11 Search Results for "Mosheiff, Jonathan"


Document
RANDOM
List-Recovery of Random Linear Codes over Small Fields

Authors: Dean Doron, Jonathan Mosheiff, Nicolas Resch, and João Ribeiro

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We study list-recoverability of random linear codes over small fields, both from errors and from erasures. We consider codes of rate ε-close to capacity, and aim to bound the dependence of the output list size L on ε, the input list size 𝓁, and the alphabet size q. Prior to our work, the best upper bound was L = q^O(𝓁/ε) (Zyablov and Pinsker, Prob. Per. Inf. 1981). Previous work has identified cases in which linear codes provably perform worse than non-linear codes with respect to list-recovery. While there exist non-linear codes that achieve L = O(𝓁/ε), we know that L ≥ 𝓁^Ω(1/ε) is necessary for list recovery from erasures over fields of small characteristic, and for list recovery from errors over large alphabets. We show that in other relevant regimes there is no significant price to pay for linearity, in the sense that we get the correct dependence on the gap-to-capacity ε and go beyond the Zyablov-Pinsker bound for the first time. Specifically, when q is constant and ε approaches zero, - For list-recovery from erasures over prime fields, we show that L ≤ C₁/ε. By prior work, such a result cannot be obtained for low-characteristic fields. - For list-recovery from errors over arbitrary fields, we prove that L ≤ C₂/ε. Above, C₁ and C₂ depend on the decoding radius, input list size, and field size. We provide concrete bounds on the constants above, and the upper bounds on L improve upon the Zyablov-Pinsker bound whenever q ≤ 2^{(1/ε)^c} for some small universal constant c > 0.

Cite as

Dean Doron, Jonathan Mosheiff, Nicolas Resch, and João Ribeiro. List-Recovery of Random Linear Codes over Small Fields. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 57:1-57:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2025.57,
  author =	{Doron, Dean and Mosheiff, Jonathan and Resch, Nicolas and Ribeiro, Jo\~{a}o},
  title =	{{List-Recovery of Random Linear Codes over Small Fields}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{57:1--57:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.57},
  URN =		{urn:nbn:de:0030-drops-244239},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.57},
  annote =	{Keywords: List recovery, random linear codes}
}
Document
RANDOM
Near-Optimal List-Recovery of Linear Code Families

Authors: Ray Li and Nikhil Shagrithaya

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We prove several results on linear codes achieving list-recovery capacity. We show that random linear codes achieve list-recovery capacity with constant output list size (independent of the alphabet size and length). That is, over alphabets of size at least 𝓁^Ω(1/ε), random linear codes of rate R are (1-R-ε, 𝓁, (𝓁/ε)^O(𝓁/ε))-list-recoverable for all R ∈ (0,1) and 𝓁. Together with a result of Levi, Mosheiff, and Shagrithaya, this implies that randomly punctured Reed-Solomon codes also achieve list-recovery capacity. We also prove that our output list size is near-optimal among all linear codes: all (1-R-ε, 𝓁, L)-list-recoverable linear codes must have L ≥ 𝓁^{Ω(R/ε)}. Our simple upper bound combines the Zyablov-Pinsker argument with recent bounds from Kopparty, Ron-Zewi, Saraf, Wootters, and Tamo on the maximum intersection of a "list-recovery ball" and a low-dimensional subspace with large distance. Our lower bound is inspired by a recent lower bound of Chen and Zhang.

Cite as

Ray Li and Nikhil Shagrithaya. Near-Optimal List-Recovery of Linear Code Families. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 53:1-53:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.APPROX/RANDOM.2025.53,
  author =	{Li, Ray and Shagrithaya, Nikhil},
  title =	{{Near-Optimal List-Recovery of Linear Code Families}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{53:1--53:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.53},
  URN =		{urn:nbn:de:0030-drops-244199},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.53},
  annote =	{Keywords: Error-Correcting Codes, Randomness, List-Recovery, Reed-Solomon Codes, Random Linear Codes}
}
Document
RANDOM
Low-Degree Polynomials Are Good Extractors

Authors: Omar Alrabiah, Jesse Goodman, Jonathan Mosheiff, and João Ribeiro

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
We prove that random low-degree polynomials (over 𝔽₂) are unbiased, in an extremely general sense. That is, we show that random low-degree polynomials are good randomness extractors for a wide class of distributions. Prior to our work, such results were only known for the small families of (1) uniform sources, (2) affine sources, and (3) local sources. We significantly generalize these results, and prove the following. 1) Low-degree polynomials extract from small families. We show that a random low-degree polynomial is a good low-error extractor for any small family of sources. In particular, we improve the positive result of Alrabiah, Chattopadhyay, Goodman, Li, and Ribeiro (ICALP 2022) for local sources, and give new results for polynomial and variety sources via a single unified approach. 2) Low-degree polynomials extract from sumset sources. We show that a random low-degree polynomial is a good extractor for sumset sources, which are the most general large family of sources (capturing independent sources, interleaved sources, small-space sources, and more). Formally, for any even d, we show that a random degree d polynomial is an ε-error extractor for n-bit sumset sources with min-entropy k = O(d(n/ε²)^{2/d}). This is nearly tight in the polynomial error regime. Our results on sumset extractors imply new complexity separations for linear ROBPs, and the tools that go into its proof may be of independent interest. The two main tools we use are a new structural result on sumset-punctured Reed-Muller codes, paired with a novel type of reduction between extractors. Using the new structural result, we obtain new limits on the power of sumset extractors, strengthening and generalizing the impossibility results of Chattopadhyay, Goodman, and Gurumukhani (ITCS 2024).

Cite as

Omar Alrabiah, Jesse Goodman, Jonathan Mosheiff, and João Ribeiro. Low-Degree Polynomials Are Good Extractors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 38:1-38:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{alrabiah_et_al:LIPIcs.APPROX/RANDOM.2025.38,
  author =	{Alrabiah, Omar and Goodman, Jesse and Mosheiff, Jonathan and Ribeiro, Jo\~{a}o},
  title =	{{Low-Degree Polynomials Are Good Extractors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{38:1--38:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.38},
  URN =		{urn:nbn:de:0030-drops-244048},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.38},
  annote =	{Keywords: randomness extractors, low-degree polynomials, local sources, polynomial sources, variety sources, sumset sources, sumset extractors, Reed-Muller codes, lower bounds}
}
Document
List Decoding Quotient Reed-Muller Codes

Authors: Omri Gotlib, Tali Kaufman, and Shachar Lovett

Published in: LIPIcs, Volume 339, 40th Computational Complexity Conference (CCC 2025)


Abstract
Reed-Muller codes consist of evaluations of n-variate polynomials over a finite field 𝔽 with degree at most d. Much like every linear code, Reed-Muller codes can be characterized by constraints, where a codeword is valid if and only if it satisfies all degree-d constraints. For a subset X̃ ⊆ 𝔽ⁿ, we introduce the notion of X̃-quotient Reed-Muller code. A function F:X̃ → 𝔽 is a valid codeword in the quotient code if it satisfies all the constraints of degree-d polynomials lying in X̃. This gives rise to a novel phenomenon: a quotient codeword may have many extensions to original codewords. This weakens the connection between original codewords and quotient codewords which introduces a richer range of behaviors along with substantial new challenges. Our goal is to answer the following question: what properties of X̃ will imply that the quotient code inherits its distance and list-decoding radius from the original code? We address this question using techniques developed by Bhowmick and Lovett [Abhishek Bhowmick and Shachar Lovett, 2014], identifying key properties of 𝔽ⁿ used in their proof and extending them to general subsets X̃ ⊆ 𝔽ⁿ. By introducing a new tool, we overcome the novel challenge in analyzing the quotient code that arises from the weak connection between original and quotient codewords. This enables us to apply known results from additive combinatorics and algebraic geometry [David Kazhdan and Tamar Ziegler, 2018; David Kazhdan and Tamar Ziegler, 2019; Amichai Lampert and Tamar Ziegler, 2021] to show that when X̃ is a high rank variety, X̃-quotient Reed-Muller codes inherit the distance and list-decoding parameters from the original Reed-Muller codes.

Cite as

Omri Gotlib, Tali Kaufman, and Shachar Lovett. List Decoding Quotient Reed-Muller Codes. In 40th Computational Complexity Conference (CCC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 339, pp. 1:1-1:44, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gotlib_et_al:LIPIcs.CCC.2025.1,
  author =	{Gotlib, Omri and Kaufman, Tali and Lovett, Shachar},
  title =	{{List Decoding Quotient Reed-Muller Codes}},
  booktitle =	{40th Computational Complexity Conference (CCC 2025)},
  pages =	{1:1--1:44},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-379-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{339},
  editor =	{Srinivasan, Srikanth},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2025.1},
  URN =		{urn:nbn:de:0030-drops-236957},
  doi =		{10.4230/LIPIcs.CCC.2025.1},
  annote =	{Keywords: Reed-Muller Codes, Quotient Code, Quotient Reed-Muller Code, List Decoding, High Rank Variety, High-Order Fourier Analysis, Error-Correcting Codes}
}
Document
List Decoding Bounds for Binary Codes with Noiseless Feedback

Authors: Meghal Gupta and Rachel Yun Zhang

Published in: LIPIcs, Volume 325, 16th Innovations in Theoretical Computer Science Conference (ITCS 2025)


Abstract
In an error-correcting code, a sender encodes a message x ∈ {0, 1}^k such that it is still decodable by a receiver on the other end of a noisy channel. In the setting of error-correcting codes with feedback, after sending each bit, the sender learns what was received at the other end and can tailor future messages accordingly. While the unique decoding radius of feedback codes has long been known to be 1/3, the list decoding capabilities of feedback codes is not well understood. In this paper, we provide the first nontrivial bounds on the list decoding radius of feedback codes for lists of size 𝓁. For 𝓁 = 2, we fully determine the 2-list decoding radius to be 3/7. For larger values of 𝓁, we show an upper bound of 1/2 - 1/{2^(𝓁+2) - 2}, and show that the same techniques for the 𝓁 = 2 case cannot match this upper bound in general.

Cite as

Meghal Gupta and Rachel Yun Zhang. List Decoding Bounds for Binary Codes with Noiseless Feedback. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 60:1-60:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{gupta_et_al:LIPIcs.ITCS.2025.60,
  author =	{Gupta, Meghal and Zhang, Rachel Yun},
  title =	{{List Decoding Bounds for Binary Codes with Noiseless Feedback}},
  booktitle =	{16th Innovations in Theoretical Computer Science Conference (ITCS 2025)},
  pages =	{60:1--60:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-361-4},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{325},
  editor =	{Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2025.60},
  URN =		{urn:nbn:de:0030-drops-226880},
  doi =		{10.4230/LIPIcs.ITCS.2025.60},
  annote =	{Keywords: error-correcting codes, feedback, list decoding}
}
Document
RANDOM
Hilbert Functions and Low-Degree Randomness Extractors

Authors: Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and Chao Yan

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
For S ⊆ 𝔽ⁿ, consider the linear space of restrictions of degree-d polynomials to S. The Hilbert function of S, denoted h_S(d,𝔽), is the dimension of this space. We obtain a tight lower bound on the smallest value of the Hilbert function of subsets S of arbitrary finite grids in 𝔽ⁿ with a fixed size |S|. We achieve this by proving that this value coincides with a combinatorial quantity, namely the smallest number of low Hamming weight points in a down-closed set of size |S|. Understanding the smallest values of Hilbert functions is closely related to the study of degree-d closure of sets, a notion introduced by Nie and Wang (Journal of Combinatorial Theory, Series A, 2015). We use bounds on the Hilbert function to obtain a tight bound on the size of degree-d closures of subsets of 𝔽_qⁿ, which answers a question posed by Doron, Ta-Shma, and Tell (Computational Complexity, 2022). We use the bounds on the Hilbert function and degree-d closure of sets to prove that a random low-degree polynomial is an extractor for samplable randomness sources. Most notably, we prove the existence of low-degree extractors and dispersers for sources generated by constant-degree polynomials and polynomial-size circuits. Until recently, even the existence of arbitrary deterministic extractors for such sources was not known.

Cite as

Alexander Golovnev, Zeyu Guo, Pooya Hatami, Satyajeet Nagargoje, and Chao Yan. Hilbert Functions and Low-Degree Randomness Extractors. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 41:1-41:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{golovnev_et_al:LIPIcs.APPROX/RANDOM.2024.41,
  author =	{Golovnev, Alexander and Guo, Zeyu and Hatami, Pooya and Nagargoje, Satyajeet and Yan, Chao},
  title =	{{Hilbert Functions and Low-Degree Randomness Extractors}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{41:1--41:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.41},
  URN =		{urn:nbn:de:0030-drops-210345},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.41},
  annote =	{Keywords: Extractors, Dispersers, Circuits, Hilbert Function, Randomness, Low Degree Polynomials}
}
Document
RANDOM
When Do Low-Rate Concatenated Codes Approach The Gilbert-Varshamov Bound?

Authors: Dean Doron, Jonathan Mosheiff, and Mary Wootters

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
The Gilbert-Varshamov (GV) bound is a classical existential result in coding theory. It implies that a random linear binary code of rate ε² has relative distance at least 1/2 - O(ε) with high probability. However, it is a major challenge to construct explicit codes with similar parameters. One hope to derandomize the Gilbert-Varshamov construction is with code concatenation: We begin with a (hopefully explicit) outer code 𝒞_out over a large alphabet, and concatenate that with a small binary random linear code 𝒞_in. It is known that when we use independent small codes for each coordinate, then the result lies on the GV bound with high probability, but this still uses a lot of randomness. In this paper, we consider the question of whether code concatenation with a single random linear inner code 𝒞_in can lie on the GV bound; and if so what conditions on 𝒞_out are sufficient for this. We show that first, there do exist linear outer codes 𝒞_out that are "good" for concatenation in this sense (in fact, most linear codes codes are good). We also provide two sufficient conditions for 𝒞_out, so that if 𝒞_out satisfies these, 𝒞_out∘𝒞_in will likely lie on the GV bound. We hope that these conditions may inspire future work towards constructing explicit codes 𝒞_out.

Cite as

Dean Doron, Jonathan Mosheiff, and Mary Wootters. When Do Low-Rate Concatenated Codes Approach The Gilbert-Varshamov Bound?. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 53:1-53:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{doron_et_al:LIPIcs.APPROX/RANDOM.2024.53,
  author =	{Doron, Dean and Mosheiff, Jonathan and Wootters, Mary},
  title =	{{When Do Low-Rate Concatenated Codes Approach The Gilbert-Varshamov Bound?}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{53:1--53:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.53},
  URN =		{urn:nbn:de:0030-drops-210467},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.53},
  annote =	{Keywords: Error-correcting codes, Concatenated codes, Derandomization, Gilbert-Varshamov bound}
}
Document
𝓁_p-Spread and Restricted Isometry Properties of Sparse Random Matrices

Authors: Venkatesan Guruswami, Peter Manohar, and Jonathan Mosheiff

Published in: LIPIcs, Volume 234, 37th Computational Complexity Conference (CCC 2022)


Abstract
Random subspaces X of ℝⁿ of dimension proportional to n are, with high probability, well-spread with respect to the 𝓁₂-norm. Namely, every nonzero x ∈ X is "robustly non-sparse" in the following sense: x is ε ‖x‖₂-far in 𝓁₂-distance from all δ n-sparse vectors, for positive constants ε, δ bounded away from 0. This "𝓁₂-spread" property is the natural counterpart, for subspaces over the reals, of the minimum distance of linear codes over finite fields, and corresponds to X being a Euclidean section of the 𝓁₁ unit ball. Explicit 𝓁₂-spread subspaces of dimension Ω(n), however, are unknown, and the best known explicit constructions (which achieve weaker spread properties), are analogs of low density parity check (LDPC) codes over the reals, i.e., they are kernels of certain sparse matrices. Motivated by this, we study the spread properties of the kernels of sparse random matrices. We prove that with high probability such subspaces contain vectors x that are o(1)⋅‖x‖₂-close to o(n)-sparse with respect to the 𝓁₂-norm, and in particular are not 𝓁₂-spread. This is strikingly different from the case of random LDPC codes, whose distance is asymptotically almost as good as that of (dense) random linear codes. On the other hand, for p < 2 we prove that such subspaces are 𝓁_p-spread with high probability. The spread property of sparse random matrices thus exhibits a threshold behavior at p = 2. Our proof for p < 2 moreover shows that a random sparse matrix has the stronger restricted isometry property (RIP) with respect to the 𝓁_p norm, and in fact this follows solely from the unique expansion of a random biregular graph, yielding a somewhat unexpected generalization of a similar result for the 𝓁₁ norm [Berinde et al., 2008]. Instantiating this with suitable explicit expanders, we obtain the first explicit constructions of 𝓁_p-RIP matrices for 1 ≤ p < p₀, where 1 < p₀ < 2 is an absolute constant.

Cite as

Venkatesan Guruswami, Peter Manohar, and Jonathan Mosheiff. 𝓁_p-Spread and Restricted Isometry Properties of Sparse Random Matrices. In 37th Computational Complexity Conference (CCC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 234, pp. 7:1-7:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.CCC.2022.7,
  author =	{Guruswami, Venkatesan and Manohar, Peter and Mosheiff, Jonathan},
  title =	{{𝓁\underlinep-Spread and Restricted Isometry Properties of Sparse Random Matrices}},
  booktitle =	{37th Computational Complexity Conference (CCC 2022)},
  pages =	{7:1--7:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-241-9},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{234},
  editor =	{Lovett, Shachar},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2022.7},
  URN =		{urn:nbn:de:0030-drops-165695},
  doi =		{10.4230/LIPIcs.CCC.2022.7},
  annote =	{Keywords: Spread Subspaces, Euclidean Sections, Restricted Isometry Property, Sparse Matrices}
}
Document
Sharp Threshold Rates for Random Codes

Authors: Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters

Published in: LIPIcs, Volume 185, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021)


Abstract
Suppose that 𝒫 is a property that may be satisfied by a random code C ⊂ Σⁿ. For example, for some p ∈ (0,1), 𝒫 might be the property that there exist three elements of C that lie in some Hamming ball of radius pn. We say that R^* is the threshold rate for 𝒫 if a random code of rate R^* + ε is very likely to satisfy 𝒫, while a random code of rate R^* - ε is very unlikely to satisfy 𝒫. While random codes are well-studied in coding theory, even the threshold rates for relatively simple properties like the one above are not well understood. We characterize threshold rates for a rich class of properties. These properties, like the example above, are defined by the inclusion of specific sets of codewords which are also suitably "symmetric." For properties in this class, we show that the threshold rate is in fact equal to the lower bound that a simple first-moment calculation obtains. Our techniques not only pin down the threshold rate for the property 𝒫 above, they give sharp bounds on the threshold rate for list-recovery in several parameter regimes, as well as an efficient algorithm for estimating the threshold rates for list-recovery in general.

Cite as

Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters. Sharp Threshold Rates for Random Codes. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 185, pp. 5:1-5:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.ITCS.2021.5,
  author =	{Guruswami, Venkatesan and Mosheiff, Jonathan and Resch, Nicolas and Silas, Shashwat and Wootters, Mary},
  title =	{{Sharp Threshold Rates for Random Codes}},
  booktitle =	{12th Innovations in Theoretical Computer Science Conference (ITCS 2021)},
  pages =	{5:1--5:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-177-1},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{185},
  editor =	{Lee, James R.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2021.5},
  URN =		{urn:nbn:de:0030-drops-135446},
  doi =		{10.4230/LIPIcs.ITCS.2021.5},
  annote =	{Keywords: Coding theory, Random codes, Sharp thresholds}
}
Document
Invited Talk
List-Decodability of Structured Ensembles of Codes (Invited Talk)

Authors: Mary Wootters

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
What combinatorial properties are satisfied by a random subspace over a finite field? For example, is it likely that not too many points lie in any Hamming ball? What about any cube? In this talk, I will discuss the answer to these questions, along with a more general characterization of the properties that are likely to be satisfied by a random subspace. The motivation for this characterization comes from error correcting codes. I will discuss how to use this characterization to make progress on the questions of list-decoding and list-recovery for random linear codes, and also to establish the list-decodability of random Low Density Parity-Check (LDPC) codes. This talk is based on the works [Mosheiff et al., 2019] and [Guruswami et al., 2020], which are joint works with Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, and Shashwat Silas.

Cite as

Mary Wootters. List-Decodability of Structured Ensembles of Codes (Invited Talk). In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 3:1-3:5, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{wootters:LIPIcs.MFCS.2020.3,
  author =	{Wootters, Mary},
  title =	{{List-Decodability of Structured Ensembles of Codes}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{3:1--3:5},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.3},
  URN =		{urn:nbn:de:0030-drops-126742},
  doi =		{10.4230/LIPIcs.MFCS.2020.3},
  annote =	{Keywords: Error Correcting Codes, List-Decoding}
}
Document
RANDOM
Bounds for List-Decoding and List-Recovery of Random Linear Codes

Authors: Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
A family of error-correcting codes is list-decodable from error fraction p if, for every code in the family, the number of codewords in any Hamming ball of fractional radius p is less than some integer L that is independent of the code length. It is said to be list-recoverable for input list size 𝓁 if for every sufficiently large subset of codewords (of size L or more), there is a coordinate where the codewords take more than 𝓁 values. The parameter L is said to be the "list size" in either case. The capacity, i.e., the largest possible rate for these notions as the list size L → ∞, is known to be 1-h_q(p) for list-decoding, and 1-log_q 𝓁 for list-recovery, where q is the alphabet size of the code family. In this work, we study the list size of random linear codes for both list-decoding and list-recovery as the rate approaches capacity. We show the following claims hold with high probability over the choice of the code (below q is the alphabet size, and ε > 0 is the gap to capacity). - A random linear code of rate 1 - log_q(𝓁) - ε requires list size L ≥ 𝓁^{Ω(1/ε)} for list-recovery from input list size 𝓁. This is surprisingly in contrast to completely random codes, where L = O(𝓁/ε) suffices w.h.p. - A random linear code of rate 1 - h_q(p) - ε requires list size L ≥ ⌊ {h_q(p)/ε+0.99}⌋ for list-decoding from error fraction p, when ε is sufficiently small. - A random binary linear code of rate 1 - h₂(p) - ε is list-decodable from average error fraction p with list size with L ≤ ⌊ {h₂(p)/ε}⌋ + 2. (The average error version measures the average Hamming distance of the codewords from the center of the Hamming ball, instead of the maximum distance as in list-decoding.) The second and third results together precisely pin down the list sizes for binary random linear codes for both list-decoding and average-radius list-decoding to three possible values. Our lower bounds follow by exhibiting an explicit subset of codewords so that this subset - or some symbol-wise permutation of it - lies in a random linear code with high probability. This uses a recent characterization of (Mosheiff, Resch, Ron-Zewi, Silas, Wootters, 2019) of configurations of codewords that are contained in random linear codes. Our upper bound follows from a refinement of the techniques of (Guruswami, Håstad, Sudan, Zuckerman, 2002) and strengthens a previous result of (Li, Wootters, 2018), which applied to list-decoding rather than average-radius list-decoding.

Cite as

Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters. Bounds for List-Decoding and List-Recovery of Random Linear Codes. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 9:1-9:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{guruswami_et_al:LIPIcs.APPROX/RANDOM.2020.9,
  author =	{Guruswami, Venkatesan and Li, Ray and Mosheiff, Jonathan and Resch, Nicolas and Silas, Shashwat and Wootters, Mary},
  title =	{{Bounds for List-Decoding and List-Recovery of Random Linear Codes}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{9:1--9:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.9},
  URN =		{urn:nbn:de:0030-drops-126126},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.9},
  annote =	{Keywords: list-decoding, list-recovery, random linear codes, coding theory}
}
  • Refine by Type
  • 11 Document/PDF
  • 4 Document/HTML

  • Refine by Publication Year
  • 5 2025
  • 2 2024
  • 1 2022
  • 1 2021
  • 2 2020

  • Refine by Author
  • 6 Mosheiff, Jonathan
  • 4 Wootters, Mary
  • 3 Guruswami, Venkatesan
  • 3 Resch, Nicolas
  • 2 Doron, Dean
  • Show More...

  • Refine by Series/Journal
  • 11 LIPIcs

  • Refine by Classification
  • 5 Mathematics of computing → Coding theory
  • 5 Theory of computation → Pseudorandomness and derandomization
  • 4 Theory of computation → Error-correcting codes
  • 1 Mathematics of computing → Combinatorics
  • 1 Theory of computation → Random projections and metric embeddings

  • Refine by Keyword
  • 2 Error-Correcting Codes
  • 2 Randomness
  • 2 random linear codes
  • 1 Circuits
  • 1 Coding theory
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail