7 Search Results for "Bini, Enrico"


Document
Analysis, Design, and Control of Predictable Interconnected Systems (Dagstuhl Seminar 19101)

Authors: Kunal Agrawal, Enrico Bini, and Giovanni Stea

Published in: Dagstuhl Reports, Volume 9, Issue 3 (2019)


Abstract
We call "Interconnected Systems" any collection of systems distributed over a metric space whose behavior is influenced by its neighborhood. Examples of interconnected systems exist at very different scales: different cores over the same silicon, different sub-systems in vehicles, communicating nodes over either a physical (e.g., optical) network, or - more recently - virtualized network. Examples also exist in contexts which are not related to computing or communication. Smart Grids (of energy production, distribution, and consumption) and Intelligent Transportation Systems are just two notable examples. The common characteristic among all these examples is the presence of a spatially distributed demand of resources (energy, computing, communication bandwidth, etc.) which needs to be matched with a spatially distributed supply. Often times demands and availability of resources of different types (e.g., computing and link bandwidth in virtualized network environments) need to be matched simultaneously. Time predictability is a key requirement for above systems. Despite this, the strong market pressure has often led to ``quick and dirty'' best-effort solutions, which make it extremely challenging to predict the behavior of such systems. Research communities have developed formal theories for predictability which are specialized to each application domain or type of resource (e.g., schedulability analysis for real-time systems or network calculus for communication systems). However, the emerging application domains (virtualized networks, cyber-physical systems, etc.) clearly require a unified, holistic approach. By leveraging the expertise, vision and interactions of scientists that have addressed predictability in different areas, the proposed seminar aims at constructing a common ground for the theory supporting the analysis, the design, and the control of predictable interconnected systems.

Cite as

Kunal Agrawal, Enrico Bini, and Giovanni Stea. Analysis, Design, and Control of Predictable Interconnected Systems (Dagstuhl Seminar 19101). In Dagstuhl Reports, Volume 9, Issue 3, pp. 1-15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Article{agrawal_et_al:DagRep.9.3.1,
  author =	{Agrawal, Kunal and Bini, Enrico and Stea, Giovanni},
  title =	{{Analysis, Design, and Control of Predictable Interconnected Systems (Dagstuhl Seminar 19101)}},
  pages =	{1--15},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2019},
  volume =	{9},
  number =	{3},
  editor =	{Agrawal, Kunal and Bini, Enrico and Stea, Giovanni},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.9.3.1},
  URN =		{urn:nbn:de:0030-drops-112882},
  doi =		{10.4230/DagRep.9.3.1},
  annote =	{Keywords: distributed resource management, network calculus, real-time systems}
}
Document
End-To-End Deadlines over Dynamic Topologies

Authors: Victor Millnert, Johan Eker, and Enrico Bini

Published in: LIPIcs, Volume 133, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
Despite the creativity of the scientific community and the funding agencies, the underlying model of computation behind IoT, WSN, cloud, edge, fog, and mist is fundamentally the same; Computational nodes which are dynamically interconnected to form a system in where both processing capacity and connectivity may vary over time. On top of such a system, we consider applications that need packets to flow along a path and adhere to end-to-end deadlines. This application model is motivated by both control and automation systems, as well as telecom systems. The challenge is to guarantee end-to-end deadlines when allowing nodes and applications to join or leave. The mainstream, and to some extent natural, approach to this is to relax the stringency of the constraint (e.g. use probabilistic guarantees, soft deadlines). In this paper we take a different approach and keep the end-to-end deadlines as hard constraints and instead partially limit the freedom of how nodes and applications are allowed to leave and join. We present a theoretical framework for modeling such systems along with proofs that deadlines are always honored.

Cite as

Victor Millnert, Johan Eker, and Enrico Bini. End-To-End Deadlines over Dynamic Topologies. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 133, pp. 10:1-10:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{millnert_et_al:LIPIcs.ECRTS.2019.10,
  author =	{Millnert, Victor and Eker, Johan and Bini, Enrico},
  title =	{{End-To-End Deadlines over Dynamic Topologies}},
  booktitle =	{31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
  pages =	{10:1--10:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-110-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{133},
  editor =	{Quinton, Sophie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.10},
  URN =		{urn:nbn:de:0030-drops-107473},
  doi =		{10.4230/LIPIcs.ECRTS.2019.10},
  annote =	{Keywords: Cloud, real-time, end-to-end latency guarantee, end-to-end response time guarantee, dynamic network}
}
Document
AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems

Authors: Alessandro Vittorio Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns

Published in: LIPIcs, Volume 106, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
A system is said to be resilient if slight deviations from expected behavior during run-time does not lead to catastrophic degradation of performance: minor deviations should result in no more than minor performance degradation. In mixed-criticality systems, such degradation should additionally be criticality-cognizant. The applicability of control theory is explored for the design of resilient run-time scheduling algorithms for mixed-criticality systems. Recent results in control theory have shown how appropriately designed controllers can provide guaranteed service to hard-real-time servers; this prior work is extended to allow for such guarantees to be made concurrently to multiple criticality-cognizant servers. The applicability of this approach is explored via several experimental simulations in a dual-criticality setting. These experiments demonstrate that our control-based run-time schedulers can be synthesized in such a manner that bounded deviations from expected behavior result in the high-criticality server suffering no performance degradation and the lower-criticality one, bounded performance degradation.

Cite as

Alessandro Vittorio Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns. AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems. In 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 106, pp. 14:1-14:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{papadopoulos_et_al:LIPIcs.ECRTS.2018.14,
  author =	{Papadopoulos, Alessandro Vittorio and Bini, Enrico and Baruah, Sanjoy and Burns, Alan},
  title =	{{AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems}},
  booktitle =	{30th Euromicro Conference on Real-Time Systems (ECRTS 2018)},
  pages =	{14:1--14:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-075-0},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{106},
  editor =	{Altmeyer, Sebastian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2018.14},
  URN =		{urn:nbn:de:0030-drops-89899},
  doi =		{10.4230/LIPIcs.ECRTS.2018.14},
  annote =	{Keywords: mixed criticality, control theory, run-time resilience, bounded overloads}
}
Document
AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems (Artifact)

Authors: Alessandro Vittorio Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns

Published in: DARTS, Volume 4, Issue 2, Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018)


Abstract
A system is said to be resilient if slight deviations from expected behavior during run-time does not lead to catastrophic degradation of performance: minor deviations should result in no more than minor performance degradation. In mixed-criticality systems, such degradation should additionally be criticality-cognizant. The applicability of control theory is explored for the design of resilient run-time scheduling algorithms for mixed-criticality systems. Recent results in control theory have shown how appropriately designed controllers can provide guaranteed service to hard-real-time servers; this prior work is extended to allow for such guarantees to be made concurrently to multiple criticality-cognizant servers. The applicability of this approach is explored via several experimental simulations in a dual-criticality setting. These experiments demonstrate that our control-based run-time schedulers can be synthesized in such a manner that bounded deviations from expected behavior result in the high-criticality server suffering no performance degradation and the lower-criticality one, bounded performance degradation.

Cite as

Alessandro Vittorio Papadopoulos, Enrico Bini, Sanjoy Baruah, and Alan Burns. AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems (Artifact). In Special Issue of the 30th Euromicro Conference on Real-Time Systems (ECRTS 2018). Dagstuhl Artifacts Series (DARTS), Volume 4, Issue 2, pp. 1:1-1:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@Article{papadopoulos_et_al:DARTS.4.2.1,
  author =	{Papadopoulos, Alessandro Vittorio and Bini, Enrico and Baruah, Sanjoy and Burns, Alan},
  title =	{{AdaptMC: A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems (Artifact)}},
  pages =	{1:1--1:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2018},
  volume =	{4},
  number =	{2},
  editor =	{Papadopoulos, Alessandro Vittorio and Bini, Enrico and Baruah, Sanjoy and Burns, Alan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DARTS.4.2.1},
  URN =		{urn:nbn:de:0030-drops-89691},
  doi =		{10.4230/DARTS.4.2.1},
  annote =	{Keywords: mixed criticality, control theory, run-time resilience, bounded overloads}
}
Document
10071 Open Problems – Scheduling

Authors: Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger

Published in: Dagstuhl Seminar Proceedings, Volume 10071, Scheduling (2010)


Abstract
Collection of the open problems presented at the scheduling seminar.

Cite as

Jim Anderson, Björn Andersson, Yossi Azar, Nikhil Bansal, Enrico Bini, Marek Chrobak, José Correa, Liliana Cucu-Grosjean, Rob Davis, Arvind Easwaran, Jeff Edmonds, Shelby Funk, Sathish Gopalakrishnan, Han Hoogeveen, Claire Mathieu, Nicole Megow, Seffi Naor, Kirk Pruhs, Maurice Queyranne, Adi Rosén, Nicolas Schabanel, Jiří Sgall, René Sitters, Sebastian Stiller, Marc Uetz, Tjark Vredeveld, and Gerhard J. Woeginger. 10071 Open Problems – Scheduling. In Scheduling. Dagstuhl Seminar Proceedings, Volume 10071, pp. 1-24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{anderson_et_al:DagSemProc.10071.3,
  author =	{Anderson, Jim and Andersson, Bj\"{o}rn and Azar, Yossi and Bansal, Nikhil and Bini, Enrico and Chrobak, Marek and Correa, Jos\'{e} and Cucu-Grosjean, Liliana and Davis, Rob and Easwaran, Arvind and Edmonds, Jeff and Funk, Shelby and Gopalakrishnan, Sathish and Hoogeveen, Han and Mathieu, Claire and Megow, Nicole and Naor, Seffi and Pruhs, Kirk and Queyranne, Maurice and Ros\'{e}n, Adi and Schabanel, Nicolas and Sgall, Ji\v{r}{\'\i} and Sitters, Ren\'{e} and Stiller, Sebastian and Uetz, Marc and Vredeveld, Tjark and Woeginger, Gerhard J.},
  title =	{{10071 Open Problems – Scheduling}},
  booktitle =	{Scheduling},
  pages =	{1--24},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10071},
  editor =	{Susanne Albers and Sanjoy K. Baruah and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.10071.3},
  URN =		{urn:nbn:de:0030-drops-25367},
  doi =		{10.4230/DagSemProc.10071.3},
  annote =	{Keywords: Open problems, scheduling}
}
Document
The Parallel Supply Function Abstraction for a Virtual Multiprocessor

Authors: Enrico Bini, Bertogna Marko, and Sanjoy K. Baruah

Published in: Dagstuhl Seminar Proceedings, Volume 10071, Scheduling (2010)


Abstract
A new abstraction --- the Parallel Supply Function (PSF) --- is proposed for representing the computing capabilities offered by virtual platforms implemented atop identical multiprocessors. It is shown that this abstraction is strictly more powerful than previously-proposed ones, from the perspective of more accurately representing the inherent parallelism of the provided computing capabilities. Sufficient tests are derived for determining whether a given real-time task system, represented as a collection of sporadic tasks, is guaranteed to always meet all deadlines when scheduled upon a specified virtual platform using the global EDF scheduling algorithm.

Cite as

Enrico Bini, Bertogna Marko, and Sanjoy K. Baruah. The Parallel Supply Function Abstraction for a Virtual Multiprocessor. In Scheduling. Dagstuhl Seminar Proceedings, Volume 10071, pp. 1-14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{bini_et_al:DagSemProc.10071.14,
  author =	{Bini, Enrico and Marko, Bertogna and Baruah, Sanjoy K.},
  title =	{{The Parallel Supply Function Abstraction for a Virtual Multiprocessor}},
  booktitle =	{Scheduling},
  pages =	{1--14},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10071},
  editor =	{Susanne Albers and Sanjoy K. Baruah and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.10071.14},
  URN =		{urn:nbn:de:0030-drops-25423},
  doi =		{10.4230/DagSemProc.10071.14},
  annote =	{Keywords: Virtual multiprocessor}
}
Document
Uniprocessor EDF Feasibility is an Integer Problem

Authors: Enrico Bini

Published in: Dagstuhl Seminar Proceedings, Volume 8071, Scheduling (2008)


Abstract
The research on real-time scheduling has mostly focused on the development of algorithms that allows to test whether the constraints imposed on the task execution (often expressed by deadlines) are verified or not. However, in many design scenarios the task set is only partially known and these algorithms cannot be applied because they require the complete knowledge of all the parameters of the task set. Moreover, very often the designer has the freedom to select some of the task set parameters in order to maximize the system performance, and an arbitrary selection of the free parameters can lead either to poor performance or to a constraint violation. It is then useful to describe the feasibility region of the task set parameters by equations instead of by algorithms, so that optimization algorithms can be applied to find the best assignment to the free variables. In this paper we formulate the EDF schedulability on a single processor through a combination of linear constraints. We study the geometry of the feasibility region of task deadlines when computation times and periods are known.

Cite as

Enrico Bini. Uniprocessor EDF Feasibility is an Integer Problem. In Scheduling. Dagstuhl Seminar Proceedings, Volume 8071, pp. 1-17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2008)


Copy BibTex To Clipboard

@InProceedings{bini:DagSemProc.08071.4,
  author =	{Bini, Enrico},
  title =	{{Uniprocessor EDF Feasibility is an Integer Problem}},
  booktitle =	{Scheduling},
  pages =	{1--17},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2008},
  volume =	{8071},
  editor =	{Jane W. S. Liu and Rolf H. M\"{o}hring and Kirk Pruhs},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.08071.4},
  URN =		{urn:nbn:de:0030-drops-14880},
  doi =		{10.4230/DagSemProc.08071.4},
  annote =	{Keywords: EDF schedulability condition, optimal deadline assignment}
}
  • Refine by Author
  • 7 Bini, Enrico
  • 2 Baruah, Sanjoy
  • 2 Burns, Alan
  • 2 Papadopoulos, Alessandro Vittorio
  • 1 Agrawal, Kunal
  • Show More...

  • Refine by Classification
  • 1 Computer systems organization → Cloud computing
  • 1 Computer systems organization → Real-time systems
  • 1 Computing methodologies → Control methods
  • 1 Networks → Cloud computing

  • Refine by Keyword
  • 2 bounded overloads
  • 2 control theory
  • 2 mixed criticality
  • 2 run-time resilience
  • 1 Cloud
  • Show More...

  • Refine by Type
  • 7 document

  • Refine by Publication Year
  • 2 2010
  • 2 2018
  • 2 2019
  • 1 2008

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail