation → Models of computation
  • 1 Applied computing → Bioinformatics
  • 1 Applied computing → Computational genomics
  • 1 Computer systems organization → Embedded software
  • Show More...

  • Refine by Keyword
  • 2 CRN
  • 2 Chemical Reaction Network
  • 2 Reachability
  • 2 Void Reactions
  • 1 AR
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail