22 Search Results for "Naumann, David"


Document
Survey
Resilience in Knowledge Graph Embeddings

Authors: Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo

Published in: TGDK, Volume 3, Issue 2 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 2


Abstract
In recent years, knowledge graphs have gained interest and witnessed widespread applications in various domains, such as information retrieval, question-answering, recommendation systems, amongst others. Large-scale knowledge graphs to this end have demonstrated their utility in effectively representing structured knowledge. To further facilitate the application of machine learning techniques, knowledge graph embedding models have been developed. Such models can transform entities and relationships within knowledge graphs into vectors. However, these embedding models often face challenges related to noise, missing information, distribution shift, adversarial attacks, etc. This can lead to sub-optimal embeddings and incorrect inferences, thereby negatively impacting downstream applications. While the existing literature has focused so far on adversarial attacks on KGE models, the challenges related to the other critical aspects remain unexplored. In this paper, we, first of all, give a unified definition of resilience, encompassing several factors such as generalisation, in-distribution generalization, distribution adaption, and robustness. After formalizing these concepts for machine learning in general, we define them in the context of knowledge graphs. To find the gap in the existing works on resilience in the context of knowledge graphs, we perform a systematic survey, taking into account all these aspects mentioned previously. Our survey results show that most of the existing works focus on a specific aspect of resilience, namely robustness. After categorizing such works based on their respective aspects of resilience, we discuss the challenges and future research directions.

Cite as

Arnab Sharma, N'Dah Jean Kouagou, and Axel-Cyrille Ngonga Ngomo. Resilience in Knowledge Graph Embeddings. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 2, pp. 1:1-1:38, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{sharma_et_al:TGDK.3.2.1,
  author =	{Sharma, Arnab and Kouagou, N'Dah Jean and Ngomo, Axel-Cyrille Ngonga},
  title =	{{Resilience in Knowledge Graph Embeddings}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{1:1--1:38},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.2.1},
  URN =		{urn:nbn:de:0030-drops-248117},
  doi =		{10.4230/TGDK.3.2.1},
  annote =	{Keywords: Knowledge graphs, Resilience, Robustness}
}
Document
Invited Talk
Securing Dynamic Data: A Primer on Differentially Private Data Structures (Invited Talk)

Authors: Monika Henzinger and Roodabeh Safavi

Published in: LIPIcs, Volume 351, 33rd Annual European Symposium on Algorithms (ESA 2025)


Abstract
We give an introduction into differential privacy in the dynamic setting, called the continual observation setting.

Cite as

Monika Henzinger and Roodabeh Safavi. Securing Dynamic Data: A Primer on Differentially Private Data Structures (Invited Talk). In 33rd Annual European Symposium on Algorithms (ESA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 351, pp. 2:1-2:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{henzinger_et_al:LIPIcs.ESA.2025.2,
  author =	{Henzinger, Monika and Safavi, Roodabeh},
  title =	{{Securing Dynamic Data: A Primer on Differentially Private Data Structures}},
  booktitle =	{33rd Annual European Symposium on Algorithms (ESA 2025)},
  pages =	{2:1--2:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-395-9},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{351},
  editor =	{Benoit, Anne and Kaplan, Haim and Wild, Sebastian and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2025.2},
  URN =		{urn:nbn:de:0030-drops-244702},
  doi =		{10.4230/LIPIcs.ESA.2025.2},
  annote =	{Keywords: Differential privacy, continual observation}
}
Document
Short Paper
LeanLTL: A Unifying Framework for Linear Temporal Logics in Lean (Short Paper)

Authors: Eric Vin, Kyle A. Miller, and Daniel J. Fremont

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
We propose LeanLTL, a unifying framework for linear temporal logics in Lean 4. LeanLTL supports reasoning about traces that represent either infinite or finite linear time. The library allows traditional LTL syntax to be combined with arbitrary Lean expressions, making it straightforward to define properties involving numerical or other types. We prove that standard flavors of LTL can be embedded in our framework. The library also provides automation for reasoning about LeanLTL formulas in a way that facilitates using Lean’s existing tactics. Finally, we provide examples illustrating the utility of the library in reasoning about systems that come from applications.

Cite as

Eric Vin, Kyle A. Miller, and Daniel J. Fremont. LeanLTL: A Unifying Framework for Linear Temporal Logics in Lean (Short Paper). In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 37:1-37:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vin_et_al:LIPIcs.ITP.2025.37,
  author =	{Vin, Eric and Miller, Kyle A. and Fremont, Daniel J.},
  title =	{{LeanLTL: A Unifying Framework for Linear Temporal Logics in Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{37:1--37:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.37},
  URN =		{urn:nbn:de:0030-drops-246356},
  doi =		{10.4230/LIPIcs.ITP.2025.37},
  annote =	{Keywords: Linear Temporal Logic, Interactive Theorem Proving, Lean 4}
}
Document
RANDOM
Sublinear Space Graph Algorithms in the Continual Release Model

Authors: Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou

Published in: LIPIcs, Volume 353, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)


Abstract
The graph continual release model of differential privacy seeks to produce differentially private solutions to graph problems under a stream of edge updates where new private solutions are released after each update. Thus far, previously known edge-differentially private algorithms for most graph problems including densest subgraph and matchings in the continual release setting only output real-value estimates (not vertex subset solutions) and do not use sublinear space. Instead, they rely on computing exact graph statistics on the input [Hendrik Fichtenberger et al., 2021; Shuang Song et al., 2018]. In this paper, we leverage sparsification to address the above shortcomings for edge-insertion streams. Our edge-differentially private algorithms use sublinear space with respect to the number of edges in the graph while some also achieve sublinear space in the number of vertices in the graph. In addition, for the densest subgraph problem, we also output edge-differentially private vertex subset solutions; no previous graph algorithms in the continual release model output such subsets. We make novel use of assorted sparsification techniques from the non-private streaming and static graph algorithms literature to achieve new results in the sublinear space, continual release setting. This includes algorithms for densest subgraph, maximum matching, as well as the first continual release k-core decomposition algorithm. We also develop a novel sparse level data structure for k-core decomposition that may be of independent interest. To complement our insertion-only algorithms, we conclude with polynomial additive error lower bounds for edge-privacy in the fully dynamic setting, where only logarithmic lower bounds were previously known.

Cite as

Alessandro Epasto, Quanquan C. Liu, Tamalika Mukherjee, and Felix Zhou. Sublinear Space Graph Algorithms in the Continual Release Model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 353, pp. 40:1-40:27, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{epasto_et_al:LIPIcs.APPROX/RANDOM.2025.40,
  author =	{Epasto, Alessandro and Liu, Quanquan C. and Mukherjee, Tamalika and Zhou, Felix},
  title =	{{Sublinear Space Graph Algorithms in the Continual Release Model}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2025)},
  pages =	{40:1--40:27},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-397-3},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{353},
  editor =	{Ene, Alina and Chattopadhyay, Eshan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  URN =		{urn:nbn:de:0030-drops-244064},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2025.40},
  annote =	{Keywords: Differential Privacy, Continual Release, Densest Subgraph, k-Core Decomposition, Maximum Matching}
}
Document
Efficient Certified Reasoning for Binarized Neural Networks

Authors: Jiong Yang, Yong Kiam Tan, Mate Soos, Magnus O. Myreen, and Kuldeep S. Meel

Published in: LIPIcs, Volume 341, 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)


Abstract
Neural networks have emerged as essential components in safety-critical applications - these use cases demand complex, yet trustworthy computations. Binarized Neural Networks (BNNs) are a type of neural network where each neuron is constrained to a Boolean value; they are particularly well-suited for safety-critical tasks because they retain much of the computational capacities of full-scale (floating-point or quantized) deep neural networks, but remain compatible with satisfiability solvers for qualitative verification and with model counters for quantitative reasoning. However, existing methods for BNN analysis suffer from either limited scalability or susceptibility to soundness errors, which hinders their applicability in real-world scenarios. In this work, we present a scalable and trustworthy approach for both qualitative and quantitative verification of BNNs. Our approach introduces a native representation of BNN constraints in a custom-designed solver for qualitative reasoning, and in an approximate model counter for quantitative reasoning. We further develop specialized proof generation and checking pipelines with native support for BNN constraint reasoning, ensuring trustworthiness for all of our verification results. Empirical evaluations on a BNN robustness verification benchmark suite demonstrate that our certified solving approach achieves a 9× speedup over prior certified CNF and PB-based approaches, and our certified counting approach achieves a 218× speedup over the existing CNF-based baseline. In terms of coverage, our pipeline produces fully certified results for 99% and 86% of the qualitative and quantitative reasoning queries on BNNs, respectively. This is in sharp contrast to the best existing baselines which can fully certify only 62% and 4% of the queries, respectively.

Cite as

Jiong Yang, Yong Kiam Tan, Mate Soos, Magnus O. Myreen, and Kuldeep S. Meel. Efficient Certified Reasoning for Binarized Neural Networks. In 28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 341, pp. 32:1-32:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{yang_et_al:LIPIcs.SAT.2025.32,
  author =	{Yang, Jiong and Tan, Yong Kiam and Soos, Mate and Myreen, Magnus O. and Meel, Kuldeep S.},
  title =	{{Efficient Certified Reasoning for Binarized Neural Networks}},
  booktitle =	{28th International Conference on Theory and Applications of Satisfiability Testing (SAT 2025)},
  pages =	{32:1--32:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-381-2},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{341},
  editor =	{Berg, Jeremias and Nordstr\"{o}m, Jakob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2025.32},
  URN =		{urn:nbn:de:0030-drops-237665},
  doi =		{10.4230/LIPIcs.SAT.2025.32},
  annote =	{Keywords: Neural network verification, proof certification, SAT solving, approximate model counting}
}
Document
Track A: Algorithms, Complexity and Games
Dynamic Algorithms for Submodular Matching

Authors: Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Morteza Monemizadeh

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The Maximum Submodular Matching (MSM) problem is a generalization of the classical Maximum Weight Matching (MWM) problem. In this problem, given a monotone submodular function f: 2^E → ℝ^{≥ 0} defined over subsets of edges of a graph G(V, E), we are asked to return a matching whose submodular value is maximum among all matchings in graph G(V, E). In this paper, we consider this problem in a fully dynamic setting against an oblivious adversary. In this setting, we are given a sequence 𝒮 of insertions and deletions of edges of the underlying graph G(V, E), along with an oracle access to the monotone submodular function f. The goal is to maintain a matching M such that, at any time t of sequence 𝒮, its submodular value is a good approximation of the value of the optimal submodular matching while keeping the number of operations minimal. We develop the first dynamic algorithm for the submodular matching problem, in which we maintain a matching whose submodular value is within expected (8 + ε)-approximation of the optimal submodular matching at any time t of sequence 𝒮 using expected amortized poly(log n, 1/(ε)) update time. Our approach incorporates a range of novel techniques, notably the concept of Uniform Hierarchical Caches (UHC) data structure along with its invariants, which lead to the first algorithm for fully dynamic submodular matching and may be of independent interest for designing dynamic algorithms for other problems.

Cite as

Kiarash Banihashem, Leyla Biabani, Samira Goudarzi, MohammadTaghi Hajiaghayi, Peyman Jabbarzade, and Morteza Monemizadeh. Dynamic Algorithms for Submodular Matching. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 19:1-19:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{banihashem_et_al:LIPIcs.ICALP.2025.19,
  author =	{Banihashem, Kiarash and Biabani, Leyla and Goudarzi, Samira and Hajiaghayi, MohammadTaghi and Jabbarzade, Peyman and Monemizadeh, Morteza},
  title =	{{Dynamic Algorithms for Submodular Matching}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{19:1--19:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.19},
  URN =		{urn:nbn:de:0030-drops-233969},
  doi =		{10.4230/LIPIcs.ICALP.2025.19},
  annote =	{Keywords: Matching, Submodular, Dynamic, Polylogarithmic}
}
Document
Track A: Algorithms, Complexity and Games
Incremental Approximate Single-Source Shortest Paths with Predictions

Authors: Samuel McCauley, Benjamin Moseley, Aidin Niaparast, Helia Niaparast, and Shikha Singh

Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)


Abstract
The algorithms-with-predictions framework has been used extensively to develop online algorithms with improved beyond-worst-case competitive ratios. Recently, there is growing interest in leveraging predictions for designing data structures with improved beyond-worst-case running times. In this paper, we study the fundamental data structure problem of maintaining approximate shortest paths in incremental graphs in the algorithms-with-predictions model. Given a sequence σ of edges that are inserted one at a time, the goal is to maintain approximate shortest paths from the source to each vertex in the graph at each time step. Before any edges arrive, the data structure is given a prediction of the online edge sequence σ̂ which is used to "warm start" its state. As our main result, we design a learned algorithm that maintains (1+ε)-approximate single-source shortest paths, which runs in Õ(m η log W/ε) time, where W is the weight of the heaviest edge and η is the prediction error. We show these techniques immediately extend to the all-pairs shortest-path setting as well. Our algorithms are consistent (performing nearly as fast as the offline algorithm) when predictions are nearly perfect, have a smooth degradation in performance with respect to the prediction error and, in the worst case, match the best offline algorithm up to logarithmic factors. That is, the algorithms are "ideal" in the algorithms-with-predictions model. As a building block, we study the offline incremental approximate single-source shortest-path (SSSP) problem. In the offline incremental SSSP problem, the edge sequence σ is known a priori and the goal is to construct a data structure that can efficiently return the length of the shortest paths in the intermediate graph G_t consisting of the first t edges, for all t. Note that the offline incremental problem is defined in the worst-case setting (without predictions) and is of independent interest.

Cite as

Samuel McCauley, Benjamin Moseley, Aidin Niaparast, Helia Niaparast, and Shikha Singh. Incremental Approximate Single-Source Shortest Paths with Predictions. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 117:1-117:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{mccauley_et_al:LIPIcs.ICALP.2025.117,
  author =	{McCauley, Samuel and Moseley, Benjamin and Niaparast, Aidin and Niaparast, Helia and Singh, Shikha},
  title =	{{Incremental Approximate Single-Source Shortest Paths with Predictions}},
  booktitle =	{52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
  pages =	{117:1--117:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-372-0},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{334},
  editor =	{Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.117},
  URN =		{urn:nbn:de:0030-drops-234946},
  doi =		{10.4230/LIPIcs.ICALP.2025.117},
  annote =	{Keywords: Algorithms with Predictions, Shortest Paths, Approximation Algorithms, Dynamic Graph Algorithms}
}
Document
Profile-Guided Field Externalization in an Ahead-Of-Time Compiler

Authors: Sebastian Kloibhofer, Lukas Makor, Peter Hofer, David Leopoldseder, and Hanspeter Mössenböck

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Field externalization is a technique to reduce the footprint of objects by removing fields that most frequently contain zero or null. While researchers have developed ways to bring this optimization into the Java world, these have been limited to research compilers or virtual machines for embedded systems. In this work, we present a novel field externalization technique that uses information from static analysis and profiling to determine externalizable fields. During compilation, we remove those fields and define companion classes. These are used in case of non-default-value writes to the externalized fields. Our approach also correctly handles synchronization to prevent issues in multithreaded environments. We integrated our approach into the modern Java ahead-of-time compiler GraalVM Native Image. We conducted an evaluation on a diverse set of benchmarks that includes standard and microservice-based benchmarks. For standard benchmarks, our approach reduces the total allocated bytes by 2.76% and the maximum resident set size (max-RSS) by 2.55%. For microservice benchmarks, we achieved a reduction of 6.88% for normalized allocated bytes and 2.45% for max-RSS. We computed these improvements via the geometric mean. The median reductions are are 1.46% (alloc. bytes) and 0.22% (max-RSS) in standard benchmarks, as well as 3.63% (alloc. bytes) and 0.20% (max-RSS) in microservice benchmarks.

Cite as

Sebastian Kloibhofer, Lukas Makor, Peter Hofer, David Leopoldseder, and Hanspeter Mössenböck. Profile-Guided Field Externalization in an Ahead-Of-Time Compiler. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 19:1-19:32, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kloibhofer_et_al:LIPIcs.ECOOP.2025.19,
  author =	{Kloibhofer, Sebastian and Makor, Lukas and Hofer, Peter and Leopoldseder, David and M\"{o}ssenb\"{o}ck, Hanspeter},
  title =	{{Profile-Guided Field Externalization in an Ahead-Of-Time Compiler}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{19:1--19:32},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.19},
  URN =		{urn:nbn:de:0030-drops-233121},
  doi =		{10.4230/LIPIcs.ECOOP.2025.19},
  annote =	{Keywords: compilation, instrumentation, profiling, fields, externalization, memory footprint reduction, memory footprint optimization}
}
Document
Survey
Uncertainty Management in the Construction of Knowledge Graphs: A Survey

Authors: Lucas Jarnac, Yoan Chabot, and Miguel Couceiro

Published in: TGDK, Volume 3, Issue 1 (2025). Transactions on Graph Data and Knowledge, Volume 3, Issue 1


Abstract
Knowledge Graphs (KGs) are a major asset for companies thanks to their great flexibility in data representation and their numerous applications, e.g., vocabulary sharing, Q&A or recommendation systems. To build a KG, it is a common practice to rely on automatic methods for extracting knowledge from various heterogeneous sources. However, in a noisy and uncertain world, knowledge may not be reliable and conflicts between data sources may occur. Integrating unreliable data would directly impact the use of the KG, therefore such conflicts must be resolved. This could be done manually by selecting the best data to integrate. This first approach is highly accurate, but costly and time-consuming. That is why recent efforts focus on automatic approaches, which represent a challenging task since it requires handling the uncertainty of extracted knowledge throughout its integration into the KG. We survey state-of-the-art approaches in this direction and present constructions of both open and enterprise KGs. We then describe different knowledge extraction methods and discuss downstream tasks after knowledge acquisition, including KG completion using embedding models, knowledge alignment, and knowledge fusion in order to address the problem of knowledge uncertainty in KG construction. We conclude with a discussion on the remaining challenges and perspectives when constructing a KG taking into account uncertainty.

Cite as

Lucas Jarnac, Yoan Chabot, and Miguel Couceiro. Uncertainty Management in the Construction of Knowledge Graphs: A Survey. In Transactions on Graph Data and Knowledge (TGDK), Volume 3, Issue 1, pp. 3:1-3:48, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@Article{jarnac_et_al:TGDK.3.1.3,
  author =	{Jarnac, Lucas and Chabot, Yoan and Couceiro, Miguel},
  title =	{{Uncertainty Management in the Construction of Knowledge Graphs: A Survey}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{3:1--3:48},
  ISSN =	{2942-7517},
  year =	{2025},
  volume =	{3},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.3.1.3},
  URN =		{urn:nbn:de:0030-drops-233733},
  doi =		{10.4230/TGDK.3.1.3},
  annote =	{Keywords: Knowledge reconciliation, Uncertainty, Heterogeneous sources, Knowledge graph construction}
}
Document
Privacy-Computation Trade-Offs in Private Repetition and Metaselection

Authors: Kunal Talwar

Published in: LIPIcs, Volume 329, 6th Symposium on Foundations of Responsible Computing (FORC 2025)


Abstract
A Private Repetition algorithm takes as input a differentially private algorithm with constant success probability and boosts it to one that succeeds with high probability. These algorithms are closely related to private metaselection algorithms that compete with the best of many private algorithms, and private hyperparameter tuning algorithms that compete with the best hyperparameter settings for a private learning algorithm. Existing algorithms for these tasks pay either a large overhead in privacy cost, or a large overhead in computational cost. In this work, we show strong lower bounds for problems of this kind, showing in particular that for any algorithm that preserves the privacy cost up to a constant factor, the failure probability can only fall polynomially in the computational overhead. This is in stark contrast with the non-private setting, where the failure probability falls exponentially in the computational overhead. By carefully combining existing algorithms for metaselection, we prove computation-privacy tradeoffs that nearly match our lower bounds.

Cite as

Kunal Talwar. Privacy-Computation Trade-Offs in Private Repetition and Metaselection. In 6th Symposium on Foundations of Responsible Computing (FORC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 329, pp. 1:1-1:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{talwar:LIPIcs.FORC.2025.1,
  author =	{Talwar, Kunal},
  title =	{{Privacy-Computation Trade-Offs in Private Repetition and Metaselection}},
  booktitle =	{6th Symposium on Foundations of Responsible Computing (FORC 2025)},
  pages =	{1:1--1:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-367-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{329},
  editor =	{Bun, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2025.1},
  URN =		{urn:nbn:de:0030-drops-231282},
  doi =		{10.4230/LIPIcs.FORC.2025.1},
  annote =	{Keywords: Differential Privacy, Hyperparameter Tuning, Metaselection}
}
Document
Count on Your Elders: Laplace vs Gaussian Noise

Authors: Joel Daniel Andersson, Rasmus Pagh, Teresa Anna Steiner, and Sahel Torkamani

Published in: LIPIcs, Volume 329, 6th Symposium on Foundations of Responsible Computing (FORC 2025)


Abstract
In recent years, Gaussian noise has become a popular tool in differentially private algorithms, often replacing Laplace noise which dominated the early literature on differential privacy. Gaussian noise is the standard approach to approximate differential privacy, often resulting in much higher utility than traditional (pure) differential privacy mechanisms. In this paper we argue that Laplace noise may in fact be preferable to Gaussian noise in many settings, in particular when we seek to achieve (ε,δ)-differential privacy for small values of δ. We consider two scenarios: First, we consider the problem of counting under continual observation and present a new generalization of the binary tree mechanism that uses a k-ary number system with negative digits to improve the privacy-accuracy trade-off. Our mechanism uses Laplace noise and whenever δ is sufficiently small it improves the mean squared error over the best possible (ε,δ)-differentially private factorization mechanisms based on Gaussian noise. Specifically, using k = 19 we get an asymptotic improvement over the bound given in the work by Henzinger, Upadhyay and Upadhyay (SODA 2023) when δ = O(T^{-0.92}). Second, we show that the noise added by the Gaussian mechanism can always be replaced by Laplace noise of comparable variance for the same (ε, δ)-differential privacy guarantee, and in fact for sufficiently small δ the variance of the Laplace noise becomes strictly better. This challenges the conventional wisdom that Gaussian noise should be used for high-dimensional noise. Finally, we study whether counting under continual observation may be easier in an average-case sense than in a worst-case sense. We show that, under pure differential privacy, the expected worst-case error for a random input must be Ω(log(T)/ε), matching the known lower bound for worst-case inputs.

Cite as

Joel Daniel Andersson, Rasmus Pagh, Teresa Anna Steiner, and Sahel Torkamani. Count on Your Elders: Laplace vs Gaussian Noise. In 6th Symposium on Foundations of Responsible Computing (FORC 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 329, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{andersson_et_al:LIPIcs.FORC.2025.10,
  author =	{Andersson, Joel Daniel and Pagh, Rasmus and Steiner, Teresa Anna and Torkamani, Sahel},
  title =	{{Count on Your Elders: Laplace vs Gaussian Noise}},
  booktitle =	{6th Symposium on Foundations of Responsible Computing (FORC 2025)},
  pages =	{10:1--10:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-367-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{329},
  editor =	{Bun, Mark},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FORC.2025.10},
  URN =		{urn:nbn:de:0030-drops-231376},
  doi =		{10.4230/LIPIcs.FORC.2025.10},
  annote =	{Keywords: differential privacy, continual observation, streaming, prefix sums, trees}
}
Document
Enumeration of Minimal Hitting Sets Parameterized by Treewidth

Authors: Batya Kenig and Dan Shlomo Mizrahi

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Enumerating the minimal hitting sets of a hypergraph is a problem which arises in many data management applications that include constraint mining, discovering unique column combinations, and enumerating database repairs. Previously, Eiter et al. [Thomas Eiter et al., 2003] showed that the minimal hitting sets of an n-vertex hypergraph, with treewidth w, can be enumerated with delay O^*(n^w) (ignoring polynomial factors), with space requirements that scale with the output size. We improve this to fixed-parameter-linear delay, following an FPT preprocessing phase. The memory consumption of our algorithm is exponential with respect to the treewidth of the hypergraph.

Cite as

Batya Kenig and Dan Shlomo Mizrahi. Enumeration of Minimal Hitting Sets Parameterized by Treewidth. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 8:1-8:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kenig_et_al:LIPIcs.ICDT.2025.8,
  author =	{Kenig, Batya and Mizrahi, Dan Shlomo},
  title =	{{Enumeration of Minimal Hitting Sets Parameterized by Treewidth}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{8:1--8:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.8},
  URN =		{urn:nbn:de:0030-drops-229498},
  doi =		{10.4230/LIPIcs.ICDT.2025.8},
  annote =	{Keywords: Enumeration, Hitting sets}
}
Document
Repairing Databases over Metric Spaces with Coincidence Constraints

Authors: Youri Kaminsky, Benny Kimelfeld, Ester Livshits, Felix Naumann, and David Wajc

Published in: LIPIcs, Volume 328, 28th International Conference on Database Theory (ICDT 2025)


Abstract
Datasets often contain values that naturally reside in a metric space: numbers, strings, geographical locations, machine-learned embeddings in a vector space, and so on. We study the computational complexity of repairing inconsistent databases that violate integrity constraints, where the database values belong to an underlying metric space. The goal is to update the database values to retain consistency while minimizing the total distance between the original values and the repaired ones. We consider what we refer to as coincidence constraints, which include unary key constraints, inclusion constraints, foreign keys, and generally any restriction on the relationship between the numbers of cells of different labels (attributes) coinciding in a single value, for a fixed attribute set. We begin by showing that the problem is APX-hard for general metric spaces. We then present an algorithm solving the problem optimally for tree metrics, which generalize both the line metric (i.e., where repaired values are numbers) and the discrete metric (i.e., where we simply count the number of changed values). Combining our algorithm for tree metrics and a classic result on probabilistic tree embeddings, we design a (high probability) logarithmic-ratio approximation for general metrics. We also study the variant of the problem where we limit the allowed change of each individual value. In this variant, it is already NP-complete to decide the existence of any legal repair for a general metric, and we present a polynomial-time repairing algorithm for the case of a line metric.

Cite as

Youri Kaminsky, Benny Kimelfeld, Ester Livshits, Felix Naumann, and David Wajc. Repairing Databases over Metric Spaces with Coincidence Constraints. In 28th International Conference on Database Theory (ICDT 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 328, pp. 14:1-14:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{kaminsky_et_al:LIPIcs.ICDT.2025.14,
  author =	{Kaminsky, Youri and Kimelfeld, Benny and Livshits, Ester and Naumann, Felix and Wajc, David},
  title =	{{Repairing Databases over Metric Spaces with Coincidence Constraints}},
  booktitle =	{28th International Conference on Database Theory (ICDT 2025)},
  pages =	{14:1--14:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-364-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{328},
  editor =	{Roy, Sudeepa and Kara, Ahmet},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICDT.2025.14},
  URN =		{urn:nbn:de:0030-drops-229554},
  doi =		{10.4230/LIPIcs.ICDT.2025.14},
  annote =	{Keywords: Database repairs, metric spaces, coincidence constraints, inclusion constraints, foreign-key constraints}
}
Document
Position
Grounding Stream Reasoning Research

Authors: Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer

Published in: TGDK, Volume 2, Issue 1 (2024): Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge, Volume 2, Issue 1


Abstract
In the last decade, there has been a growing interest in applying AI technologies to implement complex data analytics over data streams. To this end, researchers in various fields have been organising a yearly event called the "Stream Reasoning Workshop" to share perspectives, challenges, and experiences around this topic. In this paper, the previous organisers of the workshops and other community members provide a summary of the main research results that have been discussed during the first six editions of the event. These results can be categorised into four main research areas: The first is concerned with the technological challenges related to handling large data streams. The second area aims at adapting and extending existing semantic technologies to data streams. The third and fourth areas focus on how to implement reasoning techniques, either considering deductive or inductive techniques, to extract new and valuable knowledge from the data in the stream. This summary is written not only to provide a crystallisation of the field, but also to point out distinctive traits of the stream reasoning community. Moreover, it also provides a foundation for future research by enumerating a list of use cases and open challenges, to stimulate others to join this exciting research area.

Cite as

Pieter Bonte, Jean-Paul Calbimonte, Daniel de Leng, Daniele Dell'Aglio, Emanuele Della Valle, Thomas Eiter, Federico Giannini, Fredrik Heintz, Konstantin Schekotihin, Danh Le-Phuoc, Alessandra Mileo, Patrik Schneider, Riccardo Tommasini, Jacopo Urbani, and Giacomo Ziffer. Grounding Stream Reasoning Research. In Special Issue on Trends in Graph Data and Knowledge - Part 2. Transactions on Graph Data and Knowledge (TGDK), Volume 2, Issue 1, pp. 2:1-2:47, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@Article{bonte_et_al:TGDK.2.1.2,
  author =	{Bonte, Pieter and Calbimonte, Jean-Paul and de Leng, Daniel and Dell'Aglio, Daniele and Della Valle, Emanuele and Eiter, Thomas and Giannini, Federico and Heintz, Fredrik and Schekotihin, Konstantin and Le-Phuoc, Danh and Mileo, Alessandra and Schneider, Patrik and Tommasini, Riccardo and Urbani, Jacopo and Ziffer, Giacomo},
  title =	{{Grounding Stream Reasoning Research}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{2:1--2:47},
  ISSN =	{2942-7517},
  year =	{2024},
  volume =	{2},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.2.1.2},
  URN =		{urn:nbn:de:0030-drops-198597},
  doi =		{10.4230/TGDK.2.1.2},
  annote =	{Keywords: Stream Reasoning, Stream Processing, RDF streams, Streaming Linked Data, Continuous query processing, Temporal Logics, High-performance computing, Databases}
}
Document
Survey
How Does Knowledge Evolve in Open Knowledge Graphs?

Authors: Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs

Published in: TGDK, Volume 1, Issue 1 (2023): Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge, Volume 1, Issue 1


Abstract
Openly available, collaboratively edited Knowledge Graphs (KGs) are key platforms for the collective management of evolving knowledge. The present work aims t o provide an analysis of the obstacles related to investigating and processing specifically this central aspect of evolution in KGs. To this end, we discuss (i) the dimensions of evolution in KGs, (ii) the observability of evolution in existing, open, collaboratively constructed Knowledge Graphs over time, and (iii) possible metrics to analyse this evolution. We provide an overview of relevant state-of-the-art research, ranging from metrics developed for Knowledge Graphs specifically to potential methods from related fields such as network science. Additionally, we discuss technical approaches - and their current limitations - related to storing, analysing and processing large and evolving KGs in terms of handling typical KG downstream tasks.

Cite as

Axel Polleres, Romana Pernisch, Angela Bonifati, Daniele Dell'Aglio, Daniil Dobriy, Stefania Dumbrava, Lorena Etcheverry, Nicolas Ferranti, Katja Hose, Ernesto Jiménez-Ruiz, Matteo Lissandrini, Ansgar Scherp, Riccardo Tommasini, and Johannes Wachs. How Does Knowledge Evolve in Open Knowledge Graphs?. In Special Issue on Trends in Graph Data and Knowledge. Transactions on Graph Data and Knowledge (TGDK), Volume 1, Issue 1, pp. 11:1-11:59, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{polleres_et_al:TGDK.1.1.11,
  author =	{Polleres, Axel and Pernisch, Romana and Bonifati, Angela and Dell'Aglio, Daniele and Dobriy, Daniil and Dumbrava, Stefania and Etcheverry, Lorena and Ferranti, Nicolas and Hose, Katja and Jim\'{e}nez-Ruiz, Ernesto and Lissandrini, Matteo and Scherp, Ansgar and Tommasini, Riccardo and Wachs, Johannes},
  title =	{{How Does Knowledge Evolve in Open Knowledge Graphs?}},
  journal =	{Transactions on Graph Data and Knowledge},
  pages =	{11:1--11:59},
  year =	{2023},
  volume =	{1},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/TGDK.1.1.11},
  URN =		{urn:nbn:de:0030-drops-194855},
  doi =		{10.4230/TGDK.1.1.11},
  annote =	{Keywords: KG evolution, temporal KG, versioned KG, dynamic KG}
}
  • Refine by Type
  • 22 Document/PDF
  • 14 Document/HTML

  • Refine by Publication Year
  • 13 2025
  • 1 2024
  • 4 2023
  • 1 2016
  • 2 2005
  • Show More...

  • Refine by Author
  • 4 Banerjee, Anindya
  • 4 Naumann, David A.
  • 3 Mantel, Heiko
  • 3 Sabelfeld, Andrei
  • 2 Adão, Pedro
  • Show More...

  • Refine by Series/Journal
  • 13 LIPIcs
  • 1 DARTS
  • 5 TGDK
  • 1 DagSemRep
  • 2 DagSemProc

  • Refine by Classification
  • 3 Information systems → Graph-based database models
  • 2 Security and privacy
  • 2 Security and privacy → Formal methods and theory of security
  • 2 Software and its engineering → Software verification and validation
  • 2 Theory of computation → Dynamic graph algorithms
  • Show More...

  • Refine by Keyword
  • 2 Access control
  • 2 Differential Privacy
  • 2 Runtime Modelling
  • 2 Symbolic Execution
  • 2 Symbolic Summaries
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail