22 Search Results for "Lakemeyer, Gerhard"


Document
Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges

Authors: Nikos Mavrakis, Effie Lai-Chong Law, and Hubert P. H. Shum

Published in: OASIcs, Volume 130, Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)


Abstract
Deep space missions face significant communication delays that disrupt both operational workflows and psychological support for crew members. Unlike low Earth orbit operations, delays ranging from several minutes to nearly an hour make real-time communication with mission control infeasible, forcing crews to act with greater independence under uncertain conditions. This position paper examines how human-in-the-loop AI, digital twins, and edge AI can be integrated to mitigate these delays while maintaining astronaut autonomy and engagement. We argue that human-in-the-loop AI enables decision-making processes that are responsive to local context while remaining adaptable to changing mission demands. Digital twins offer real-time simulation and predictive modelling capabilities, allowing astronauts to explore options and troubleshoot without waiting for ground input. Edge AI brings computation closer to data sources, enabling low-latency inference onboard spacecraft for time-critical decisions. These ideas are explored through two use cases: using deepfakes to support emotionally resonant communication with loved ones, and applying visual-language models for onboard fault diagnosis and adaptive task replanning. We conclude with reflections on system design challenges under constrained and high-stakes conditions.

Cite as

Nikos Mavrakis, Effie Lai-Chong Law, and Hubert P. H. Shum. Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges. In Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025). Open Access Series in Informatics (OASIcs), Volume 130, pp. 15:1-15:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mavrakis_et_al:OASIcs.SpaceCHI.2025.15,
  author =	{Mavrakis, Nikos and Law, Effie Lai-Chong and Shum, Hubert P. H.},
  title =	{{Integrating Human-In-The-Loop AI to Tackle Space Communication Delay Challenges}},
  booktitle =	{Advancing Human-Computer Interaction for Space Exploration (SpaceCHI 2025)},
  pages =	{15:1--15:16},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-384-3},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{130},
  editor =	{Bensch, Leonie and Nilsson, Tommy and Nisser, Martin and Pataranutaporn, Pat and Schmidt, Albrecht and Sumini, Valentina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.SpaceCHI.2025.15},
  URN =		{urn:nbn:de:0030-drops-240051},
  doi =		{10.4230/OASIcs.SpaceCHI.2025.15},
  annote =	{Keywords: Human-in-the-loop AI, communication delays, human spaceflight}
}
Document
Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)

Authors: James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter

Published in: Dagstuhl Manifestos, Volume 10, Issue 1 (2024)


Abstract
Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022,sser a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade.

Cite as

James P. Delgrande, Birte Glimm, Thomas Meyer, Miroslaw Truszczynski, and Frank Wolter. Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282). In Dagstuhl Manifestos, Volume 10, Issue 1, pp. 1-61, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{delgrande_et_al:DagMan.10.1.1,
  author =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  title =	{{Current and Future Challenges in Knowledge Representation and Reasoning (Dagstuhl Perspectives Workshop 22282)}},
  pages =	{1--61},
  journal =	{Dagstuhl Manifestos},
  ISSN =	{2193-2433},
  year =	{2024},
  volume =	{10},
  number =	{1},
  editor =	{Delgrande, James P. and Glimm, Birte and Meyer, Thomas and Truszczynski, Miroslaw and Wolter, Frank},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagMan.10.1.1},
  URN =		{urn:nbn:de:0030-drops-201403},
  doi =		{10.4230/DagMan.10.1.1},
  annote =	{Keywords: Knowledge representation and reasoning, Applications of logics, Declarative representations, Formal logic}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Cognitive Robotics (Dagstuhl Seminar 22391)

Authors: Fredrik Heintz, Gerhard Lakemeyer, and Sheila McIlraith

Published in: Dagstuhl Reports, Volume 12, Issue 9 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22391 on the topic of "Cognitive Robotics". Cognitive Robotics is concerned with endowing robots or software agents with higher level cognitive functions that involve reasoning, for example, about goals, perception, actions, the mental states of other agents, and collaborative task execution. The seminar is the latest event in a series of events on this topic that were initiated in 1998. With its roots in knowledge representation and reasoning, the program for this seminar was influenced by transformative advances in machine learning and deep learning, by recent advances in human-robot interactions, and by issues that arise in the development of trustworthy cognitive robotic systems. Reflective of this, the seminar featured sessions devoted to the following four themes: cognitive robotics and KR, verification of cognitive robots, human-robot interaction and robot ethics, and planning and learning. Each theme consisted of plenary talks, plenary discussions and working groups resulting in a research road map for the coming years. There was also a poster session where new or published results could be presented by the participants. The seminar was very successful and well received by the participants thanks to the excellent environment for exchanging ideas provided by Schloss Dagstuhl.

Cite as

Fredrik Heintz, Gerhard Lakemeyer, and Sheila McIlraith. Cognitive Robotics (Dagstuhl Seminar 22391). In Dagstuhl Reports, Volume 12, Issue 9, pp. 200-219, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{heintz_et_al:DagRep.12.9.200,
  author =	{Heintz, Fredrik and Lakemeyer, Gerhard and McIlraith, Sheila},
  title =	{{Cognitive Robotics (Dagstuhl Seminar 22391)}},
  pages =	{200--219},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{12},
  number =	{9},
  editor =	{Heintz, Fredrik and Lakemeyer, Gerhard and McIlraith, Sheila},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.9.200},
  URN =		{urn:nbn:de:0030-drops-178132},
  doi =		{10.4230/DagRep.12.9.200},
  annote =	{Keywords: Artificial Intelligence, Knowledge Representation and Reasoning, Cognitive Robotics, Verification, Human-robot Interaction, Robot Ethics, Machine Learning, Planning}
}
Document
Planning with epistemic goals (Dagstuhl Seminar 14032)

Authors: Thomas Agotnes, Gerhard Lakemeyer, Benedikt Löwe, and Bernhard Nebel

Published in: Dagstuhl Reports, Volume 4, Issue 1 (2014)


Abstract
This report documents the outcomes of Dagstuhl Seminar 14032 "Planning with epistemic goals". It brought together the communities of so far relatively separate research areas related to artificial intelligence and logic: automated planning on the one hand, and dynamic logics of interaction on the other. Significant overlap in motivation, theory and methods was discovered, and a good potential for cross fertilization became apparent.

Cite as

Thomas Agotnes, Gerhard Lakemeyer, Benedikt Löwe, and Bernhard Nebel. Planning with epistemic goals (Dagstuhl Seminar 14032). In Dagstuhl Reports, Volume 4, Issue 1, pp. 83-103, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2014)


Copy BibTex To Clipboard

@Article{agotnes_et_al:DagRep.4.1.83,
  author =	{Agotnes, Thomas and Lakemeyer, Gerhard and L\"{o}we, Benedikt and Nebel, Bernhard},
  title =	{{Planning with epistemic goals (Dagstuhl Seminar 14032)}},
  pages =	{83--103},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2014},
  volume =	{4},
  number =	{1},
  editor =	{Agotnes, Thomas and Lakemeyer, Gerhard and L\"{o}we, Benedikt and Nebel, Bernhard},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.4.1.83},
  URN =		{urn:nbn:de:0030-drops-45369},
  doi =		{10.4230/DagRep.4.1.83},
  annote =	{Keywords: planning, epistemic logic, modal logic}
}
Document
Robot Learning Constrained by Planning and Reasoning

Authors: Claude Sammut, Raymond Sheh, and Tak Fai Yi

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
Robot learning is usually done by trial-anderror or learning by example. Neither of these methods takes advantage of prior knowledge or of any ability to reason about actions. We describe two learning systems. In the first, we learn a model of a robot's actions. This is used in simulation to search for a sequence of actions that achieves the goal of traversing rough terrain. Further learning is used to compress the results of this search into a set of situation-action rules. In the second system, we assume the robot has some knowledge of the effects of actions and can use these to plan a sequence of actions. The qualitative states that result from the plan are used as constraints for trial-and-error learning. This approach greatly reduces the number of trials required by the learner. The method is demonstrated on the problem of a bipedal robot learning to walk.

Cite as

Claude Sammut, Raymond Sheh, and Tak Fai Yi. Robot Learning Constrained by Planning and Reasoning. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{sammut_et_al:DagSemProc.10081.14,
  author =	{Sammut, Claude and Sheh, Raymond and Yi, Tak Fai},
  title =	{{Robot Learning Constrained by Planning and Reasoning}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--5},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.14},
  URN =		{urn:nbn:de:0030-drops-28163},
  doi =		{10.4230/DagSemProc.10081.14},
  annote =	{Keywords: }
}
Document
10081 Abstracts Collection – Cognitive Robotics

Authors: Gerhard Lakemeyer, Hector J. Levesque, and Fiora Pirri

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
From 21.02. to 26.02.2010, the Dagstuhl Seminar 10081 ``Cognitive Robotics '' was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available.

Cite as

Gerhard Lakemeyer, Hector J. Levesque, and Fiora Pirri. 10081 Abstracts Collection – Cognitive Robotics. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{lakemeyer_et_al:DagSemProc.10081.1,
  author =	{Lakemeyer, Gerhard and Levesque, Hector J. and Pirri, Fiora},
  title =	{{10081 Abstracts Collection – Cognitive Robotics}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--19},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.1},
  URN =		{urn:nbn:de:0030-drops-27776},
  doi =		{10.4230/DagSemProc.10081.1},
  annote =	{Keywords: Cognitive roboticsm, Knowledge representation and reasoning, Machine learning, Cognitive science, Cognitive vision}
}
Document
A Constraint-Based Approach for Plan Management in Intelligent Environments

Authors: Federico Pecora and Marcello Cirillo

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
In this paper we address the problem of realizing a service-providing reasoning infrastructure for proactive human assistance in intelligent environments. We propose SAM, an architecture which leverages temporal knowledge represented as relations in Allen’s interval algebra and constraint-based temporal planning techniques. SAM seamlessly combines two key capabilities for contextualized service provision, namely human activity recognition and planning for controlling pervasive actuation devices.

Cite as

Federico Pecora and Marcello Cirillo. A Constraint-Based Approach for Plan Management in Intelligent Environments. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{pecora_et_al:DagSemProc.10081.2,
  author =	{Pecora, Federico and Cirillo, Marcello},
  title =	{{A Constraint-Based Approach for Plan Management in Intelligent Environments}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.2},
  URN =		{urn:nbn:de:0030-drops-26358},
  doi =		{10.4230/DagSemProc.10081.2},
  annote =	{Keywords: }
}
Document
Attending to Motion: an object-based approach

Authors: Anna Belardinelli

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
Visual attention is the biological mechanism allowing to turn mere sensing into conscious perception. In this process, object-based modulation of attention provides a further layer between low-level space/feature-based region selection and full object recognition. In this context, motion is a very powerful feature, naturally attracting our gaze and yielding rapid and effective shape distinction. Moving from a pixel-based account of attention to the definition of proto-objects as perceptual units labelled with a single saliency value, we present a framework for the selection of moving objects within cluttered scenes. Through segmentation of motion energy features, the system extracts coherently moving proto-objects defining them as consistently moving blobs and produces an object saliency map, by evaluating bottom-up distinctiveness of each object candidate with respect to its surroundings, in a center-surround fashion.

Cite as

Anna Belardinelli. Attending to Motion: an object-based approach. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-11, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{belardinelli:DagSemProc.10081.3,
  author =	{Belardinelli, Anna},
  title =	{{Attending to Motion: an object-based approach}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--11},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.3},
  URN =		{urn:nbn:de:0030-drops-26285},
  doi =		{10.4230/DagSemProc.10081.3},
  annote =	{Keywords: Visual attention model, motion selection, saliency map}
}
Document
Attentive Monitoring and Adaptive Control in Cognitive Robotics

Authors: E. Burattini, Alberto Finzi, S. Rossi, and Maria Carla Staffa

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
In this work, we present an attentional system for a robotic agent capable of adapting its emergent behavior to the surrounding environment and to its internal state. In this framework, the agent is endowed with simple attentional mechanisms regulating the frequencies of sensory readings and behavior activations. The process of changing the frequency of sensory readings is interpreted as an increase or decrease of attention towards relevant behaviors and particular aspects of the external environment. In this paper, we present our framework discussing several case studies considering incrementally complex behaviors and tasks.

Cite as

E. Burattini, Alberto Finzi, S. Rossi, and Maria Carla Staffa. Attentive Monitoring and Adaptive Control in Cognitive Robotics. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{burattini_et_al:DagSemProc.10081.4,
  author =	{Burattini, E. and Finzi, Alberto and Rossi, S. and Staffa, Maria Carla},
  title =	{{Attentive Monitoring and Adaptive Control in Cognitive Robotics}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.4},
  URN =		{urn:nbn:de:0030-drops-26322},
  doi =		{10.4230/DagSemProc.10081.4},
  annote =	{Keywords: Attention, behavior-based control, robotics}
}
Document
Cognitive Robotics

Authors: Hector J. Levesque and Gerhard Lakemeyer

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
This chapter is dedicated to the memory of Ray Reiter. It is also an overview of cognitive robotics, as we understand it to have been envisaged by him.1 Of course, nobody can control the use of a term or the direction of research. We apologize in advance to those who feel that other approaches to cognitive robotics and related problems are inadequately represented here.

Cite as

Hector J. Levesque and Gerhard Lakemeyer. Cognitive Robotics. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{levesque_et_al:DagSemProc.10081.5,
  author =	{Levesque, Hector J. and Lakemeyer, Gerhard},
  title =	{{Cognitive Robotics}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--19},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.5},
  URN =		{urn:nbn:de:0030-drops-26335},
  doi =		{10.4230/DagSemProc.10081.5},
  annote =	{Keywords: }
}
Document
Combining Planning and Motion Planning

Authors: Jaesik Choi and Eyal Amir

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
Robotic manipulation is important for real, physical world applications. General Purpose manipulation with a robot (eg. delivering dishes, opening doors with a key, etc.) is demanding. It is hard because (1) objects are constrained in position and orientation, (2) many non-spatial constraints interact (or interfere) with each other, and (3) robots may have multidegree of freedoms (DOF). In this paper we solve the problem of general purpose robotic manipulation using a novel combination of planning and motion planning. Our approach integrates motions of a robot with other (non-physical or external-to-robot) actions to achieve a goal while manipulating objects. It differs from previous, hierarchical approaches in that (a) it considers kinematic constraints in configuration space (C-space) together with constraints over object manipulations; (b) it automatically generates high-level (logical) actions from a C-space based motion planning algorithm; and (c) it decomposes a planning problem into small segments, thus reducing the complexity of planning.

Cite as

Jaesik Choi and Eyal Amir. Combining Planning and Motion Planning. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{choi_et_al:DagSemProc.10081.6,
  author =	{Choi, Jaesik and Amir, Eyal},
  title =	{{Combining Planning and Motion Planning}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.6},
  URN =		{urn:nbn:de:0030-drops-26294},
  doi =		{10.4230/DagSemProc.10081.6},
  annote =	{Keywords: Motion Planning, Factored Planning, Robotic arm}
}
Document
Coming up With Good Excuses: What to do When no Plan Can be Found

Authors: Moritz Göbeldecker, Thomas Keller, Patrick Eyerich, Michael Brenner, and Bernhard Nebel

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
can go wrong. First and foremost, an agent might fail to execute one of the planned actions for some reasons. Even more annoying, however, is a situation where the agent is incompetent, i.e., unable to come up with a plan. This might be due to the fact that there are principal reasons that prohibit a successful plan or simply because the task’s description is incomplete or incorrect. In either case, an explanation for such a failure would be very helpful. We will address this problem and provide a formalization of coming up with excuses for not being able to find a plan. Based on that, we will present an algorithm that is able to find excuses and demonstrate that such excuses can be found in practical settings in reasonable time.

Cite as

Moritz Göbeldecker, Thomas Keller, Patrick Eyerich, Michael Brenner, and Bernhard Nebel. Coming up With Good Excuses: What to do When no Plan Can be Found. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{gobeldecker_et_al:DagSemProc.10081.7,
  author =	{G\"{o}beldecker, Moritz and Keller, Thomas and Eyerich, Patrick and Brenner, Michael and Nebel, Bernhard},
  title =	{{Coming up With Good Excuses: What to do When no Plan Can be Found}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.7},
  URN =		{urn:nbn:de:0030-drops-27739},
  doi =		{10.4230/DagSemProc.10081.7},
  annote =	{Keywords: Planning, knowledge representation}
}
Document
Exploiting Spatial and Temporal Flexibility for Exploiting Spatial and Temporal Flexibility for Plan Execution of Hybrid, Under-actuated Systems

Authors: Andreas G. Hofmann and Brian C. Williams

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
Robotic devices, such as rovers and autonomous spacecraft, have been successfully controlled by plan execution systems that use plans with temporal flexibility to dynamically adapt to temporal disturbances. To date these execution systems apply to discrete systems that abstract away the detailed dynamic constraints of the controlled device. To control dynamic, under-actuated devices, such as agile bipedal walking machines, we extend this execution paradigm to incorporate detailed dynamic constraints. Building upon prior work on dispatchable plan execution, we introduce a novel approach to flexible plan execution of hybrid under-actuated systems that achieves robustness by exploiting spatial as well as temporal plan flexibility. To accomplish this, we first transform the high-dimensional system into a set of low dimensional, weakly coupled systems. Second, to coordinate these systems such that they achieve the plan in real-time, we compile a plan into a concurrent timed flow tube description. This description represents all feasible control trajectories and their temporal coordination constraints, such that each trajectory satisfies all plan and dynamic constraints. Finally, the problem of runtime plan dispatching is reduced to maintaining state trajectories in their associated flow tubes, while satisfying the coordination constraints. This is accomplished through an efficient local search algorithm that adjusts a small number of control parameters in real-time. The first step has been published previously; this paper focuses on the last two steps. The approach is validated on the execution of a set of bipedal walking plans, using a high fidelity simulation of a biped.

Cite as

Andreas G. Hofmann and Brian C. Williams. Exploiting Spatial and Temporal Flexibility for Exploiting Spatial and Temporal Flexibility for Plan Execution of Hybrid, Under-actuated Systems. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{hofmann_et_al:DagSemProc.10081.8,
  author =	{Hofmann, Andreas G. and Williams, Brian C.},
  title =	{{Exploiting Spatial and Temporal Flexibility for Exploiting Spatial and Temporal Flexibility for Plan Execution of Hybrid, Under-actuated Systems}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.8},
  URN =		{urn:nbn:de:0030-drops-27740},
  doi =		{10.4230/DagSemProc.10081.8},
  annote =	{Keywords: }
}
Document
golog.lua: Towards a Non-Prolog Implementation of Golog for Embedded Systems

Authors: Alexander Ferrein

Published in: Dagstuhl Seminar Proceedings, Volume 10081, Cognitive Robotics (2010)


Abstract
Among many approaches to address the high-level decision making problem for autonomous robots and agents, the robot program¬ming and plan language Golog follows a logic-based deliberative approach, and its successors were successfully deployed in a number of robotics applications over the past ten years. Usually, Golog interpreter are implemented in Prolog, which is not available for our target plat¬form, the bi-ped robot platform Nao. In this paper we sketch our first approach towards a prototype implementation of a Golog interpreter in the scripting language Lua. With the example of the elevator domain we discuss how the basic action theory is specified and how we implemented fluent regression in Lua. One possible advantage of the availability of a Non-Prolog implementation of Golog could be that Golog becomes avail¬able on a larger number of platforms, and also becomes more attractive for roboticists outside the Cognitive Robotics community.

Cite as

Alexander Ferrein. golog.lua: Towards a Non-Prolog Implementation of Golog for Embedded Systems. In Cognitive Robotics. Dagstuhl Seminar Proceedings, Volume 10081, pp. 1-15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2010)


Copy BibTex To Clipboard

@InProceedings{ferrein:DagSemProc.10081.9,
  author =	{Ferrein, Alexander},
  title =	{{golog.lua: Towards a Non-Prolog Implementation of Golog for Embedded Systems}},
  booktitle =	{Cognitive Robotics},
  pages =	{1--15},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2010},
  volume =	{10081},
  editor =	{Gerhard Lakemeyer and Hector J. Levesque and Fiora Pirri},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagSemProc.10081.9},
  URN =		{urn:nbn:de:0030-drops-26317},
  doi =		{10.4230/DagSemProc.10081.9},
  annote =	{Keywords: Action and change, high-level control, robotics}
}
  • Refine by Type
  • 22 Document/PDF
  • 2 Document/HTML

  • Refine by Publication Year
  • 1 2025
  • 2 2024
  • 1 2023
  • 1 2014
  • 17 2010

  • Refine by Author
  • 6 Lakemeyer, Gerhard
  • 4 Heintz, Fredrik
  • 2 Doherty, Patrick
  • 2 Kvarnström, Jonas
  • 2 Levesque, Hector J.
  • Show More...

  • Refine by Series/Journal
  • 1 OASIcs
  • 1 TGDK
  • 1 DagMan
  • 2 DagRep
  • 17 DagSemProc

  • Refine by Classification
  • 1 Computer systems organization → Robotics
  • 1 Computing methodologies → Artificial intelligence
  • 1 Computing methodologies → Cognitive robotics
  • 1 Computing methodologies → Description logics
  • 1 Computing methodologies → Knowledge representation and reasoning
  • Show More...

  • Refine by Keyword
  • 3 robotics
  • 2 Action and change
  • 2 Cognitive Robotics
  • 2 Knowledge representation and reasoning
  • 2 Machine Learning
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail