20 Search Results for "Lefaucheux, Engel"


Document
Deciding Robust Instances of an Escape Problem for Dynamical Systems in Euclidean Space

Authors: Eike Neumann

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
We study the problem of deciding whether a point escapes a closed subset of ℝ^d under the iteration of a continuous map f : ℝ^d → ℝ^d in the bit-model of real computation. We give a sound partial decision method for this problem which is complete in the sense that its halting set contains the halting set of all sound partial decision methods for the problem. Equivalently, our decision method terminates on all problem instances whose answer is robust under all sufficiently small perturbations of the function. We further show that the halting set of our algorithm is dense in the set of all problem instances. While our algorithm applies to general continuous functions, we demonstrate that it also yields complete decision methods for much more rigid function families: affine linear systems and quadratic complex polynomials. In the latter case, completeness is subject to the density of hyperbolicity conjecture in complex dynamics. This in particular yields an alternative proof of Hertling’s (2004) conditional answer to a question raised by Penrose (1989) regarding the computability of the Mandelbrot set.

Cite as

Eike Neumann. Deciding Robust Instances of an Escape Problem for Dynamical Systems in Euclidean Space. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 79:1-79:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{neumann:LIPIcs.MFCS.2025.79,
  author =	{Neumann, Eike},
  title =	{{Deciding Robust Instances of an Escape Problem for Dynamical Systems in Euclidean Space}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{79:1--79:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.79},
  URN =		{urn:nbn:de:0030-drops-241866},
  doi =		{10.4230/LIPIcs.MFCS.2025.79},
  annote =	{Keywords: Dynamical Systems, Computability in Analysis, Non-Linear Functions}
}
Document
On Expansions of Monadic Second-Order Logic with Dynamical Predicates

Authors: Joris Nieuwveld and Joël Ouaknine

Published in: LIPIcs, Volume 345, 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)


Abstract
Expansions of the monadic second-order (MSO) theory of the structure ⟨ℕ;<⟩ have been a fertile and active area of research ever since the publication of the seminal papers of Büchi and Elgot & Rabin on the subject in the 1960s. In the present paper, we establish decidability of the MSO theory of ⟨ℕ;<,P⟩, where P ranges over a large class of unary "dynamical" predicates, i.e., sets of non-negative values assumed by certain integer linear recurrence sequences. One of our key technical tools is the novel concept of (effective) prodisjunctivity, which we expect may also find independent applications further afield.

Cite as

Joris Nieuwveld and Joël Ouaknine. On Expansions of Monadic Second-Order Logic with Dynamical Predicates. In 50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 345, pp. 80:1-80:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{nieuwveld_et_al:LIPIcs.MFCS.2025.80,
  author =	{Nieuwveld, Joris and Ouaknine, Jo\"{e}l},
  title =	{{On Expansions of Monadic Second-Order Logic with Dynamical Predicates}},
  booktitle =	{50th International Symposium on Mathematical Foundations of Computer Science (MFCS 2025)},
  pages =	{80:1--80:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-388-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{345},
  editor =	{Gawrychowski, Pawe{\l} and Mazowiecki, Filip and Skrzypczak, Micha{\l}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2025.80},
  URN =		{urn:nbn:de:0030-drops-241879},
  doi =		{10.4230/LIPIcs.MFCS.2025.80},
  annote =	{Keywords: Monadic second-order logic, linear recurrence sequences, decidability, Baker’s theorem}
}
Document
Resolving Nondeterminism by Chance

Authors: Soumyajit Paul, David Purser, Sven Schewe, Qiyi Tang, Patrick Totzke, and Di-De Yen

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
History-deterministic automata are those in which nondeterministic choices can be correctly resolved stepwise: there is a strategy to select a continuation of a run given the next input letter so that if the overall input word admits some accepting run, then the constructed run is also accepting. Motivated by checking qualitative properties in probabilistic verification, we consider the setting where the resolver strategy can randomise and only needs to succeed with lower-bounded probability. We study the expressiveness of such stochastically-resolvable automata as well as consider the decision questions of whether a given automaton has this property. In particular, we show that it is undecidable to check if a given NFA is λ-stochastically resolvable. This problem is decidable for finitely-ambiguous automata. We also present complexity upper and lower bounds for several well-studied classes of automata for which this problem remains decidable.

Cite as

Soumyajit Paul, David Purser, Sven Schewe, Qiyi Tang, Patrick Totzke, and Di-De Yen. Resolving Nondeterminism by Chance. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{paul_et_al:LIPIcs.CONCUR.2025.32,
  author =	{Paul, Soumyajit and Purser, David and Schewe, Sven and Tang, Qiyi and Totzke, Patrick and Yen, Di-De},
  title =	{{Resolving Nondeterminism by Chance}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.32},
  URN =		{urn:nbn:de:0030-drops-239822},
  doi =		{10.4230/LIPIcs.CONCUR.2025.32},
  annote =	{Keywords: History-determinism, finite automata, probabilistic automata}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The Ultimate Signs of Second-Order Holonomic Sequences

Authors: Fugen Hagihara and Akitoshi Kawamura

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
A real-valued sequence f = {f(n)}_{n ∈ ℕ} is said to be second-order holonomic if it satisfies a linear recurrence f (n + 2) = P (n) f (n + 1) + Q (n) f (n) for all sufficiently large n, where P, Q ∈ ℝ(x) are rational functions. We study the ultimate sign of such a sequence, i.e., the repeated pattern that the signs of f (n) follow for sufficiently large n. For each P, Q we determine all ultimate signs that f can have, and show how they partition the space of initial values of f. This completes the prior work by Neumann, Ouaknine and Worrell, who have settled some restricted cases. As a corollary, it follows that when P, Q have rational coefficients, f either has an ultimate sign of length 1, 2, 3, 4, 6, 8 or 12, or never falls into a repeated sign pattern. We also give a partial algorithm that finds the ultimate sign of f (or tells that there is none) in almost all cases.

Cite as

Fugen Hagihara and Akitoshi Kawamura. The Ultimate Signs of Second-Order Holonomic Sequences. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 159:1-159:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{hagihara_et_al:LIPIcs.ICALP.2025.159,
  author =	{Hagihara, Fugen and Kawamura, Akitoshi},
  title =	{{The Ultimate Signs of Second-Order Holonomic Sequences}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{159:1--159:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.159},
  URN =		{urn:nbn:de:0030-drops-235363},
  doi =		{10.4230/LIPIcs.ICALP.2025.159},
  annote =	{Keywords: Holonomic sequences, ultimate signs, Skolem Problem, Positivity Problem}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
Verification of Linear Dynamical Systems via O-Minimality of the Real Numbers

Authors: Toghrul Karimov

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
A discrete-time linear dynamical system (LDS) is given by an update matrix M ∈ ℝ^{d× d}, and has the trajectories ⟨s, Ms, M²s, …⟩ for s ∈ ℝ^d. Reachability-type decision problems of linear dynamical systems, most notably the Skolem Problem, lie at the forefront of decidability: typically, sound and complete algorithms are known only in low dimensions, and these rely on sophisticated tools from number theory and Diophantine approximation. Recently, however, o-minimality has emerged as a counterpoint to these number-theoretic tools that allows us to decide certain modifications of the classical problems of LDS without any dimension restrictions. In this paper, we first introduce the Decomposition Method, a framework that captures all applications of o-minimality to decision problems of LDS that are currently known to us. We then use the Decomposition Method to show decidability of the Robust Safety Problem (restricted to bounded initial sets) in arbitrary dimension: given a matrix M, a bounded semialgebraic set S of initial points, and a semialgebraic set T of unsafe points, it is decidable whether there exists ε > 0 such that all orbits that begin in the ε-ball around S avoid T.

Cite as

Toghrul Karimov. Verification of Linear Dynamical Systems via O-Minimality of the Real Numbers. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 163:1-163:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{karimov:LIPIcs.ICALP.2025.163,
  author =	{Karimov, Toghrul},
  title =	{{Verification of Linear Dynamical Systems via O-Minimality of the Real Numbers}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{163:1--163:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.163},
  URN =		{urn:nbn:de:0030-drops-235401},
  doi =		{10.4230/LIPIcs.ICALP.2025.163},
  annote =	{Keywords: Linear dynamical systems, reachability problems, o-minimality}
}
Document
Boundedness of Cost Register Automata over the Integer Min-Plus Semiring

Authors: Andrei Draghici, Radosław Piórkowski, and Andrew Ryzhikov

Published in: LIPIcs, Volume 326, 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)


Abstract
Cost register automata (CRAs) are deterministic automata with registers taking values from a fixed semiring. A CRA computes a function from words to values from this semiring. CRAs are tightly related to well-studied weighted automata. Given a CRA, the boundedness problem asks if there exists a natural number N such that for every word, the value of the CRA on this word does not exceed N. This problem is known to be undecidable for the class of linear CRAs over the integer min-plus semiring (ℤ∪{+∞}, min, +), but very little is known about its subclasses. In this paper, we study boundedness of copyless linear CRAs with resets over the integer min-plus semiring. We show that it is decidable for such CRAs with at most two registers. More specifically, we show that it is, respectively, NL-complete and in coNP if the numbers in the input are presented in unary and binary. We also provide complexity results for two classes with an arbitrary number of registers. Namely, we show that for CRAs that use the minimum operation only in the output function, boundedness is PSPACE-complete if transferring values to other registers is allowed, and is coNP-complete otherwise. Finally, for each f_i in the hierarchy of fast-growing functions, we provide a stateless CRA with i registers whose output exceeds N only on runs longer than f_i(N). Our construction yields a non-elementary lower bound already for four registers.

Cite as

Andrei Draghici, Radosław Piórkowski, and Andrew Ryzhikov. Boundedness of Cost Register Automata over the Integer Min-Plus Semiring. In 33rd EACSL Annual Conference on Computer Science Logic (CSL 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 326, pp. 20:1-20:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{draghici_et_al:LIPIcs.CSL.2025.20,
  author =	{Draghici, Andrei and Pi\'{o}rkowski, Rados{\l}aw and Ryzhikov, Andrew},
  title =	{{Boundedness of Cost Register Automata over the Integer Min-Plus Semiring}},
  booktitle =	{33rd EACSL Annual Conference on Computer Science Logic (CSL 2025)},
  pages =	{20:1--20:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-362-1},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{326},
  editor =	{Endrullis, J\"{o}rg and Schmitz, Sylvain},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CSL.2025.20},
  URN =		{urn:nbn:de:0030-drops-227775},
  doi =		{10.4230/LIPIcs.CSL.2025.20},
  annote =	{Keywords: cost register automata, boundedness, decidability}
}
Document
Execution-Time Opacity Problems in One-Clock Parametric Timed Automata

Authors: Étienne André, Johan Arcile, and Engel Lefaucheux

Published in: LIPIcs, Volume 323, 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024)


Abstract
Parametric timed automata (PTAs) extend the concept of timed automata, by allowing timing delays not only specified by concrete values but also by parameters, allowing the analysis of systems with uncertainty regarding timing behaviors. The full execution-time opacity is defined as the problem in which an attacker must never be able to deduce whether some private location was visited, by only observing the execution time. The problem of full ET-opacity emptiness (i.e., the emptiness over the parameter valuations for which full execution-time opacity is satisfied) is known to be undecidable for general PTAs. We therefore focus here on one-clock PTAs with integer-valued parameters over dense time. We show that the full ET-opacity emptiness is undecidable for a sufficiently large number of parameters, but is decidable for a single parameter, and exact synthesis can be effectively achieved. Our proofs rely on a novel construction as well as on variants of Presburger arithmetics. We finally prove an additional decidability result on an existential variant of execution-time opacity.

Cite as

Étienne André, Johan Arcile, and Engel Lefaucheux. Execution-Time Opacity Problems in One-Clock Parametric Timed Automata. In 44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 323, pp. 3:1-3:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{andre_et_al:LIPIcs.FSTTCS.2024.3,
  author =	{Andr\'{e}, \'{E}tienne and Arcile, Johan and Lefaucheux, Engel},
  title =	{{Execution-Time Opacity Problems in One-Clock Parametric Timed Automata}},
  booktitle =	{44th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2024)},
  pages =	{3:1--3:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-355-3},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{323},
  editor =	{Barman, Siddharth and Lasota, S{\l}awomir},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2024.3},
  URN =		{urn:nbn:de:0030-drops-221923},
  doi =		{10.4230/LIPIcs.FSTTCS.2024.3},
  annote =	{Keywords: Timed opacity, Parametric timed automata, Presburger arithmetic}
}
Document
Track B: Automata, Logic, Semantics, and Theory of Programming
The 2-Dimensional Constraint Loop Problem Is Decidable

Authors: Quentin Guilmant, Engel Lefaucheux, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 297, 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)


Abstract
A linear constraint loop is specified by a system of linear inequalities that define the relation between the values of the program variables before and after a single execution of the loop body. In this paper we consider the problem of determining whether such a loop terminates, i.e., whether all maximal executions are finite, regardless of how the loop is initialised and how the non-determinism in the loop body is resolved. We focus on the variant of the termination problem in which the loop variables range over ℝ. Our main result is that the termination problem is decidable over the reals in dimension 2. A more abstract formulation of our main result is that it is decidable whether a binary relation on ℝ² that is given as a conjunction of linear constraints is well-founded.

Cite as

Quentin Guilmant, Engel Lefaucheux, Joël Ouaknine, and James Worrell. The 2-Dimensional Constraint Loop Problem Is Decidable. In 51st International Colloquium on Automata, Languages, and Programming (ICALP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 297, pp. 140:1-140:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{guilmant_et_al:LIPIcs.ICALP.2024.140,
  author =	{Guilmant, Quentin and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{The 2-Dimensional Constraint Loop Problem Is Decidable}},
  booktitle =	{51st International Colloquium on Automata, Languages, and Programming (ICALP 2024)},
  pages =	{140:1--140:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-322-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{297},
  editor =	{Bringmann, Karl and Grohe, Martin and Puppis, Gabriele and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.140},
  URN =		{urn:nbn:de:0030-drops-202831},
  doi =		{10.4230/LIPIcs.ICALP.2024.140},
  annote =	{Keywords: Linear Constraints Loops, Minkowski-Weyl, Convex Sets, Asymptotic Expansions}
}
Document
Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 243, 33rd International Conference on Concurrency Theory (CONCUR 2022)


Abstract
We consider the model-checking problem for parametric probabilistic dynamical systems, formalised as Markov chains with parametric transition functions, analysed under the distribution-transformer semantics (in which a Markov chain induces a sequence of distributions over states). We examine the problem of synthesising the set of parameter valuations of a parametric Markov chain such that the orbits of induced state distributions satisfy a prefix-independent ω-regular property. Our main result establishes that in all non-degenerate instances, the feasible set of parameters is (up to a null set) semialgebraic, and can moreover be computed (in polynomial time assuming that the ambient dimension, corresponding to the number of states of the Markov chain, is fixed).

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications. In 33rd International Conference on Concurrency Theory (CONCUR 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 243, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2022.10,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{Parameter Synthesis for Parametric Probabilistic Dynamical Systems and Prefix-Independent Specifications}},
  booktitle =	{33rd International Conference on Concurrency Theory (CONCUR 2022)},
  pages =	{10:1--10:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-246-4},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{243},
  editor =	{Klin, Bartek and Lasota, S{\l}awomir and Muscholl, Anca},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2022.10},
  URN =		{urn:nbn:de:0030-drops-170732},
  doi =		{10.4230/LIPIcs.CONCUR.2022.10},
  annote =	{Keywords: Model checking, parametric Markov chains, distribution transformer semantics}
}
Document
Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set

Authors: Julian D'Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)


Abstract
We study the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets. We establish a uniform upper bound on the number of iterations it takes for every orbit of a rational matrix to escape a compact semialgebraic set defined over rational data. Our bound is doubly exponential in the ambient dimension, singly exponential in the degrees of the polynomials used to define the semialgebraic set, and singly exponential in the bitsize of the coefficients of these polynomials and the bitsize of the matrix entries. We show that our bound is tight by providing a matching lower bound.

Cite as

Julian D'Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell. Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 39:1-39:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2022.39,
  author =	{D'Costa, Julian and Lefaucheux, Engel and Neumann, Eike and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{Bounding the Escape Time of a Linear Dynamical System over a Compact Semialgebraic Set}},
  booktitle =	{47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)},
  pages =	{39:1--39:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-256-3},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{241},
  editor =	{Szeider, Stefan and Ganian, Robert and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.39},
  URN =		{urn:nbn:de:0030-drops-168374},
  doi =		{10.4230/LIPIcs.MFCS.2022.39},
  annote =	{Keywords: Discrete linear dynamical systems, Program termination, Compact semialgebraic sets, Uniform termination bounds}
}
Document
On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets

Authors: Julian D'Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
We study the computational complexity of the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets, or equivalently the Termination Problem for affine loops with compact semialgebraic guard sets. Consider the fragment of the theory of the reals consisting of negation-free ∃ ∀-sentences without strict inequalities. We derive several equivalent characterisations of the associated complexity class which demonstrate its robustness and illustrate its expressive power. We show that the Compact Escape Problem is complete for this class.

Cite as

Julian D'Costa, Engel Lefaucheux, Eike Neumann, Joël Ouaknine, and James Worrell. On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 33:1-33:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{dcosta_et_al:LIPIcs.MFCS.2021.33,
  author =	{D'Costa, Julian and Lefaucheux, Engel and Neumann, Eike and Ouaknine, Jo\"{e}l and Worrell, James},
  title =	{{On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{33:1--33:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.33},
  URN =		{urn:nbn:de:0030-drops-144734},
  doi =		{10.4230/LIPIcs.MFCS.2021.33},
  annote =	{Keywords: Discrete linear dynamical systems, Program termination, Compact semialgebraic sets, Theory of the reals}
}
Document
On Positivity and Minimality for Second-Order Holonomic Sequences

Authors: George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 202, 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)


Abstract
An infinite sequence ⟨u_n⟩_n of real numbers is holonomic (also known as P-recursive or P-finite) if it satisfies a linear recurrence relation with polynomial coefficients. Such a sequence is said to be positive if each u_n ≥ 0, and minimal if, given any other linearly independent sequence ⟨v_n⟩_n satisfying the same recurrence relation, the ratio u_n/v_n → 0 as n → ∞. In this paper we give a Turing reduction of the problem of deciding positivity of second-order holonomic sequences to that of deciding minimality of such sequences. More specifically, we give a procedure for determining positivity of second-order holonomic sequences that terminates in all but an exceptional number of cases, and we show that in these exceptional cases positivity can be determined using an oracle for deciding minimality.

Cite as

George Kenison, Oleksiy Klurman, Engel Lefaucheux, Florian Luca, Pieter Moree, Joël Ouaknine, Markus A. Whiteland, and James Worrell. On Positivity and Minimality for Second-Order Holonomic Sequences. In 46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 202, pp. 67:1-67:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{kenison_et_al:LIPIcs.MFCS.2021.67,
  author =	{Kenison, George and Klurman, Oleksiy and Lefaucheux, Engel and Luca, Florian and Moree, Pieter and Ouaknine, Jo\"{e}l and Whiteland, Markus A. and Worrell, James},
  title =	{{On Positivity and Minimality for Second-Order Holonomic Sequences}},
  booktitle =	{46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021)},
  pages =	{67:1--67:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-201-3},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{202},
  editor =	{Bonchi, Filippo and Puglisi, Simon J.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2021.67},
  URN =		{urn:nbn:de:0030-drops-145071},
  doi =		{10.4230/LIPIcs.MFCS.2021.67},
  annote =	{Keywords: Holonomic sequences, Minimal solutions, Positivity Problem}
}
Document
The Orbit Problem for Parametric Linear Dynamical Systems

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell

Published in: LIPIcs, Volume 203, 32nd International Conference on Concurrency Theory (CONCUR 2021)


Abstract
We study a parametric version of the Kannan-Lipton Orbit Problem for linear dynamical systems. We show decidability in the case of one parameter and Skolem-hardness with two or more parameters. More precisely, consider a d-dimensional square matrix M whose entries are algebraic functions in one or more real variables. Given initial and target vectors u,v ∈ ℚ^d, the parametric point-to-point orbit problem asks whether there exist values of the parameters giving rise to a concrete matrix N ∈ ℝ^{d× d}, and a positive integer n ∈ ℕ, such that N^{n} u = v. We show decidability for the case in which M depends only upon a single parameter, and we exhibit a reduction from the well-known Skolem Problem for linear recurrence sequences, suggesting intractability in the case of two or more parameters.

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Florian Luca, Joël Ouaknine, David Purser, Markus A. Whiteland, and James Worrell. The Orbit Problem for Parametric Linear Dynamical Systems. In 32nd International Conference on Concurrency Theory (CONCUR 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 203, pp. 28:1-28:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.CONCUR.2021.28,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Luca, Florian and Ouaknine, Jo\"{e}l and Purser, David and Whiteland, Markus A. and Worrell, James},
  title =	{{The Orbit Problem for Parametric Linear Dynamical Systems}},
  booktitle =	{32nd International Conference on Concurrency Theory (CONCUR 2021)},
  pages =	{28:1--28:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-203-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{203},
  editor =	{Haddad, Serge and Varacca, Daniele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2021.28},
  URN =		{urn:nbn:de:0030-drops-144053},
  doi =		{10.4230/LIPIcs.CONCUR.2021.28},
  annote =	{Keywords: Orbit problem, parametric, linear dynamical systems}
}
Document
Reachability in Dynamical Systems with Rounding

Authors: Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, Amaury Pouly, David Purser, and Markus A. Whiteland

Published in: LIPIcs, Volume 182, 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)


Abstract
We consider reachability in dynamical systems with discrete linear updates, but with fixed digital precision, i.e., such that values of the system are rounded at each step. Given a matrix M ∈ ℚ^{d × d}, an initial vector x ∈ ℚ^{d}, a granularity g ∈ ℚ_+ and a rounding operation [⋅] projecting a vector of ℚ^{d} onto another vector whose every entry is a multiple of g, we are interested in the behaviour of the orbit 𝒪 = ⟨[x], [M[x]],[M[M[x]]],… ⟩, i.e., the trajectory of a linear dynamical system in which the state is rounded after each step. For arbitrary rounding functions with bounded effect, we show that the complexity of deciding point-to-point reachability - whether a given target y ∈ ℚ^{d} belongs to 𝒪 - is PSPACE-complete for hyperbolic systems (when no eigenvalue of M has modulus one). We also establish decidability without any restrictions on eigenvalues for several natural classes of rounding functions.

Cite as

Christel Baier, Florian Funke, Simon Jantsch, Toghrul Karimov, Engel Lefaucheux, Joël Ouaknine, Amaury Pouly, David Purser, and Markus A. Whiteland. Reachability in Dynamical Systems with Rounding. In 40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 182, pp. 36:1-36:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{baier_et_al:LIPIcs.FSTTCS.2020.36,
  author =	{Baier, Christel and Funke, Florian and Jantsch, Simon and Karimov, Toghrul and Lefaucheux, Engel and Ouaknine, Jo\"{e}l and Pouly, Amaury and Purser, David and Whiteland, Markus A.},
  title =	{{Reachability in Dynamical Systems with Rounding}},
  booktitle =	{40th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2020)},
  pages =	{36:1--36:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-174-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{182},
  editor =	{Saxena, Nitin and Simon, Sunil},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2020.36},
  URN =		{urn:nbn:de:0030-drops-132778},
  doi =		{10.4230/LIPIcs.FSTTCS.2020.36},
  annote =	{Keywords: dynamical systems, rounding, reachability}
}
Document
The Big-O Problem for Labelled Markov Chains and Weighted Automata

Authors: Dmitry Chistikov, Stefan Kiefer, Andrzej S. Murawski, and David Purser

Published in: LIPIcs, Volume 171, 31st International Conference on Concurrency Theory (CONCUR 2020)


Abstract
Given two weighted automata, we consider the problem of whether one is big-O of the other, i.e., if the weight of every finite word in the first is not greater than some constant multiple of the weight in the second. We show that the problem is undecidable, even for the instantiation of weighted automata as labelled Markov chains. Moreover, even when it is known that one weighted automaton is big-O of another, the problem of finding or approximating the associated constant is also undecidable. Our positive results show that the big-O problem is polynomial-time solvable for unambiguous automata, coNP-complete for unlabelled weighted automata (i.e., when the alphabet is a single character) and decidable, subject to Schanuel’s conjecture, when the language is bounded (i.e., a subset of w_1^* … w_m^* for some finite words w_1,… ,w_m). On labelled Markov chains, the problem can be restated as a ratio total variation distance, which, instead of finding the maximum difference between the probabilities of any two events, finds the maximum ratio between the probabilities of any two events. The problem is related to ε-differential privacy, for which the optimal constant of the big-O notation is exactly exp(ε).

Cite as

Dmitry Chistikov, Stefan Kiefer, Andrzej S. Murawski, and David Purser. The Big-O Problem for Labelled Markov Chains and Weighted Automata. In 31st International Conference on Concurrency Theory (CONCUR 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 171, pp. 41:1-41:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{chistikov_et_al:LIPIcs.CONCUR.2020.41,
  author =	{Chistikov, Dmitry and Kiefer, Stefan and Murawski, Andrzej S. and Purser, David},
  title =	{{The Big-O Problem for Labelled Markov Chains and Weighted Automata}},
  booktitle =	{31st International Conference on Concurrency Theory (CONCUR 2020)},
  pages =	{41:1--41:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-160-3},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{171},
  editor =	{Konnov, Igor and Kov\'{a}cs, Laura},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2020.41},
  URN =		{urn:nbn:de:0030-drops-128534},
  doi =		{10.4230/LIPIcs.CONCUR.2020.41},
  annote =	{Keywords: weighted automata, labelled Markov chains, probabilistic systems}
}
  • Refine by Type
  • 20 Document/PDF
  • 6 Document/HTML

  • Refine by Publication Year
  • 6 2025
  • 2 2024
  • 2 2022
  • 3 2021
  • 3 2020
  • Show More...

  • Refine by Author
  • 13 Lefaucheux, Engel
  • 9 Ouaknine, Joël
  • 7 Worrell, James
  • 5 Purser, David
  • 4 Karimov, Toghrul
  • Show More...

  • Refine by Series/Journal
  • 20 LIPIcs

  • Refine by Classification
  • 7 Theory of computation → Logic and verification
  • 2 Mathematics of computing → Discrete mathematics
  • 2 Theory of computation
  • 2 Theory of computation → Formal languages and automata theory
  • 2 Theory of computation → Timed and hybrid models
  • Show More...

  • Refine by Keyword
  • 2 Compact semialgebraic sets
  • 2 Discrete linear dynamical systems
  • 2 Holonomic sequences
  • 2 Partially observed systems
  • 2 Positivity Problem
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail