19 Search Results for "Andres, Benjamin"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Edge Clique Partition and Cover Beyond Independence

Authors: Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
Covering and partitioning the edges of a graph into cliques are classical problems at the intersection of combinatorial optimization and graph theory, having been studied through a range of algorithmic and complexity-theoretic lenses. Despite the well-known fixed-parameter tractability of these problems when parameterized by the total number of cliques, such a parameterization often fails to be meaningful for sparse graphs. In many real-world instances, on the other hand, the minimum number of cliques in an edge cover or partition can be very close to the size of a maximum independent set α(G). Motivated by this observation, we investigate above-α parameterizations of the edge clique cover and partition problems. Concretely, we introduce and study Edge Clique Cover Above Independent Set (ECC/α) and Edge Clique Partition Above Independent Set (ECP/α), where the goal is to cover or partition all edges of a graph using at most α(G) + k cliques, and k is the parameter. Our main results reveal a distinct complexity landscape for the two variants. We show that ECP/α is fixed-parameter tractable, whereas ECC/α is NP-complete for all k ≥ 2, yet can be solved in polynomial time for k ∈ {0,1}. These findings highlight intriguing differences between the two problems when viewed through the lens of parameterization above a natural lower bound. Finally, we demonstrate that ECC/α becomes fixed-parameter tractable when parameterized by k + ω(G), where ω(G) is the size of a maximum clique of the graph G. This result is particularly relevant for sparse graphs, in which ω is typically small. For H-minor free graphs, we design a subexponential algorithm of running time f(H)^√k ⋅ n^𝒪(1).

Cite as

Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Edge Clique Partition and Cover Beyond Independence. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 43:1-43:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{fomin_et_al:LIPIcs.ESA.2025.43,
  author =	{Fomin, Fedor V. and Golovach, Petr A. and Sagunov, Danil and Simonov, Kirill},
  title =	{{Edge Clique Partition and Cover Beyond Independence}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{43:1--43:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.43},
  URN =		{urn:nbn:de:0030-drops-245113},
  doi =		{10.4230/LIPIcs.ESA.2025.43},
  annote =	{Keywords: edge clique partition, edge clique cover, independence number, parameterized complexity, above guarantee}
}
Document
Min-Max Correlation Clustering via Neighborhood Similarity

Authors: Nairen Cao, Steven Roche, and Hsin-Hao Su

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We present an efficient algorithm for the min-max correlation clustering problem. The input is a complete graph where edges are labeled as either positive (+) or negative (-), and the objective is to find a clustering that minimizes the 𝓁_∞-norm of the disagreement vector over all vertices. We address this problem with an efficient (3 + ε)-approximation algorithm that runs in nearly linear time, Õ(|E^+|), where |E^+| denotes the number of positive edges. This improves upon the previous best-known approximation guarantee of 4 by Heidrich, Irmai, and Andres [Heidrich et al., 2024], whose algorithm runs in O(|V|² + |V| D²) time, where |V| is the number of nodes and D is the maximum degree in the graph (V,E^+). Furthermore, we extend our algorithm to the massively parallel computation (MPC) model and the semi-streaming model. In the MPC model, our algorithm runs on machines with memory sublinear in the number of nodes and takes O(1) rounds. In the streaming model, our algorithm requires only Õ(|V|) space, where |V| is the number of vertices in the graph. Our algorithms are purely combinatorial. They are based on a novel structural observation about the optimal min-max instance, which enables the construction of a (3 + ε)-approximation algorithm using O(|E^+|) neighborhood similarity queries. By leveraging random projection, we further show these queries can be computed in nearly linear time.

Cite as

Nairen Cao, Steven Roche, and Hsin-Hao Su. Min-Max Correlation Clustering via Neighborhood Similarity. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 41:1-41:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ESA.2025.41,
  author =	{Cao, Nairen and Roche, Steven and Su, Hsin-Hao},
  title =	{{Min-Max Correlation Clustering via Neighborhood Similarity}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{41:1--41:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.41},
  URN =		{urn:nbn:de:0030-drops-245098},
  doi =		{10.4230/LIPIcs.ESA.2025.41},
  annote =	{Keywords: Min Max Correlation Clustering, Approximate algorithms}
}
Document
Negated String Containment Is Decidable

Authors: Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We provide a positive answer to a long-standing open question of the decidability of the not-contains string predicate. Not-contains is practically relevant, for instance in symbolic execution of string manipulating programs. Particularly, we show that the predicate ¬Contains(x₁ … x_n, y₁ … y_m), where x₁ … x_n and y₁ … y_m are sequences of string variables constrained by regular languages, is decidable. Decidability of a not-contains predicate combined with chain-free word equations and regular membership constraints follows.

Cite as

Vojtěch Havlena, Michal Hečko, Lukáš Holík, and Ondřej Lengál. Negated String Containment Is Decidable. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 56:1-56:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{havlena_et_al:LIPIcs.MFCS.2025.56,
  author =	{Havlena, Vojt\v{e}ch and He\v{c}ko, Michal and Hol{\'\i}k, Luk\'{a}\v{s} and Leng\'{a}l, Ond\v{r}ej},
  title =	{{Negated String Containment Is Decidable}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{56:1--56:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.56},
  URN =		{urn:nbn:de:0030-drops-241631},
  doi =		{10.4230/LIPIcs.MFCS.2025.56},
  annote =	{Keywords: not-contains, string constraints, word combinatorics, primitive word}
}
Document
Research
Subsequence-Based Indices for Genome Sequence Analysis

Authors: Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Giulia Punzi, Giovanna Rosone, and Lorenzo Tattini

Published in: OASIcs, Volume 132, From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday (2025)


Abstract
Compact indices are a fundamental tool in string analysis, even more so in bioinformatics, where genomic sequences can reach billions in length. This paper presents some recent results in which Roberto Grossi has been involved, showing how some of these indices do more than just efficiently represent data, but rather are able to bring out salient information within it, which can be exploited for their downstream analysis. Specifically, we first review a recently-introduced method [Guerrini et al., 2023] that employs the Burrows-Wheeler Transform to build reasonably accurate phylogenetic trees in an assembly-free scenario. We then describe a recent practical tool [Buzzega et al., 2025] for indexing Maximal Common Subsequences between strings, which can enable analysis of genomic sequence similarity. Experimentally, we show that the results produced by the one index are consistent with the expectations about the results of the other index.

Cite as

Giovanni Buzzega, Alessio Conte, Veronica Guerrini, Giulia Punzi, Giovanna Rosone, and Lorenzo Tattini. Subsequence-Based Indices for Genome Sequence Analysis. In From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday. Open Access Series in Informatics (OASIcs), Volume 132, pp. 20:1-20:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{buzzega_et_al:OASIcs.Grossi.20,
  author =	{Buzzega, Giovanni and Conte, Alessio and Guerrini, Veronica and Punzi, Giulia and Rosone, Giovanna and Tattini, Lorenzo},
  title =	{{Subsequence-Based Indices for Genome Sequence Analysis}},
  booktitle =	{From Strings to Graphs, and Back Again: A Festschrift for Roberto Grossi's 60th Birthday},
  pages =	{20:1--20:21},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-391-1},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{132},
  editor =	{Conte, Alessio and Marino, Andrea and Rosone, Giovanna and Vitter, Jeffrey Scott},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Grossi.20},
  URN =		{urn:nbn:de:0030-drops-238199},
  doi =		{10.4230/OASIcs.Grossi.20},
  annote =	{Keywords: String Indices, Burrows-Wheeler Transform, Maximal Common Subsequences, Sequence Analysis, Phylogeny}
}
Document
Practically Feasible Proof Logging for Pseudo-Boolean Optimization

Authors: Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy Oertel, Yong Kiam Tan, and Marc Vinyals

Published in: LIPIcs, Volume 340, 31st International Conference on Principles and Practice of Constraint Programming (CP 2025)


Abstract
Certifying solvers have long been standard for decision problems in Boolean satisfiability (SAT), allowing for proof logging and checking with very limited overhead, but developing similar tools for combinatorial optimization has remained a challenge. A recent promising approach covering a wide range of solving paradigms is pseudo-Boolean proof logging, but this has mostly consisted of proof-of-concept works far from delivering the performance required for real-world deployment. In this work, we present an efficient toolchain based on VeriPB and CakePB for formally verified pseudo-Boolean optimization. We implement proof logging for the full range of techniques in the state-of-the-art solvers RoundingSat and Sat4j, including core-guided search and linear programming integration with Farkas certificates and cut generation. Our experimental evaluation shows that proof logging and checking performance in this much more expressive paradigm is now quite close to the level of SAT solving, and hence is clearly practically feasible.

Cite as

Wietze Koops, Daniel Le Berre, Magnus O. Myreen, Jakob Nordström, Andy Oertel, Yong Kiam Tan, and Marc Vinyals. Practically Feasible Proof Logging for Pseudo-Boolean Optimization. In 31st International Conference on Principles and Practice of Constraint Programming (CP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 340, pp. 21:1-21:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{koops_et_al:LIPIcs.CP.2025.21,
  author =	{Koops, Wietze and Le Berre, Daniel and Myreen, Magnus O. and Nordstr\"{o}m, Jakob and Oertel, Andy and Tan, Yong Kiam and Vinyals, Marc},
  title =	{{Practically Feasible Proof Logging for Pseudo-Boolean Optimization}},
  booktitle =	{31st International Conference on Principles and Practice of Constraint Programming (CP 2025)},
  pages =	{21:1--21:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-380-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{340},
  editor =	{de la Banda, Maria Garcia},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2025.21},
  URN =		{urn:nbn:de:0030-drops-238825},
  doi =		{10.4230/LIPIcs.CP.2025.21},
  annote =	{Keywords: proof logging, certifying algorithms, combinatorial optimization, certification, pseudo-Boolean solving, 0-1 integer linear programming}
}
Document
Analyzing Reformulation Performance in Core-Guided MaxSAT Solving

Authors: André Schidler and Stefan Szeider

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
Core-guided algorithms like OLL are among the best methods for solving the Maximum Satisfiability problem (MaxSAT). Although some performance characteristics of OLL have been studied, a comprehensive experimental analysis of its reformulation behavior is still missing. In this paper, we present a large-scale study on how different reformulations of a MaxSAT instance produced by OLL affect solver performance. By representing these reformulations as a directed acyclic graph (DAG), we isolate the impact of structural features - such as the size and interconnectivity of unsatisfiable cores - on solver runtime. Our extensive experimental evaluation of over 600k solver runs reveals clear correlations between DAG properties and performance outcomes. These results suggest a new avenue for designing heuristics that steer the solver toward more tractable reformulations. All OLL DAGs and performance data from our experiments are publicly available to foster further research.

Cite as

André Schidler and Stefan Szeider. Analyzing Reformulation Performance in Core-Guided MaxSAT Solving. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{schidler_et_al:LIPIcs.SAT.2025.26,
  author =	{Schidler, Andr\'{e} and Szeider, Stefan},
  title =	{{Analyzing Reformulation Performance in Core-Guided MaxSAT Solving}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.26},
  URN =		{urn:nbn:de:0030-drops-237605},
  doi =		{10.4230/LIPIcs.SAT.2025.26},
  annote =	{Keywords: maximum satisfiability, OLL, core-guided}
}
Document
Core-Guided Linear Programming-Based Maximum Satisfiability

Authors: George Katsirelos

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
The core-guided algorithm OLL is the basis of some of the most successful algorithms for MaxSAT in recent evaluations. It works by iteratively finding cores of the formula and transforming it so that it exhibits a higher lower bound. It has recently been shown to implicitly discover cores of the original formula, as well as a compact representation of its reasoning within a linear program. In this paper, we use and extend these results to design a practical MaxSAT solver. We show an explicit linear program which matches and usually exceeds the bound computed by OLL. We show that OLL can be restated as an algorithm that explicitly computes a feasible dual solution of this linear program. This restated algorithm naturally works with an arbitrary dual solution. It can in fact be used to improve any LP representation of the MaxSAT instance. This presents a large increase of the potential design space for such algorithms. We describe some potential improvements from this insight and show that an implementation outperforms the state of the art algorithms on the set of instances from the latest MaxSAT evaluation.

Cite as

George Katsirelos. Core-Guided Linear Programming-Based Maximum Satisfiability. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{katsirelos:LIPIcs.SAT.2025.17,
  author =	{Katsirelos, George},
  title =	{{Core-Guided Linear Programming-Based Maximum Satisfiability}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{17:1--17:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.17},
  URN =		{urn:nbn:de:0030-drops-237513},
  doi =		{10.4230/LIPIcs.SAT.2025.17},
  annote =	{Keywords: maximum satisfiability, core-guided solvers, linear programming}
}
Document
Track A: Algorithms, Complexity and Games
q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations

Authors: Kiril Bangachev and S. Matthew Weinberg

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
For a set M of m elements, we define a decreasing chain of classes of normalized monotone-increasing valuation functions from 2^M to ℝ_{≥ 0}, parameterized by an integer q ∈ [2,m]. For a given q, we refer to the class as q-partitioning. A valuation function is subadditive if and only if it is 2-partitioning, and fractionally subadditive if and only if it is m-partitioning. Thus, our chain establishes an interpolation between subadditive and fractionally subadditive valuations. We show that this interpolation is smooth (q-partitioning valuations are "nearly" (q-1)-partitioning in a precise sense, Theorem 6), interpretable (the definition arises by analyzing the core of a cost-sharing game, à la the Bondareva-Shapley Theorem for fractionally subadditive valuations, Section 3.1), and non-trivial (the class of q-partitioning valuations is distinct for all q, Proposition 3). For domains where provable separations exist between subadditive and fractionally subadditive, we interpolate the stronger guarantees achievable for fractionally subadditive valuations to all q ∈ {2,…, m}. Two highlights are the following: 1) An Ω ((log log q)/(log log m))-competitive posted price mechanism for q-partitioning valuations. Note that this matches asymptotically the state-of-the-art for both subadditive (q = 2) [Paul Dütting et al., 2020], and fractionally subadditive (q = m) [Feldman et al., 2015]. 2) Two upper-tail concentration inequalities on 1-Lipschitz, q-partitioning valuations over independent items. One extends the state-of-the-art for q = m to q < m, the other improves the state-of-the-art for q = 2 for q > 2. Our concentration inequalities imply several corollaries that interpolate between subadditive and fractionally subadditive, for example: 𝔼[v(S)] ≤ (1 + 1/log q)Median[v(S)] + O(log q). To prove this, we develop a new isoperimetric inequality using Talagrand’s method of control by q points, which may be of independent interest. We also discuss other probabilistic inequalities and game-theoretic applications of q-partitioning valuations, and connections to subadditive MPH-k valuations [Tomer Ezra et al., 2019].

Cite as

Kiril Bangachev and S. Matthew Weinberg. q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 18:1-18:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bangachev_et_al:LIPIcs.ICALP.2025.18,
  author =	{Bangachev, Kiril and Weinberg, S. Matthew},
  title =	{{q-Partitioning Valuations: Exploring the Space Between Subadditive and Fractionally Subadditive Valuations}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{18:1--18:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.18},
  URN =		{urn:nbn:de:0030-drops-233956},
  doi =		{10.4230/LIPIcs.ICALP.2025.18},
  annote =	{Keywords: Subadditive Functions, Fractionally Subadditive Functions, Posted Price Mechanisms, Concentration Inequalities}
}
Document
Track A: Algorithms, Complexity and Games
Simultaneously Approximating All Norms for Massively Parallel Correlation Clustering

Authors: Nairen Cao, Shi Li, and Jia Ye

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We revisit the simultaneous approximation model for the correlation clustering problem introduced by Davies, Moseley, and Newman [Davies et al., 2024]. The objective is to find a clustering that minimizes given norms of the disagreement vector over all vertices. We present an efficient algorithm that produces a clustering that is simultaneously a 63.3-approximation for all monotone symmetric norms. This significantly improves upon the previous approximation ratio of 6348 due to Davies, Moseley, and Newman [Davies et al., 2024], which works only for 𝓁_p-norms. To achieve this result, we first reduce the problem to approximating all top-k norms simultaneously, using the connection between monotone symmetric norms and top-k norms established by Chakrabarty and Swamy [Chakrabarty and Swamy, 2019]. Then we develop a novel procedure that constructs a 12.66-approximate fractional clustering for all top-k norms. Our 63.3-approximation ratio is obtained by combining this with the 5-approximate rounding algorithm by Kalhan, Makarychev, and Zhou [Kalhan et al., 2019]. We then demonstrate that with a loss of ε in the approximation ratio, the algorithm can be adapted to run in nearly linear time and in the MPC (massively parallel computation) model with poly-logarithmic number of rounds. By allowing a further trade-off in the approximation ratio to (359+ε), the number of MPC rounds can be reduced to a constant.

Cite as

Nairen Cao, Shi Li, and Jia Ye. Simultaneously Approximating All Norms for Massively Parallel Correlation Clustering. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 40:1-40:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{cao_et_al:LIPIcs.ICALP.2025.40,
  author =	{Cao, Nairen and Li, Shi and Ye, Jia},
  title =	{{Simultaneously Approximating All Norms for Massively Parallel Correlation Clustering}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{40:1--40:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.40},
  URN =		{urn:nbn:de:0030-drops-234171},
  doi =		{10.4230/LIPIcs.ICALP.2025.40},
  annote =	{Keywords: Correlation Clustering, All-Norms, Approximation Algorithm, Massively Parallel Algorithm}
}
Document
Automatic Goal Clone Detection in Rocq

Authors: Ali Ghanbari

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Proof engineering in Rocq is a labor-intensive process, and as proof developments grow in size, redundancy and maintainability become challenges. One such redundancy is goal cloning, i.e., proving α-equivalent goals multiple times, leading to wasted effort and bloated proof scripts. In this paper, we introduce clone-finder, a novel technique for detecting goal clones in Rocq proofs. By leveraging the formal notion of α-equivalence for Gallina terms, clone-finder systematically identifies duplicated proof goals across large Rocq codebases. We evaluate clone-finder on 40 real-world Rocq projects from the CoqGym dataset. Our results reveal that each project contains an average of 27.73 instances of goal clone. We observed that the clones can be categorized as either exact goal duplication, generalization, or α-equivalent goals with different proofs, each signifying varying levels duplicate effort. Our findings highlight significant untapped potential for proof reuse in Rocq-based formal verification projects, paving the way for future improvements in automated proof engineering.

Cite as

Ali Ghanbari. Automatic Goal Clone Detection in Rocq. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ghanbari:LIPIcs.ECOOP.2025.12,
  author =	{Ghanbari, Ali},
  title =	{{Automatic Goal Clone Detection in Rocq}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.12},
  URN =		{urn:nbn:de:0030-drops-233055},
  doi =		{10.4230/LIPIcs.ECOOP.2025.12},
  annote =	{Keywords: Clone Detection, Goal, Proof, Rocq, Gallina}
}
Document
Differential Privacy Under Multiple Selections

Authors: Ashish Goel, Zhihao Jiang, Aleksandra Korolova, Kamesh Munagala, and Sahasrajit Sarmasarkar

Published in: LIPIcs, Volume 329, 6th Symposium on Foundations of Responsible Computing (FORC 2025)


Abstract
We consider the setting where a user with sensitive features wishes to obtain a recommendation from a server in a differentially private fashion. We propose a "multi-selection" architecture where the server can send back multiple recommendations and the user chooses one from these that matches best with their private features. When the user feature is one-dimensional - on an infinite line - and the accuracy measure is defined w.r.t some increasing function 𝔥(.) of the distance on the line, we precisely characterize the optimal mechanism that satisfies differential privacy. The specification of the optimal mechanism includes both the distribution of the noise that the user adds to its private value, and the algorithm used by the server to determine the set of results to send back as a response. We show that Laplace is an optimal noise distribution in this setting. Furthermore, we show that this optimal mechanism results in an error that is inversely proportional to the number of results returned when the function 𝔥(.) is the identity function.

Cite as

Ashish Goel, Zhihao Jiang, Aleksandra Korolova, Kamesh Munagala, and Sahasrajit Sarmasarkar. Differential Privacy Under Multiple Selections. In 6th Symposium on Foundations of Responsible Computing (FORC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 329, pp. 8:1-8:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{goel_et_al:LIPIcs.FORC.2025.8,
  author =	{Goel, Ashish and Jiang, Zhihao and Korolova, Aleksandra and Munagala, Kamesh and Sarmasarkar, Sahasrajit},
  title =	{{Differential Privacy Under Multiple Selections}},
  booktitle =	{6th Symposium on Foundations of Responsible Computing (FORC 2025)},
  pages =	{8:1--8:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-367-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{329},
  editor =	{Bun, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2025.8},
  URN =		{urn:nbn:de:0030-drops-231353},
  doi =		{10.4230/LIPIcs.FORC.2025.8},
  annote =	{Keywords: Differential Privacy, Mechanism Design and Multi-Selection}
}
Document
On Deciding the Data Complexity of Answering Linear Monadic Datalog Queries with LTL Operators

Authors: Alessandro Artale, Anton Gnatenko, Vladislav Ryzhikov, and Michael Zakharyaschev

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Our concern is the data complexity of answering linear monadic datalog queries whose atoms in the rule bodies can be prefixed by operators of linear temporal logic LTL. We first observe that, for data complexity, answering any connected query with operators ○/○- (at the next/previous moment) is either in AC⁰, or in ACC⁰\AC⁰, or NC¹-complete, or L-hard and in NL. Then we show that the problem of deciding L-hardness of answering such queries is PSpace-complete, while checking membership in the classes AC⁰ and ACC⁰ as well as NC¹-completeness can be done in ExpSpace. Finally, we prove that membership in AC⁰ or in ACC⁰, NC¹-completeness, and L-hardness are undecidable for queries with operators ◇/◇- (sometime in the future/past) provided that NC¹ ≠ NL and L ≠ NL.

Cite as

Alessandro Artale, Anton Gnatenko, Vladislav Ryzhikov, and Michael Zakharyaschev. On Deciding the Data Complexity of Answering Linear Monadic Datalog Queries with LTL Operators. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 31:1-31:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{artale_et_al:LIPIcs.ICDT.2025.31,
  author =	{Artale, Alessandro and Gnatenko, Anton and Ryzhikov, Vladislav and Zakharyaschev, Michael},
  title =	{{On Deciding the Data Complexity of Answering Linear Monadic Datalog Queries with LTL Operators}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{31:1--31:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.31},
  URN =		{urn:nbn:de:0030-drops-229723},
  doi =		{10.4230/LIPIcs.ICDT.2025.31},
  annote =	{Keywords: Linear monadic datalog, linear temporal logic, data complexity}
}
Document
A Formal Language Perspective on Factorized Representations

Authors: Benny Kimelfeld, Wim Martens, and Matthias Niewerth

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Factorized representations (FRs) are a well-known tool to succinctly represent results of join queries and have been originally defined using the named database perspective. We define FRs in the unnamed database perspective and use them to establish several new connections. First, unnamed FRs can be exponentially more succinct than named FRs, but this difference can be alleviated by imposing a disjointness condition on columns. Conversely, named FRs can also be exponentially more succinct than unnamed FRs. Second, unnamed FRs are the same as (i.e., isomorphic to) context-free grammars for languages in which each word has the same length. This tight connection allows us to transfer a wide range of results on context-free grammars to database factorization; of which we offer a selection in the paper. Third, when we generalize unnamed FRs to arbitrary sets of tuples, they become a generalization of path multiset representations, a formalism that was recently introduced to succinctly represent sets of paths in the context of graph database query evaluation.

Cite as

Benny Kimelfeld, Wim Martens, and Matthias Niewerth. A Formal Language Perspective on Factorized Representations. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 20:1-20:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kimelfeld_et_al:LIPIcs.ICDT.2025.20,
  author =	{Kimelfeld, Benny and Martens, Wim and Niewerth, Matthias},
  title =	{{A Formal Language Perspective on Factorized Representations}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{20:1--20:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.20},
  URN =		{urn:nbn:de:0030-drops-229614},
  doi =		{10.4230/LIPIcs.ICDT.2025.20},
  annote =	{Keywords: Databases, relational databases, graph databases, factorized databases, regular path queries, compact representations}
}
Document
A Rewriting Theory for Quantum λ-Calculus

Authors: Claudia Faggian, Gaetan Lopez, and Benoît Valiron

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
Quantum lambda calculus has been studied mainly as an idealized programming language - the evaluation essentially corresponds to a deterministic abstract machine. Very little work has been done to develop a rewriting theory for quantum lambda calculus. Recent advances in the theory of probabilistic rewriting give us a way to tackle this task with tools unavailable a decade ago. Our primary focus are standardization and normalization results.

Cite as

Claudia Faggian, Gaetan Lopez, and Benoît Valiron. A Rewriting Theory for Quantum λ-Calculus. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 47:1-47:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{faggian_et_al:LIPIcs.CSL.2025.47,
  author =	{Faggian, Claudia and Lopez, Gaetan and Valiron, Beno\^{i}t},
  title =	{{A Rewriting Theory for Quantum \lambda-Calculus}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{47:1--47:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.47},
  URN =		{urn:nbn:de:0030-drops-228046},
  doi =		{10.4230/LIPIcs.CSL.2025.47},
  annote =	{Keywords: quantum lambda-calculus, probabilistic rewriting, operational semantics, asymptotic normalization, principles of quantum programming languages}
}
  • Refine by Type
  • 19 Document/PDF
  • 16 Document/HTML

  • Refine by Publication Year
  • 16 2025
  • 1 2023
  • 1 2020
  • 1 2012

  • Refine by Author
  • 2 Cao, Nairen
  • 1 Andres, Benjamin
  • 1 Artale, Alessandro
  • 1 Bangachev, Kiril
  • 1 Buzzega, Giovanni
  • Show More...

  • Refine by Series/Journal
  • 15 LIPIcs
  • 2 OASIcs
  • 2 TGDK

  • Refine by Classification
  • 2 Mathematics of computing → Combinatorial optimization
  • 2 Theory of computation → Approximation algorithms analysis
  • 2 Theory of computation → Logic and verification
  • 2 Theory of computation → Massively parallel algorithms
  • 1 Applied computing → Life and medical sciences
  • Show More...

  • Refine by Keyword
  • 2 Knowledge graphs
  • 2 maximum satisfiability
  • 1 0-1 integer linear programming
  • 1 All-Norms
  • 1 Approximate algorithms
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail