4 Search Results for "Lange, Julien"


Document
Artifact
Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)

Authors: Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida

Published in: DARTS, Volume 8, Issue 2, Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022)


Abstract
This artifact contains a version of MultiCrusty, a Rust library designed for writing and checking communication protocols following the Affine Multiparty Session Types theory introduced in our ECOOP'22 paper. MultiCrusty can work, and should be used, with Scribble [Yoshida et al., 2014] and kMC [{Julien} {Lange} and {Nobuko} {Yoshida}, 2019]: with the former tool, users can write correct global protocols and project them onto local Rust types defined within MultiCrusty, this approach is qualified as top-down; while the latter tool allows to check local Rust types written by users, this approach is qualified as bottom-up. Our artifact contains those three tools, their respective source files, as well as the different examples and benchmarks introduced in our paper, all together within a Docker image.

Cite as

Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact). In Special Issue of the 36th European Conference on Object-Oriented Programming (ECOOP 2022). Dagstuhl Artifacts Series (DARTS), Volume 8, Issue 2, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{lagaillardie_et_al:DARTS.8.2.9,
  author =	{Lagaillardie, Nicolas and Neykova, Rumyana and Yoshida, Nobuko},
  title =	{{Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types (Artifact)}},
  pages =	{9:1--9:16},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2022},
  volume =	{8},
  number =	{2},
  editor =	{Lagaillardie, Nicolas and Neykova, Rumyana and Yoshida, Nobuko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DARTS.8.2.9},
  URN =		{urn:nbn:de:0030-drops-162075},
  doi =		{10.4230/DARTS.8.2.9},
  annote =	{Keywords: Rust language, affine multiparty session types, failures, cancellation}
}
Document
Artifact
Multiparty Session Programming with Global Protocol Combinators (Artifact)

Authors: Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen

Published in: DARTS, Volume 6, Issue 2, Special Issue of the 34th European Conference on Object-Oriented Programming (ECOOP 2020)


Abstract
In the paper "Multiparty Session Programming with Global Protocol Combinators", we introduce a library, ocaml-mpst for programming with global combinators - a set of functions for writing and verifying multiparty protocols in OCaml. Local behaviours for all processes in a protocol are inferred at once from a global combinator. Our approach enables fully-static verification and implementation of the whole protocol, from the protocol specification to the process implementations, to happen in the same language. This artifact is the source code of ocaml-mpst, with all the examples and benchmarks discussed in the paper.

Cite as

Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty Session Programming with Global Protocol Combinators (Artifact). In Special Issue of the 34th European Conference on Object-Oriented Programming (ECOOP 2020). Dagstuhl Artifacts Series (DARTS), Volume 6, Issue 2, pp. 18:1-18:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Article{imai_et_al:DARTS.6.2.18,
  author =	{Imai, Keigo and Neykova, Rumyana and Yoshida, Nobuko and Yuen, Shoji},
  title =	{{Multiparty Session Programming with Global Protocol Combinators (Artifact)}},
  pages =	{18:1--18:2},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2020},
  volume =	{6},
  number =	{2},
  editor =	{Imai, Keigo and Neykova, Rumyana and Yoshida, Nobuko and Yuen, Shoji},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DARTS.6.2.18},
  URN =		{urn:nbn:de:0030-drops-132159},
  doi =		{10.4230/DARTS.6.2.18},
  annote =	{Keywords: Multiparty Session Types, Communication Protocol, Concurrent and Distributed Programming, OCaml}
}
Document
A Sound Algorithm for Asynchronous Session Subtyping

Authors: Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Session types, types for structuring communication between endpoints in distributed systems, are recently being integrated into mainstream programming languages. In practice, a very important notion for dealing with such types is that of subtyping, since it allows for typing larger classes of system, where a program has not precisely the expected behavior but a similar one. Unfortunately, recent work has shown that subtyping for session types in an asynchronous setting is undecidable. To cope with this negative result, the only approaches we are aware of either restrict the syntax of session types or limit communication (by considering forms of bounded asynchrony). Both approaches are too restrictive in practice, hence we proceed differently by presenting an algorithm for checking subtyping which is sound, but not complete (in some cases it terminates without returning a decisive verdict). The algorithm is based on a tree representation of the coinductive definition of asynchronous subtyping; this tree could be infinite, and the algorithm checks for the presence of finite witnesses of infinite successful subtrees. Furthermore, we provide a tool that implements our algorithm and we apply it to many examples that cannot be managed with the previous approaches.

Cite as

Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. A Sound Algorithm for Asynchronous Session Subtyping. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bravetti_et_al:LIPIcs.CONCUR.2019.38,
  author =	{Bravetti, Mario and Carbone, Marco and Lange, Julien and Yoshida, Nobuko and Zavattaro, Gianluigi},
  title =	{{A Sound Algorithm for Asynchronous Session Subtyping}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.38},
  URN =		{urn:nbn:de:0030-drops-109408},
  doi =		{10.4230/LIPIcs.CONCUR.2019.38},
  annote =	{Keywords: Session types, Concurrency, Subtyping, Algorithm}
}
Document
Meeting Deadlines Together

Authors: Laura Bocchi, Julien Lange, and Nobuko Yoshida

Published in: LIPIcs, Volume 42, 26th International Conference on Concurrency Theory (CONCUR 2015)


Abstract
This paper studies safety, progress, and non-zeno properties of Communicating Timed Automata (CTAs), which are timed automata (TA) extended with unbounded communication channels, and presents a procedure to build timed global specifications from systems of CTAs. We define safety and progress properties for CTAs by extending properties studied in communicating finite-state machines to the timed setting. We then study non-zenoness for CTAs; our aim is to prevent scenarios in which the participants have to execute an infinite number of actions in a finite amount of time. We propose sound and decidable conditions for these properties, and demonstrate the practicality of our approach with an implementation and experimental evaluations of our theory.

Cite as

Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting Deadlines Together. In 26th International Conference on Concurrency Theory (CONCUR 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 42, pp. 283-296, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)


Copy BibTex To Clipboard

@InProceedings{bocchi_et_al:LIPIcs.CONCUR.2015.283,
  author =	{Bocchi, Laura and Lange, Julien and Yoshida, Nobuko},
  title =	{{Meeting Deadlines Together}},
  booktitle =	{26th International Conference on Concurrency Theory (CONCUR 2015)},
  pages =	{283--296},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-91-0},
  ISSN =	{1868-8969},
  year =	{2015},
  volume =	{42},
  editor =	{Aceto, Luca and de Frutos Escrig, David},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2015.283},
  URN =		{urn:nbn:de:0030-drops-53838},
  doi =		{10.4230/LIPIcs.CONCUR.2015.283},
  annote =	{Keywords: timed automata, multiparty session types, global specification}
}
  • Refine by Author
  • 4 Yoshida, Nobuko
  • 2 Lange, Julien
  • 2 Neykova, Rumyana
  • 1 Bocchi, Laura
  • 1 Bravetti, Mario
  • Show More...

  • Refine by Classification
  • 1 Software and its engineering → Concurrent programming languages
  • 1 Software and its engineering → Concurrent programming structures
  • 1 Software and its engineering → Functional languages
  • 1 Software and its engineering → Polymorphism
  • 1 Software and its engineering → Software usability
  • Show More...

  • Refine by Keyword
  • 1 Algorithm
  • 1 Communication Protocol
  • 1 Concurrency
  • 1 Concurrent and Distributed Programming
  • 1 Multiparty Session Types
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2015
  • 1 2019
  • 1 2020
  • 1 2022

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail