19 Search Results for "Doumane, Amina"


Document
Right-Linear Lattices: An Algebraic Theory of ω-Regular Languages, with Fixed Points

Authors: Anupam Das and Abhishek De

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Alternating parity automata (APAs) provide a robust formalism for modelling infinite behaviours and play a central role in formal verification. Despite their widespread use, the algebraic theory underlying APAs has remained largely unexplored. In recent work [Anupam Das and Abhishek De, 2024], a notation for non-deterministic finite automata (NFAs) was introduced, along with a sound and complete axiomatisation of their equational theory via right-linear algebras. In this paper, we extend that line of work to the setting of infinite words. In particular, we present a dualised syntax, yielding a notation for APAs based on right-linear lattice expressions, and provide a natural axiomatisation of their equational theory with respect to the standard language model of ω-regular languages. The design of this axiomatisation is guided by the theory of fixed point logics; in fact, the completeness factors cleanly through the completeness of the linear-time μ-calculus.

Cite as

Anupam Das and Abhishek De. Right-Linear Lattices: An Algebraic Theory of ω-Regular Languages, with Fixed Points. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 39:1-39:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{das_et_al:LIPIcs.MFCS.2025.39,
  author =	{Das, Anupam and De, Abhishek},
  title =	{{Right-Linear Lattices: An Algebraic Theory of \omega-Regular Languages, with Fixed Points}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{39:1--39:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.39},
  URN =		{urn:nbn:de:0030-drops-241461},
  doi =		{10.4230/LIPIcs.MFCS.2025.39},
  annote =	{Keywords: omega-languages, regular languages, fixed points, Kleene algebras, right-linear grammars}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs

Authors: Thomas Colcombet, Amina Doumane, and Denis Kuperberg

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
We establish that the bisimulation invariant fragment of MSO over finite transition systems is expressively equivalent over finite transition systems to modal μ-calculus, a question that had remained open for several decades. The proof goes by translating the question to an algebraic framework, and showing that the languages of regular trees that are recognised by finitary tree algebras whose sorts zero and one are finite are the regular ones. This corresponds for trees to a weak form of the key translation of Wilke algebras to omega-semigroup over infinite words, and was also a missing piece in the algebraic theory of regular languages of infinite trees for twenty years.

Cite as

Thomas Colcombet, Amina Doumane, and Denis Kuperberg. Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 152:1-152:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{colcombet_et_al:LIPIcs.ICALP.2025.152,
  author =	{Colcombet, Thomas and Doumane, Amina and Kuperberg, Denis},
  title =	{{Tree Algebras and Bisimulation-Invariant MSO on Finite Graphs}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{152:1--152:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.152},
  URN =		{urn:nbn:de:0030-drops-235294},
  doi =		{10.4230/LIPIcs.ICALP.2025.152},
  annote =	{Keywords: MSO, mu-calculus, finite graphs, bisimulation, tree algebra}
}
Document
Fair Termination of Asynchronous Binary Sessions

Authors: Luca Padovani and Gianluigi Zavattaro

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
We study a theory of asynchronous session types ensuring that well-typed processes terminate under a suitable fairness assumption. Fair termination entails starvation freedom and orphan message freedom namely that all messages, including those that are produced early taking advantage of asynchrony, are eventually consumed. The theory is based on a novel fair asynchronous subtyping relation for session types that is coarser than the existing ones. The type system is also the first of its kind that is firmly rooted in linear logic: fair asynchronous subtyping is incorporated as a natural generalization of the cut and axiom rules of linear logic and asynchronous communication is modeled through a suitable set of commuting conversions and of deep cut reductions in linear logic proofs.

Cite as

Luca Padovani and Gianluigi Zavattaro. Fair Termination of Asynchronous Binary Sessions. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 24:1-24:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{padovani_et_al:LIPIcs.ECOOP.2025.24,
  author =	{Padovani, Luca and Zavattaro, Gianluigi},
  title =	{{Fair Termination of Asynchronous Binary Sessions}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{24:1--24:29},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.24},
  URN =		{urn:nbn:de:0030-drops-233169},
  doi =		{10.4230/LIPIcs.ECOOP.2025.24},
  annote =	{Keywords: Binary sessions, fair asynchronous subtyping, fair termination, linear logic}
}
Document
Slightly Non-Linear Higher-Order Tree Transducers

Authors: Lê Thành Dũng (Tito) Nguyễn and Gabriele Vanoni

Published in: LIPIcs, Volume 327, 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)


Abstract
We investigate the tree-to-tree functions computed by "affine λ-transducers": tree automata whose memory consists of an affine λ-term instead of a finite state. They can be seen as variations on Gallot, Lemay and Salvati’s Linear High-Order Deterministic Tree Transducers. When the memory is almost purely affine (à la Kanazawa), we show that these machines can be translated to tree-walking transducers (and with a purely affine memory, we get a reversible tree-walking transducer). This leads to a proof of an inexpressivity conjecture of Nguyễn and Pradic on "implicit automata" in an affine λ-calculus. We also prove that a more powerful variant, extended with preprocessing by an MSO relabeling and allowing a limited amount of non-linearity, is equivalent in expressive power to Engelfriet, Hoogeboom and Samwel’s invisible pebble tree transducers. The key technical tool in our proofs is the Interaction Abstract Machine (IAM), an operational avatar of Girard’s geometry of interaction, a semantics of linear logic. We work with ad-hoc specializations to λ-terms of low exponential depth of a tree-generating version of the IAM.

Cite as

Lê Thành Dũng (Tito) Nguyễn and Gabriele Vanoni. Slightly Non-Linear Higher-Order Tree Transducers. In 42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 327, pp. 68:1-68:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nguyen_et_al:LIPIcs.STACS.2025.68,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and Vanoni, Gabriele},
  title =	{{Slightly Non-Linear Higher-Order Tree Transducers}},
  booktitle =	{42nd International Symposium on Theoretical Aspects of Computer Science (STACS 2025)},
  pages =	{68:1--68:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-365-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{327},
  editor =	{Beyersdorff, Olaf and Pilipczuk, Micha{\l} and Pimentel, Elaine and Thắng, Nguy\~{ê}n Kim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2025.68},
  URN =		{urn:nbn:de:0030-drops-228934},
  doi =		{10.4230/LIPIcs.STACS.2025.68},
  annote =	{Keywords: Almost affine lambda-calculus, geometry of interaction, reversibility, tree transducers, tree-walking automata}
}
Artifact
Software
Hypergraphs

Authors: Damien Pous


Abstract

Cite as

Damien Pous. Hypergraphs (Software). Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@misc{dagstuhl-artifact-22445,
   title = {{Hypergraphs}}, 
   author = {Pous, Damien},
   note = {Software, swhId: \href{https://archive.softwareheritage.org/swh:1:dir:028863b2f75dde258591611a6c7c165e289db890;origin=https://github.com/damien-pous/hypergraph;visit=swh:1:snp:76c08bf95d77951c90bdd771a828219ebb4cdcd2;anchor=swh:1:rev:661b5ef93f9d6a2f450f6f0638a1b61780dfe0a4}{\texttt{swh:1:dir:028863b2f75dde258591611a6c7c165e289db890}} (visited on 2024-11-28)},
   url = {https://perso.ens-lyon.fr/damien.pous/hypergraph/},
   doi = {10.4230/artifacts.22445},
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
A Finite Presentation of Graphs of Treewidth at Most Three

Authors: Amina Doumane, Samuel Humeau, and Damien Pous

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
We provide a finite equational presentation of graphs of treewidth at most three, solving an instance of an open problem by Courcelle and Engelfriet. We use a syntax generalising series-parallel expressions, denoting graphs with a small interface. We introduce appropriate notions of connectivity for such graphs (components, cutvertices, separation pairs). We use those concepts to analyse the structure of graphs of treewidth at most three, showing how they can be decomposed recursively, first canonically into connected parallel components, and then non-deterministically. The main difficulty consists in showing that all non-deterministic choices can be related using only finitely many equational axioms.

Cite as

Amina Doumane, Samuel Humeau, and Damien Pous. A Finite Presentation of Graphs of Treewidth at Most Three. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 135:1-135:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doumane_et_al:LIPIcs.ICALP.2024.135,
  author =	{Doumane, Amina and Humeau, Samuel and Pous, Damien},
  title =	{{A Finite Presentation of Graphs of Treewidth at Most Three}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{135:1--135:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.135},
  URN =		{urn:nbn:de:0030-drops-202787},
  doi =		{10.4230/LIPIcs.ICALP.2024.135},
  annote =	{Keywords: Graphs, treewidth, connectedness, axiomatisation, series-parallel expressions}
}
Document
Syntactically and Semantically Regular Languages of λ-Terms Coincide Through Logical Relations

Authors: Vincent Moreau and Lê Thành Dũng (Tito) Nguyễn

Published in: LIPIcs, Volume 288, 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)


Abstract
A fundamental theme in automata theory is regular languages of words and trees, and their many equivalent definitions. Salvati has proposed a generalization to regular languages of simply typed λ-terms, defined using denotational semantics in finite sets. We provide here some evidence for its robustness. First, we give an equivalent syntactic characterization that naturally extends the seminal work of Hillebrand and Kanellakis connecting regular languages of words and syntactic λ-definability. Second, we show that any finitary extensional model of the simply typed λ-calculus, when used in Salvati’s definition, recognizes exactly the same class of languages of λ-terms as the category of finite sets does. The proofs of these two results rely on logical relations and can be seen as instances of a more general construction of a categorical nature, inspired by previous categorical accounts of logical relations using the gluing construction.

Cite as

Vincent Moreau and Lê Thành Dũng (Tito) Nguyễn. Syntactically and Semantically Regular Languages of λ-Terms Coincide Through Logical Relations. In 32nd EACSL Annual Conference on Computer Science Logic (CSL 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 288, pp. 40:1-40:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{moreau_et_al:LIPIcs.CSL.2024.40,
  author =	{Moreau, Vincent and Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito)},
  title =	{{Syntactically and Semantically Regular Languages of \lambda-Terms Coincide Through Logical Relations}},
  booktitle =	{32nd EACSL Annual Conference on Computer Science Logic (CSL 2024)},
  pages =	{40:1--40:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-310-2},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{288},
  editor =	{Murano, Aniello and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2024.40},
  URN =		{urn:nbn:de:0030-drops-196831},
  doi =		{10.4230/LIPIcs.CSL.2024.40},
  annote =	{Keywords: regular languages, simple types, denotational semantics, logical relations}
}
Document
Phase Semantics for Linear Logic with Least and Greatest Fixed Points

Authors: Abhishek De, Farzad Jafarrahmani, and Alexis Saurin

Published in: LIPIcs, Volume 250, 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)


Abstract
The truth semantics of linear logic (i.e. phase semantics) is often overlooked despite having a wide range of applications and deep connections with several denotational semantics. In phase semantics, one is concerned about the provability of formulas rather than the contents of their proofs (or refutations). Linear logic equipped with the least and greatest fixpoint operators (μMALL) has been an active field of research for the past one and a half decades. Various proof systems are known viz. finitary and non-wellfounded, based on explicit and implicit (co)induction respectively. In this paper, we extend the phase semantics of multiplicative additive linear logic (a.k.a. MALL) to μMALL with explicit (co)induction (i.e. μMALL^{ind}). We introduce a Tait-style system for μMALL called μMALL_ω where proofs are wellfounded but potentially infinitely branching. We study its phase semantics and prove that it does not have the finite model property.

Cite as

Abhishek De, Farzad Jafarrahmani, and Alexis Saurin. Phase Semantics for Linear Logic with Least and Greatest Fixed Points. In 42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 250, pp. 35:1-35:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{de_et_al:LIPIcs.FSTTCS.2022.35,
  author =	{De, Abhishek and Jafarrahmani, Farzad and Saurin, Alexis},
  title =	{{Phase Semantics for Linear Logic with Least and Greatest Fixed Points}},
  booktitle =	{42nd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2022)},
  pages =	{35:1--35:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-261-7},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{250},
  editor =	{Dawar, Anuj and Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2022.35},
  URN =		{urn:nbn:de:0030-drops-174272},
  doi =		{10.4230/LIPIcs.FSTTCS.2022.35},
  annote =	{Keywords: Linear logic, fixed points, phase semantics, closure ordinals, cut elimination}
}
Document
Completeness Theorems for Kleene Algebra with Top

Authors: Damien Pous and Jana Wagemaker

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We prove two completeness results for Kleene algebra with a top element, with respect to languages and binary relations. While the equational theories of those two classes of models coincide over the signature of Kleene algebra, this is no longer the case when we consider an additional constant "top" for the full element. Indeed, the full relation satisfies more laws than the full language, and we show that those additional laws can all be derived from a single additional axiom. We recover that the two equational theories coincide if we slightly generalise the notion of relational model, allowing sub-algebras of relations where top is a greatest element but not necessarily the full relation. We use models of closed languages and reductions in order to prove our completeness results, which are relative to any axiomatisation of the algebra of regular events.

Cite as

Damien Pous and Jana Wagemaker. Completeness Theorems for Kleene Algebra with Top. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 26:1-26:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{pous_et_al:LIPIcs.CONCUR.2022.26,
  author =	{Pous, Damien and Wagemaker, Jana},
  title =	{{Completeness Theorems for Kleene Algebra with Top}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{26:1--26:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.26},
  URN =		{urn:nbn:de:0030-drops-170890},
  doi =		{10.4230/LIPIcs.CONCUR.2022.26},
  annote =	{Keywords: Kleene algebra, Hypotheses, Completeness, Closed languages}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Regular Expressions for Tree-Width 2 Graphs

Authors: Amina Doumane

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
We propose a syntax of regular expressions, which describes languages of tree-width 2 graphs. We show that these languages correspond exactly to those languages of tree-width 2 graphs, definable in the counting monadic second-order logic (CMSO).

Cite as

Amina Doumane. Regular Expressions for Tree-Width 2 Graphs. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 121:1-121:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{doumane:LIPIcs.ICALP.2022.121,
  author =	{Doumane, Amina},
  title =	{{Regular Expressions for Tree-Width 2 Graphs}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{121:1--121:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.121},
  URN =		{urn:nbn:de:0030-drops-164627},
  doi =		{10.4230/LIPIcs.ICALP.2022.121},
  annote =	{Keywords: Tree width, MSO, Regular expressions}
}
Document
Invited Talk
Non-Axiomatizability of the Equational Theories of Positive Relation Algebras (Invited Talk)

Authors: Amina Doumane

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
In the literature, there are two ways to show that the equational theory of relations over a given signature is not finitely axiomatizable. The first-one is based on games and a construction called Rainbow construction. This method is very technical but it shows a strong result: the equational theory cannot be axiomatized by any finite set of first-order formulas. There is another method, based on a graph characterization of the equational theory of relations, which is easier to get and to understand, but proves a weaker result: the equational theory cannot be axiomatized by any finite set of equations. In this presentation, I will show how to complete the second technique to get the stronger result of non-axiomatizability by first-order formulas.

Cite as

Amina Doumane. Non-Axiomatizability of the Equational Theories of Positive Relation Algebras (Invited Talk). In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, p. 1:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{doumane:LIPIcs.MFCS.2021.1,
  author =	{Doumane, Amina},
  title =	{{Non-Axiomatizability of the Equational Theories of Positive Relation Algebras}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{1:1--1:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.1},
  URN =		{urn:nbn:de:0030-drops-144417},
  doi =		{10.4230/LIPIcs.MFCS.2021.1},
  annote =	{Keywords: Relation algebra, Graph homomorphism, Equational theories, First-order logic}
}
Document
Graph Characterization of the Universal Theory of Relations

Authors: Amina Doumane

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
The equational theory of relations can be characterized using graphs and homomorphisms. This result, found independently by Freyd and Scedrov and by Andréka and Bredikhin, shows that the equational theory of relations is decidable. In this paper, we extend this characterization to the whole universal first-order theory of relations. Using our characterization, we show that the positive universal fragment is also decidable.

Cite as

Amina Doumane. Graph Characterization of the Universal Theory of Relations. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 41:1-41:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{doumane:LIPIcs.MFCS.2021.41,
  author =	{Doumane, Amina},
  title =	{{Graph Characterization of the Universal Theory of Relations}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{41:1--41:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.41},
  URN =		{urn:nbn:de:0030-drops-144815},
  doi =		{10.4230/LIPIcs.MFCS.2021.41},
  annote =	{Keywords: Relation algebra, Graph homomorphism, Equational theories, First-order logic}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Comparison-Free Polyregular Functions

Authors: Lê Thành Dũng (Tito) Nguyễn, Camille Noûs, and Cécilia Pradic

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
This paper introduces a new automata-theoretic class of string-to-string functions with polynomial growth. Several equivalent definitions are provided: a machine model which is a restricted variant of pebble transducers, and a few inductive definitions that close the class of regular functions under certain operations. Our motivation for studying this class comes from another characterization, which we merely mention here but prove elsewhere, based on a λ-calculus with a linear type system. As their name suggests, these comparison-free polyregular functions form a subclass of polyregular functions; we prove that the inclusion is strict. We also show that they are incomparable with HDT0L transductions, closed under usual function composition - but not under a certain "map" combinator - and satisfy a comparison-free version of the pebble minimization theorem. On the broader topic of polynomial growth transductions, we also consider the recently introduced layered streaming string transducers (SSTs), or equivalently k-marble transducers. We prove that a function can be obtained by composing such transducers together if and only if it is polyregular, and that k-layered SSTs (or k-marble transducers) are closed under "map" and equivalent to a corresponding notion of (k+1)-layered HDT0L systems.

Cite as

Lê Thành Dũng (Tito) Nguyễn, Camille Noûs, and Cécilia Pradic. Comparison-Free Polyregular Functions. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 139:1-139:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{nguyen_et_al:LIPIcs.ICALP.2021.139,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng (Tito) and No\^{u}s, Camille and Pradic, C\'{e}cilia},
  title =	{{Comparison-Free Polyregular Functions}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{139:1--139:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.139},
  URN =		{urn:nbn:de:0030-drops-142087},
  doi =		{10.4230/LIPIcs.ICALP.2021.139},
  annote =	{Keywords: pebble transducers, HDT0L systems, polyregular functions}
}
Document
Non Axiomatisability of Positive Relation Algebras with Constants, via Graph Homomorphisms

Authors: Amina Doumane and Damien Pous

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
We study the equational theories of composition and intersection on binary relations, with or without their associated neutral elements (identity and full relation). Without these constants, the equational theory coincides with that of semilattice-ordered semigroups. We show that the equational theory is no longer finitely based when adding one or the other constant, refuting a conjecture from the literature. Our proofs exploit a characterisation in terms of graphs and homomorphisms, which we show how to adapt in order to capture standard equational theories over the considered signatures.

Cite as

Amina Doumane and Damien Pous. Non Axiomatisability of Positive Relation Algebras with Constants, via Graph Homomorphisms. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 29:1-29:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{doumane_et_al:LIPIcs.CONCUR.2020.29,
  author =	{Doumane, Amina and Pous, Damien},
  title =	{{Non Axiomatisability of Positive Relation Algebras with Constants, via Graph Homomorphisms}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{29:1--29:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.29},
  URN =		{urn:nbn:de:0030-drops-128411},
  doi =		{10.4230/LIPIcs.CONCUR.2020.29},
  annote =	{Keywords: Relation algebra, graph homomorphisms, (in)equational theories}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Implicit Automata in Typed λ-Calculi I: Aperiodicity in a Non-Commutative Logic

Authors: Lê Thành Dũng Nguyễn and Cécilia Pradic

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
We give a characterization of star-free languages in a λ-calculus with support for non-commutative affine types (in the sense of linear logic), via the algebraic characterization of the former using aperiodic monoids. When the type system is made commutative, we show that we get regular languages instead. A key ingredient in our approach – that it shares with higher-order model checking – is the use of Church encodings for inputs and outputs. Our result is, to our knowledge, the first use of non-commutativity in implicit computational complexity.

Cite as

Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit Automata in Typed λ-Calculi I: Aperiodicity in a Non-Commutative Logic. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 135:1-135:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{nguyen_et_al:LIPIcs.ICALP.2020.135,
  author =	{Nguy\~{ê}n, L\^{e} Th\`{a}nh D\~{u}ng and Pradic, C\'{e}cilia},
  title =	{{Implicit Automata in Typed \lambda-Calculi I: Aperiodicity in a Non-Commutative Logic}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{135:1--135:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.135},
  URN =		{urn:nbn:de:0030-drops-125426},
  doi =		{10.4230/LIPIcs.ICALP.2020.135},
  annote =	{Keywords: Church encodings, ordered linear types, star-free languages}
}
  • Refine by Type
  • 18 Document/PDF
  • 4 Document/HTML
  • 1 Artifact

  • Refine by Publication Year
  • 4 2025
  • 3 2024
  • 3 2022
  • 3 2021
  • 3 2020
  • Show More...

  • Refine by Author
  • 9 Doumane, Amina
  • 5 Pous, Damien
  • 3 Nguyễn, Lê Thành Dũng (Tito)
  • 3 Saurin, Alexis
  • 2 Baelde, David
  • Show More...

  • Refine by Series/Journal
  • 18 LIPIcs

  • Refine by Classification
  • 4 Mathematics of computing → Discrete mathematics
  • 4 Theory of computation → Linear logic
  • 4 Theory of computation → Regular languages
  • 3 Theory of computation → Algebraic language theory
  • 2 Theory of computation → Equational logic and rewriting
  • Show More...

  • Refine by Keyword
  • 3 Kleene algebra
  • 3 Relation algebra
  • 3 fixed points
  • 3 linear logic
  • 2 Equational theories
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail