11 Search Results for "Gray, Jacob"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians

Authors: François Le Gall

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We construct classical algorithms computing an approximation of the ground state energy of an arbitrary k-local Hamiltonian acting on n qubits. We first consider the setting where a good "guiding state" is available, which is the main setting where quantum algorithms are expected to achieve an exponential speedup over classical methods. We show that a constant approximation (i.e., an approximation with constant relative accuracy) of the ground state energy can be computed classically in poly (1/χ,n) time and poly(n) space, where χ denotes the overlap between the guiding state and the ground state (as in prior works in dequantization, we assume sample-and-query access to the guiding state). This gives a significant improvement over the recent classical algorithm by Gharibian and Le Gall (SICOMP 2023), and matches (up to a polynomial overhead) both the time and space complexities of quantum algorithms for constant approximation of the ground state energy. We also obtain classical algorithms for higher-precision approximation. For the setting where no guided state is given (i.e., the standard version of the local Hamiltonian problem), we obtain a classical algorithm computing a constant approximation of the ground state energy in 2^O(n) time and poly(n) space. To our knowledge, before this work it was unknown how to classically achieve these bounds simultaneously, even for constant approximation. We also discuss complexity-theoretic aspects of our results.

Cite as

François Le Gall. Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians. In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 73:1-73:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{legall:LIPIcs.ESA.2025.73,
  author =	{Le Gall, Fran\c{c}ois},
  title =	{{Classical Algorithms for Constant Approximation of the Ground State Energy of Local Hamiltonians}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{73:1--73:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.73},
  URN =		{urn:nbn:de:0030-drops-245419},
  doi =		{10.4230/LIPIcs.ESA.2025.73},
  annote =	{Keywords: approximation algorithms, quantum computing, dequantization}
}
Document
Differentiable Programming of Indexed Chemical Reaction Networks and Reaction-Diffusion Systems

Authors: Inhoo Lee, Salvador Buse, and Erik Winfree

Published in: LIPIcs, Volume 347, 31st International Conference on DNA Computing and Molecular Programming (DNA 31) (2025)


Abstract
Many molecular systems are best understood in terms of prototypical species and reactions. The central dogma and related biochemistry are rife with examples: gene i is transcribed into RNA i, which is translated into protein i; kinase n phosphorylates substrate m; protein p dimerizes with protein q. Engineered nucleic acid systems also often have this form: oligonucleotide i hybridizes to complementary oligonucleotide j; signal strand n displaces the output of seesaw gate m; hairpin p triggers the opening of target q. When there are many variants of a small number of prototypes, it can be conceptually cleaner and computationally more efficient to represent the full system in terms of indexed species (e.g. for dimerization, M_p, D_pq) and indexed reactions (M_p + M_q → D_pq). Here, we formalize the Indexed Chemical Reaction Network (ICRN) model and describe a Python software package designed to simulate such systems in the well-mixed and reaction-diffusion settings, using a differentiable programming framework originally developed for large-scale neural network models, taking advantage of GPU acceleration when available. Notably, this framework makes it straightforward to train the models’ initial conditions and rate constants to optimize a target behavior, such as matching experimental data, performing a computation, or exhibiting spatial pattern formation. The natural map of indexed chemical reaction networks onto neural network formalisms provides a tangible yet general perspective for translating concepts and techniques from the theory and practice of neural computation into the design of biomolecular systems.

Cite as

Inhoo Lee, Salvador Buse, and Erik Winfree. Differentiable Programming of Indexed Chemical Reaction Networks and Reaction-Diffusion Systems. In 31st International Conference on DNA Computing and Molecular Programming (DNA 31). Leibniz International Proceedings in Informatics (LIPIcs), Volume 347, pp. 4:1-4:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lee_et_al:LIPIcs.DNA.31.4,
  author =	{Lee, Inhoo and Buse, Salvador and Winfree, Erik},
  title =	{{Differentiable Programming of Indexed Chemical Reaction Networks and Reaction-Diffusion Systems}},
  booktitle =	{31st International Conference on DNA Computing and Molecular Programming (DNA 31)},
  pages =	{4:1--4:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-399-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{347},
  editor =	{Schaeffer, Josie and Zhang, Fei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DNA.31.4},
  URN =		{urn:nbn:de:0030-drops-238534},
  doi =		{10.4230/LIPIcs.DNA.31.4},
  annote =	{Keywords: Differentiable Programming, Chemical Reaction Networks, Reaction-Diffusion Systems}
}
Document
Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing

Authors: Kalana Wijegunarathna, Kristin Stock, and Christopher B. Jones

Published in: LIPIcs, Volume 346, 13th International Conference on Geographic Information Science (GIScience 2025)


Abstract
Millions of biological sample records collected in the last few centuries archived in natural history collections are un-georeferenced. Georeferencing complex locality descriptions associated with these collection samples is a highly labour-intensive task collection agencies struggle with. None of the existing automated methods exploit maps that are an essential tool for georeferencing complex relations. We present preliminary experiments and results of a novel method that exploits multi-modal capabilities of recent Large Multi-Modal Models (LMM). This method enables the model to visually contextualize spatial relations it reads in the locality description. We use a grid-based approach to adapt these auto-regressive models for this task in a zero-shot setting. Our experiments conducted on a small manually annotated dataset show impressive results for our approach (∼1 km Average distance error) compared to uni-modal georeferencing with Large Language Models and existing georeferencing tools. The paper also discusses the findings of the experiments in light of an LMM’s ability to comprehend fine-grained maps. Motivated by these results, a practical framework is proposed to integrate this method into a georeferencing workflow.

Cite as

Kalana Wijegunarathna, Kristin Stock, and Christopher B. Jones. Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing. In 13th International Conference on Geographic Information Science (GIScience 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 346, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{wijegunarathna_et_al:LIPIcs.GIScience.2025.12,
  author =	{Wijegunarathna, Kalana and Stock, Kristin and Jones, Christopher B.},
  title =	{{Large Multi-Modal Model Cartographic Map Comprehension for Textual Locality Georeferencing}},
  booktitle =	{13th International Conference on Geographic Information Science (GIScience 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-378-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{346},
  editor =	{Sila-Nowicka, Katarzyna and Moore, Antoni and O'Sullivan, David and Adams, Benjamin and Gahegan, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2025.12},
  URN =		{urn:nbn:de:0030-drops-238412},
  doi =		{10.4230/LIPIcs.GIScience.2025.12},
  annote =	{Keywords: Large Multi-Modal Models, Large Language Models, LLM, Georeferencing, Natural History collections}
}
Document
Space-Bounded Quantum Interactive Proof Systems

Authors: François Le Gall, Yupan Liu, Harumichi Nishimura, and Qisheng Wang

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
We introduce two models of space-bounded quantum interactive proof systems, QIPL and QIP_{U}L. The QIP_{U}L model, a space-bounded variant of quantum interactive proofs (QIP) introduced by Watrous (CC 2003) and Kitaev and Watrous (STOC 2000), restricts verifier actions to unitary circuits. In contrast, QIPL allows logarithmically many pinching intermediate measurements per verifier action, making it the weakest model that encompasses the classical model of Condon and Ladner (JCSS 1995). We characterize the computational power of QIPL and QIP_{U}L. When the message number m is polynomially bounded, QIP_{U}L ⊊ QIPL unless P = NP: - QIPL^HC, a subclass of QIPL defined by a high-concentration condition on yes instances, exactly characterizes NP. - QIP_{U}L is contained in P and contains SAC¹ ∪ BQL, where SAC¹ denotes problems solvable by classical logarithmic-depth, semi-unbounded fan-in circuits. However, this distinction vanishes when m is constant. Our results further indicate that (pinching) intermediate measurements uniquely impact space-bounded quantum interactive proofs, unlike in space-bounded quantum computation, where BQL = BQ_{U}L. We also introduce space-bounded unitary quantum statistical zero-knowledge (QSZK_{U}L), a specific form of QIP_{U}L proof systems with statistical zero-knowledge against any verifier. This class is a space-bounded variant of quantum statistical zero-knowledge (QSZK) defined by Watrous (SICOMP 2009). We prove that QSZK_{U}L = BQL, implying that the statistical zero-knowledge property negates the computational advantage typically gained from the interaction.

Cite as

François Le Gall, Yupan Liu, Harumichi Nishimura, and Qisheng Wang. Space-Bounded Quantum Interactive Proof Systems. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 17:1-17:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{legall_et_al:LIPIcs.CCC.2025.17,
  author =	{Le Gall, Fran\c{c}ois and Liu, Yupan and Nishimura, Harumichi and Wang, Qisheng},
  title =	{{Space-Bounded Quantum Interactive Proof Systems}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{17:1--17:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.17},
  URN =		{urn:nbn:de:0030-drops-237115},
  doi =		{10.4230/LIPIcs.CCC.2025.17},
  annote =	{Keywords: Intermediate measurements, Quantum interactive proofs, Space-bounded quantum computation}
}
Document
Chain of Grounded Objectives: Concise Goal-Oriented Prompting for Code Generation

Authors: Sangyeop Yeo, Seung-Won Hwang, and Yu-Seung Ma

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
The use of Large Language Models (LLMs) for code generation has gained significant attention in recent years. Existing methods often aim to improve the quality of generated code by incorporating additional contextual information or guidance into input prompts. Many of these approaches adopt process-oriented reasoning strategies, mimicking human-like step-by-step thinking; however, they may not always align with the structured nature of programming languages. This paper introduces Chain of Grounded Objectives (CGO), a concise goal-oriented prompting approach that embeds functional objectives into prompts to enhance code generation. By focusing on precisely defined objectives rather than explicit procedural steps, CGO aligns more naturally with programming tasks while retaining flexibility. Empirical evaluations on HumanEval, MBPP, their extended versions, and LiveCodeBench show that CGO achieves accuracy comparable to or better than existing methods while using fewer tokens, making it a more efficient approach to LLM-based code generation.

Cite as

Sangyeop Yeo, Seung-Won Hwang, and Yu-Seung Ma. Chain of Grounded Objectives: Concise Goal-Oriented Prompting for Code Generation. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 35:1-35:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{yeo_et_al:LIPIcs.ECOOP.2025.35,
  author =	{Yeo, Sangyeop and Hwang, Seung-Won and Ma, Yu-Seung},
  title =	{{Chain of Grounded Objectives: Concise Goal-Oriented Prompting for Code Generation}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{35:1--35:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.35},
  URN =		{urn:nbn:de:0030-drops-233271},
  doi =		{10.4230/LIPIcs.ECOOP.2025.35},
  annote =	{Keywords: Artificial Intelligence, Natural Language Processing, Prompt Design, Large Language Models, Code Generation}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Position
Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities

Authors: Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
The term life sciences refers to the disciplines that study living organisms and life processes, and include chemistry, biology, medicine, and a range of other related disciplines. Research efforts in life sciences are heavily data-driven, as they produce and consume vast amounts of scientific data, much of which is intrinsically relational and graph-structured. The volume of data and the complexity of scientific concepts and relations referred to therein promote the application of advanced knowledge-driven technologies for managing and interpreting data, with the ultimate aim to advance scientific discovery. In this survey and position paper, we discuss recent developments and advances in the use of graph-based technologies in life sciences and set out a vision for how these technologies will impact these fields into the future. We focus on three broad topics: the construction and management of Knowledge Graphs (KGs), the use of KGs and associated technologies in the discovery of new knowledge, and the use of KGs in artificial intelligence applications to support explanations (explainable AI). We select a few exemplary use cases for each topic, discuss the challenges and open research questions within these topics, and conclude with a perspective and outlook that summarizes the overarching challenges and their potential solutions as a guide for future research.

Cite as

Jiaoyan Chen, Hang Dong, Janna Hastings, Ernesto Jiménez-Ruiz, Vanessa López, Pierre Monnin, Catia Pesquita, Petr Škoda, and Valentina Tamma. Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 5:1-5:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{chen_et_al:TGDK.1.1.5,
  author =	{Chen, Jiaoyan and Dong, Hang and Hastings, Janna and Jim\'{e}nez-Ruiz, Ernesto and L\'{o}pez, Vanessa and Monnin, Pierre and Pesquita, Catia and \v{S}koda, Petr and Tamma, Valentina},
  title =	{{Knowledge Graphs for the Life Sciences: Recent Developments, Challenges and Opportunities}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{5:1--5:33},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.5},
  URN =		{urn:nbn:de:0030-drops-194791},
  doi =		{10.4230/TGDK.1.1.5},
  annote =	{Keywords: Knowledge graphs, Life science, Knowledge discovery, Explainable AI}
}
Document
Vision
Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination

Authors: Luis-Daniel Ibáñez, John Domingue, Sabrina Kirrane, Oshani Seneviratne, Aisling Third, and Maria-Esther Vidal

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning How the output of AI systems can be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives.

Cite as

Luis-Daniel Ibáñez, John Domingue, Sabrina Kirrane, Oshani Seneviratne, Aisling Third, and Maria-Esther Vidal. Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 9:1-9:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{ibanez_et_al:TGDK.1.1.9,
  author =	{Ib\'{a}\~{n}ez, Luis-Daniel and Domingue, John and Kirrane, Sabrina and Seneviratne, Oshani and Third, Aisling and Vidal, Maria-Esther},
  title =	{{Trust, Accountability, and Autonomy in Knowledge Graph-Based AI for Self-Determination}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{9:1--9:32},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.9},
  URN =		{urn:nbn:de:0030-drops-194839},
  doi =		{10.4230/TGDK.1.1.9},
  annote =	{Keywords: Trust, Accountability, Autonomy, AI, Knowledge Graphs}
}
Document
Vision
Knowledge Engineering Using Large Language Models

Authors: Bradley P. Allen, Lise Stork, and Paul Groth

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Knowledge engineering is a discipline that focuses on the creation and maintenance of processes that generate and apply knowledge. Traditionally, knowledge engineering approaches have focused on knowledge expressed in formal languages. The emergence of large language models and their capabilities to effectively work with natural language, in its broadest sense, raises questions about the foundations and practice of knowledge engineering. Here, we outline the potential role of LLMs in knowledge engineering, identifying two central directions: 1) creating hybrid neuro-symbolic knowledge systems; and 2) enabling knowledge engineering in natural language. Additionally, we formulate key open research questions to tackle these directions.

Cite as

Bradley P. Allen, Lise Stork, and Paul Groth. Knowledge Engineering Using Large Language Models. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 3:1-3:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{allen_et_al:TGDK.1.1.3,
  author =	{Allen, Bradley P. and Stork, Lise and Groth, Paul},
  title =	{{Knowledge Engineering Using Large Language Models}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:19},
  ISSN =	{2942-7517},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.3},
  URN =		{urn:nbn:de:0030-drops-194777},
  doi =		{10.4230/TGDK.1.1.3},
  annote =	{Keywords: knowledge engineering, large language models}
}
Document
RANDOM
Robustness for Space-Bounded Statistical Zero Knowledge

Authors: Eric Allender, Jacob Gray, Saachi Mutreja, Harsha Tirumala, and Pengxiang Wang

Published in: LIPIcs, Volume 275, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)


Abstract
We show that the space-bounded Statistical Zero Knowledge classes SZK_L and NISZK_L are surprisingly robust, in that the power of the verifier and simulator can be strengthened or weakened without affecting the resulting class. Coupled with other recent characterizations of these classes [Eric Allender et al., 2023], this can be viewed as lending support to the conjecture that these classes may coincide with the non-space-bounded classes SZK and NISZK, respectively.

Cite as

Eric Allender, Jacob Gray, Saachi Mutreja, Harsha Tirumala, and Pengxiang Wang. Robustness for Space-Bounded Statistical Zero Knowledge. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 56:1-56:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{allender_et_al:LIPIcs.APPROX/RANDOM.2023.56,
  author =	{Allender, Eric and Gray, Jacob and Mutreja, Saachi and Tirumala, Harsha and Wang, Pengxiang},
  title =	{{Robustness for Space-Bounded Statistical Zero Knowledge}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023)},
  pages =	{56:1--56:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-296-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{275},
  editor =	{Megow, Nicole and Smith, Adam},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2023.56},
  URN =		{urn:nbn:de:0030-drops-188815},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2023.56},
  annote =	{Keywords: Interactive Proofs}
}
  • Refine by Type
  • 11 Document/PDF
  • 9 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 1 2024
  • 4 2023

  • Refine by Author
  • 2 Le Gall, François
  • 1 Allen, Bradley P.
  • 1 Allender, Eric
  • 1 Bonte, Pieter
  • 1 Buse, Salvador
  • Show More...

  • Refine by Series/Journal
  • 6 LIPIcs
  • 5 TGDK

  • Refine by Classification
  • 2 Computing methodologies → Knowledge representation and reasoning
  • 2 Information systems → Graph-based database models
  • 2 Theory of computation → Complexity classes
  • 1 Applied computing → Life and medical sciences
  • 1 Computer systems organization → Molecular computing
  • Show More...

  • Refine by Keyword
  • 2 Knowledge graphs
  • 2 Large Language Models
  • 1 AI
  • 1 Accountability
  • 1 Artificial Intelligence
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail