5 Search Results for "Gupta, Divya"


Document
Assessing the Use of Mixed Reality as a Valid Tool for Human-Robot Interaction Studies in the Context of Space Exploration

Authors: Enrico Guerra, Sebastian Thomas Büttner, Alper Beşer, and Michael Prilla

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Mixed Reality (MR) is a technology with strong potential for advancing research in Human-Robot Interaction (HRI) for space exploration. Apart from the efficiency and high flexibility MR can offer, we argue that its benefits for HRI research in space contexts lies particularly in its ability to aid human-in-the-loop development, offer realistic hybrid simulations, and foster broader participation in HRI research in the space exploration context. However, we believe that this is only plausible if MR-based simulations can yield comparable results to fully physical approaches in human-centred studies. In this position paper, we highlight several arguments in favour of MR as a tool for space HRI research, while emphasising the importance of the open question regarding its scientific validity. We believe MR could become a central tool for preparing for future human-robotic space exploration missions and significantly diversify research in this domain.

Cite as

Enrico Guerra, Sebastian Thomas Büttner, Alper Beşer, and Michael Prilla. Assessing the Use of Mixed Reality as a Valid Tool for Human-Robot Interaction Studies in the Context of Space Exploration. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 27:1-27:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{guerra_et_al:OASIcs.SpaceCHI.2025.27,
  author =	{Guerra, Enrico and B\"{u}ttner, Sebastian Thomas and Be\c{s}er, Alper and Prilla, Michael},
  title =	{{Assessing the Use of Mixed Reality as a Valid Tool for Human-Robot Interaction Studies in the Context of Space Exploration}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{27:1--27:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.27},
  URN =		{urn:nbn:de:0030-drops-240175},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.27},
  annote =	{Keywords: Mixed Reality, Augmented Reality, Human-Robot Interaction, Space Exploration, Validity}
}
Document
Compositional Reasoning for Parametric Probabilistic Automata

Authors: Hannah Mertens, Tim Quatmann, and Joost-Pieter Katoen

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
We establish an assume-guarantee (AG) framework for compositional reasoning about multi-objective queries in parametric probabilistic automata (pPA) - an extension to probabilistic automata (PA), where transition probabilities are functions over a finite set of parameters. We lift an existing framework for PA to the pPA setting, incorporating asymmetric, circular, and interleaving proof rules. Our approach enables the verification of a broad spectrum of multi-objective queries for pPA, encompassing probabilistic properties and (parametric) expected total rewards. Additionally, we introduce a rule for reasoning about monotonicity in composed pPAs.

Cite as

Hannah Mertens, Tim Quatmann, and Joost-Pieter Katoen. Compositional Reasoning for Parametric Probabilistic Automata. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 31:1-31:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mertens_et_al:LIPIcs.CONCUR.2025.31,
  author =	{Mertens, Hannah and Quatmann, Tim and Katoen, Joost-Pieter},
  title =	{{Compositional Reasoning for Parametric Probabilistic Automata}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{31:1--31:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.31},
  URN =		{urn:nbn:de:0030-drops-239810},
  doi =		{10.4230/LIPIcs.CONCUR.2025.31},
  annote =	{Keywords: Verification, Probabilistic systems, Assume-guarantee reasoning, Parametric Probabilistic Automata, Parameter synthesis}
}
Document
Tool Paper
A Benchmark Framework for Byzantine Fault Tolerance Testing Algorithms (Tool Paper)

Authors: João Miguel Louro Neto and Burcu Kulahcioglu Ozkan

Published in: OASIcs, Volume 129, 6th International Workshop on Formal Methods for Blockchains (FMBC 2025)


Abstract
Recent discoveries of vulnerabilities in the design and implementation of Byzantine fault-tolerant protocols underscore the need for testing and exploration techniques to ensure their correctness. While there has been some recent effort for automated test generation for BFT protocols, there is no benchmark framework available to systematically evaluate their performance. We present ByzzBench, a benchmark framework designed to evaluate the performance of testing algorithms in detecting Byzantine fault tolerance bugs. ByzzBench is designed for a standardized implementation of BFT protocols and their execution in a controlled testing environment. It controls the nondeterminism in the concurrency, network, and process faults in the protocol execution, enabling the functionality to enforce particular execution scenarios and thereby facilitating the implementation of testing algorithms for BFT protocols.

Cite as

João Miguel Louro Neto and Burcu Kulahcioglu Ozkan. A Benchmark Framework for Byzantine Fault Tolerance Testing Algorithms (Tool Paper). In 6th International Workshop on Formal Methods for Blockchains (FMBC 2025). Open Access Series in Informatics (OASIcs), Volume 129, pp. 13:1-13:11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{louroneto_et_al:OASIcs.FMBC.2025.13,
  author =	{Louro Neto, Jo\~{a}o Miguel and Kulahcioglu Ozkan, Burcu},
  title =	{{A Benchmark Framework for Byzantine Fault Tolerance Testing Algorithms}},
  booktitle =	{6th International Workshop on Formal Methods for Blockchains (FMBC 2025)},
  pages =	{13:1--13:11},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-371-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{129},
  editor =	{Marmsoler, Diego and Xu, Meng},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.FMBC.2025.13},
  URN =		{urn:nbn:de:0030-drops-230406},
  doi =		{10.4230/OASIcs.FMBC.2025.13},
  annote =	{Keywords: Byzantine Fault Tolerance, BFT Protocols, Automated Testing}
}
Document
Incompressible Functional Encryption

Authors: Rishab Goyal, Venkata Koppula, Mahesh Sreekumar Rajasree, and Aman Verma

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
Incompressible encryption (Dziembowski, Crypto'06; Guan, Wichs, Zhandry, Eurocrypt'22) protects from attackers that learn the entire decryption key, but cannot store the full ciphertext. In incompressible encryption, the attacker must try to compress a ciphertext within pre-specified memory bound S before receiving the secret key. In this work, we generalize the notion of incompressibility to functional encryption. In incompressible functional encryption, the adversary can corrupt non-distinguishing keys at any point, but receives the distinguishing keys only after compressing the ciphertext to within S bits. An important efficiency measure for incompressible encryption is the ciphertext-rate (i.e., rate = |m|/|ct|). We give many new results for incompressible functional encryption for circuits, from minimal assumption of (non-incompressible) functional encryption, with 1) ct-rate-1/2 and short secret keys, 2) ct-rate-1 and large secret keys. Along the way, we also give a new incompressible attribute-based encryption for circuits from standard assumptions, with ct-rate-1/2 and short secret keys. Our results achieve optimal efficiency, as incompressible attribute-based/functional encryption with ct-rate-1 as well as short secret keys has strong barriers for provable security from standard assumptions. Moreover, our assumptions are minimal as incompressible attribute-based/functional encryption are strictly stronger than their non-incompressible counterparts.

Cite as

Rishab Goyal, Venkata Koppula, Mahesh Sreekumar Rajasree, and Aman Verma. Incompressible Functional Encryption. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 56:1-56:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{goyal_et_al:LIPIcs.ITCS.2025.56,
  author =	{Goyal, Rishab and Koppula, Venkata and Rajasree, Mahesh Sreekumar and Verma, Aman},
  title =	{{Incompressible Functional Encryption}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{56:1--56:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.56},
  URN =		{urn:nbn:de:0030-drops-226849},
  doi =		{10.4230/LIPIcs.ITCS.2025.56},
  annote =	{Keywords: functional encryption, attribute-based encryption, incompressible encryption}
}
Document
Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees

Authors: Khaled Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula, and Arindam Pal

Published in: LIPIcs, Volume 18, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)


Abstract
We study the Unsplittable Flow Problem (UFP) and related variants, namely UFP with Bag Constraints and UFP with Rounds, on paths and trees. We provide improved constant factor approximation algorithms for all these problems under the no bottleneck assumption (NBA), which says that the maximum demand for any source-sink pair is at most the minimum capacity of any edge. We obtain these improved results by expressing a feasible solution to a natural LP relaxation of the UFP as a near-convex combination of feasible integral solutions.

Cite as

Khaled Elbassioni, Naveen Garg, Divya Gupta, Amit Kumar, Vishal Narula, and Arindam Pal. Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012). Leibniz International Proceedings in Informatics (LIPIcs), Volume 18, pp. 267-275, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)


Copy BibTex To Clipboard

@InProceedings{elbassioni_et_al:LIPIcs.FSTTCS.2012.267,
  author =	{Elbassioni, Khaled and Garg, Naveen and Gupta, Divya and Kumar, Amit and Narula, Vishal and Pal, Arindam},
  title =	{{Approximation Algorithms for the Unsplittable Flow Problem on Paths and Trees}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2012)},
  pages =	{267--275},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-47-7},
  ISSN =	{1868-8969},
  year =	{2012},
  volume =	{18},
  editor =	{D'Souza, Deepak and Radhakrishnan, Jaikumar and Telikepalli, Kavitha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2012.267},
  URN =		{urn:nbn:de:0030-drops-38650},
  doi =		{10.4230/LIPIcs.FSTTCS.2012.267},
  annote =	{Keywords: Approximation Algorithms, Integer Decomposition, Linear Programming, Scheduling, Unsplittable Flows}
}
  • Refine by Type
  • 5 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 4 2025
  • 1 2012

  • Refine by Author
  • 1 Beşer, Alper
  • 1 Büttner, Sebastian Thomas
  • 1 Elbassioni, Khaled
  • 1 Garg, Naveen
  • 1 Goyal, Rishab
  • Show More...

  • Refine by Series/Journal
  • 3 LIPIcs
  • 2 OASIcs

  • Refine by Classification
  • 1 Human-centered computing → Mixed / augmented reality
  • 1 Security and privacy → Distributed systems security
  • 1 Security and privacy → Public key encryption
  • 1 Theory of computation → Logic

  • Refine by Keyword
  • 1 Approximation Algorithms
  • 1 Assume-guarantee reasoning
  • 1 Augmented Reality
  • 1 Automated Testing
  • 1 BFT Protocols
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail