50 Search Results for "Naumowicz, Adam"


Volume

LIPIcs, Volume 268

14th International Conference on Interactive Theorem Proving (ITP 2023)

ITP 2023, July 31 to August 4, 2023, Białystok, Poland

Editors: Adam Naumowicz and René Thiemann

Document
A Formalization of Divided Powers in Lean

Authors: Antoine Chambert-Loir and María Inés de Frutos-Fernández

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Given an ideal I in a commutative ring A, a divided power structure on I is a collection of maps {γ_n : I → A}_{n ∈ ℕ}, subject to axioms that imply that it behaves like the family {x ↦ xⁿ/n!}_{n ∈ ℕ}, but which can be defined even when division by factorials is not possible in A. Divided power structures have important applications in diverse areas of mathematics, including algebraic topology, number theory and algebraic geometry. In this article we describe a formalization in Lean 4 of the basic theory of divided power structures, including divided power morphisms and sub-divided power ideals, and we provide several fundamental constructions, in particular quotients and sums. This constitutes the first formalization of this theory in any theorem prover. As a prerequisite of general interest, we expand the formalized theory of multivariate power series rings, endowing them with a topology and defining evaluation and substitution of power series.

Cite as

Antoine Chambert-Loir and María Inés de Frutos-Fernández. A Formalization of Divided Powers in Lean. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 4:1-4:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{chambertloir_et_al:LIPIcs.ITP.2025.4,
  author =	{Chambert-Loir, Antoine and de Frutos-Fern\'{a}ndez, Mar{\'\i}a In\'{e}s},
  title =	{{A Formalization of Divided Powers in Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{4:1--4:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.4},
  URN =		{urn:nbn:de:0030-drops-246038},
  doi =		{10.4230/LIPIcs.ITP.2025.4},
  annote =	{Keywords: Formal mathematics, algebraic number theory, commutative algebra, divided powers, Lean, Mathlib}
}
Document
Verifying Datalog Reasoning with Lean

Authors: Johannes Tantow, Lukas Gerlach, Stephan Mennicke, and Markus Krötzsch

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Datalog is an essential logical rule language with many applications, and modern rule engines compute logical consequences for Datalog with high performance and scalability. While Datalog is rather simple and, in principle, explainable by design, such sophisticated implementations and optimizations are hard to verify. We therefore propose a certificate-based approach to validate results of Datalog reasoners in a formally verified checker for Datalog proofs. Using the proof assistant Lean, we implement such a checker and verify its correctness against direct formalizations of the Datalog semantics. We propose two JSON encodings for Datalog proofs: one using the widely supported Datalog proof trees, and one using directed acyclic graphs for succinctness. To evaluate the practical feasibility and performance of our approach, we validate proofs that we obtain by converting derivation traces of an existing Datalog reasoner into our tool-independent format.

Cite as

Johannes Tantow, Lukas Gerlach, Stephan Mennicke, and Markus Krötzsch. Verifying Datalog Reasoning with Lean. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 36:1-36:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{tantow_et_al:LIPIcs.ITP.2025.36,
  author =	{Tantow, Johannes and Gerlach, Lukas and Mennicke, Stephan and Kr\"{o}tzsch, Markus},
  title =	{{Verifying Datalog Reasoning with Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{36:1--36:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.36},
  URN =		{urn:nbn:de:0030-drops-246342},
  doi =		{10.4230/LIPIcs.ITP.2025.36},
  annote =	{Keywords: Certifying Algorithms, Datalog, Formal Verification}
}
Document
Barendregt’s Theory of the λ-Calculus, Refreshed and Formalized

Authors: Adrienne Lancelot, Beniamino Accattoli, and Maxime Vemclefs

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Barendregt’s book on the untyped λ-calculus refines the inconsistent view of β-divergence as representation of the undefined via the key concept of head reduction. In this paper, we put together recent revisitations of some key theorems laid out in Barendregt’s book, and we formalize them in the Abella proof assistant. Our work provides a compact and refreshed presentation of the core of the book. The formalization faithfully mimics pen-and-paper proofs. Two interesting aspects are the manipulation of contexts for the study of contextual equivalence and a formal alternative to the informal trick at work in Takahashi’s proof of the genericity lemma. As a by-product, we obtain an alternative definition of contextual equivalence that does not mention contexts.

Cite as

Adrienne Lancelot, Beniamino Accattoli, and Maxime Vemclefs. Barendregt’s Theory of the λ-Calculus, Refreshed and Formalized. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{lancelot_et_al:LIPIcs.ITP.2025.13,
  author =	{Lancelot, Adrienne and Accattoli, Beniamino and Vemclefs, Maxime},
  title =	{{Barendregt’s Theory of the \lambda-Calculus, Refreshed and Formalized}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.13},
  URN =		{urn:nbn:de:0030-drops-246114},
  doi =		{10.4230/LIPIcs.ITP.2025.13},
  annote =	{Keywords: lambda-calculus, head reduction, equational theory}
}
Document
Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL

Authors: Jan van Brügge, Andrei Popescu, and Dmitriy Traytel

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Nominal Isabelle provides powerful tools for meta-theoretic reasoning about syntax of logics or programming languages, in which variables are bound. It has been instrumental to major verification successes, such as Gödel’s incompleteness theorems. However, the existing tooling is not compositional. In particular, it does not support nested recursion, linear binding patterns, or infinitely branching syntax. These limitations are fundamental in the way nominal datatypes and functions on them are constructed within Nominal Isabelle. Taking advantage of recent theoretical advancements that overcome these limitations through a modular approach using the concept of map-restricted bounded natural functor (MRBNF), we develop and implement a new definitional package for binding-aware datatypes in Isabelle/HOL, called MrBNF. We describe the journey from the user specification to the end-product types, constants and theorems the tool generates. We validate MrBNF in two formalization case studies that so far were out of reach of nominal approaches: (1) Mazza’s isomorphism between the finitary and the infinitary affine λ-calculus, and (2) the POPLmark 2B challenge, which involves non-free binders for linear pattern matching.

Cite as

Jan van Brügge, Andrei Popescu, and Dmitriy Traytel. Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 11:1-11:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{vanbrugge_et_al:LIPIcs.ITP.2025.11,
  author =	{van Br\"{u}gge, Jan and Popescu, Andrei and Traytel, Dmitriy},
  title =	{{Animating MRBNFs: Truly Modular Binding-Aware Datatypes in Isabelle/HOL}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{11:1--11:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.11},
  URN =		{urn:nbn:de:0030-drops-246091},
  doi =		{10.4230/LIPIcs.ITP.2025.11},
  annote =	{Keywords: syntax with bindings, datatypes, inductive predicates, Isabelle/HOL}
}
Document
Certified Implementability of Global Multiparty Protocols

Authors: Elaine Li and Thomas Wies

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Implementability is the decision problem at the heart of top-down approaches to protocol verification. In this paper, we present a mechanization of a recently proposed precise implementability characterization by Li et al. for a large class of protocols that subsumes many existing formalisms in the literature. Our protocols and implementations model asynchronous commmunication, and can exhibit infinite behavior. We improve upon their pen-and-paper results by unifying distinct formalisms, simplifying existing proof arguments, elaborating on the construction of canonical implementations, and even uncovering a subtle bug in the semantics for infinite words. As a corollary of our mechanization, we show that the original characterization of implementability applies even to protocols with infinitely many participants. We also contribute a reusable library for reasoning about generic communicating state machines. Our mechanization consists of about 15k lines of Rocq code. We believe that our mechanization can provide the foundation for deductively proving the implementability of protocols beyond the reach of prior work, extracting certified implementations for finite protocols, and investigating implementability under alternative asynchronous communication models.

Cite as

Elaine Li and Thomas Wies. Certified Implementability of Global Multiparty Protocols. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{li_et_al:LIPIcs.ITP.2025.15,
  author =	{Li, Elaine and Wies, Thomas},
  title =	{{Certified Implementability of Global Multiparty Protocols}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.15},
  URN =		{urn:nbn:de:0030-drops-246139},
  doi =		{10.4230/LIPIcs.ITP.2025.15},
  annote =	{Keywords: Asynchronous protocols, communicating state machines, labeled transition systems, infinite semantics, realizability, multiparty session types, choreographies, deadlock freedom}
}
Document
Canonical for Automated Theorem Proving in Lean

Authors: Chase Norman and Jeremy Avigad

Published in: LIPIcs, Volume 352, 16th International Conference on Interactive Theorem Proving (ITP 2025)


Abstract
Canonical is a solver for type inhabitation in dependent type theory, that is, the problem of producing a term of a given type. We present a Lean tactic which invokes Canonical to generate proof terms and synthesize programs. The tactic supports higher-order and dependently-typed goals, structural recursion over indexed inductive types, and definitional equality. Canonical finds proofs for 84% of Natural Number Game problems in 51 seconds total.

Cite as

Chase Norman and Jeremy Avigad. Canonical for Automated Theorem Proving in Lean. In 16th International Conference on Interactive Theorem Proving (ITP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 352, pp. 14:1-14:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{norman_et_al:LIPIcs.ITP.2025.14,
  author =	{Norman, Chase and Avigad, Jeremy},
  title =	{{Canonical for Automated Theorem Proving in Lean}},
  booktitle =	{16th International Conference on Interactive Theorem Proving (ITP 2025)},
  pages =	{14:1--14:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-396-6},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{352},
  editor =	{Forster, Yannick and Keller, Chantal},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2025.14},
  URN =		{urn:nbn:de:0030-drops-246128},
  doi =		{10.4230/LIPIcs.ITP.2025.14},
  annote =	{Keywords: Automated Reasoning, Interactive Theorem Proving, Dependent Type Theory, Inhabitation, Unification, Program Synthesis, Formal Methods}
}
Document
Data Types with Symmetries via Action Containers

Authors: Philipp Joram and Niccolò Veltri

Published in: LIPIcs, Volume 336, 30th International Conference on Types for Proofs and Programs (TYPES 2024)


Abstract
We study two kinds of containers for data types with symmetries in homotopy type theory, and clarify their relationship by introducing the intermediate notion of action containers. Quotient containers are set-valued containers with groups of permissible permutations of positions, interpreted as (possibly non-finitary) analytic functors on the category of sets. Symmetric containers encode symmetries in a groupoid of shapes, and are interpreted accordingly as polynomial functors on the 2-category of groupoids. Action containers are endowed with groups that act on their positions, with morphisms preserving the actions. We show that, as a category, action containers are equivalent to the free coproduct completion of a category of group actions. We derive that they model non-inductive single-variable strictly positive types in the sense of Abbott et al.: The category of action containers is closed under arbitrary (co)products and exponentiation with constants. We equip this category with the structure of a locally groupoidal 2-category, and prove that it locally embeds into the 2-category of symmetric containers. This follows from the embedding of a 2-category of groups into the 2-category of groupoids, extending the delooping construction.

Cite as

Philipp Joram and Niccolò Veltri. Data Types with Symmetries via Action Containers. In 30th International Conference on Types for Proofs and Programs (TYPES 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 336, pp. 6:1-6:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{joram_et_al:LIPIcs.TYPES.2024.6,
  author =	{Joram, Philipp and Veltri, Niccol\`{o}},
  title =	{{Data Types with Symmetries via Action Containers}},
  booktitle =	{30th International Conference on Types for Proofs and Programs (TYPES 2024)},
  pages =	{6:1--6:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-376-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{336},
  editor =	{M{\o}gelberg, Rasmus Ejlers and van den Berg, Benno},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TYPES.2024.6},
  URN =		{urn:nbn:de:0030-drops-233681},
  doi =		{10.4230/LIPIcs.TYPES.2024.6},
  annote =	{Keywords: Containers, Homotopy Type Theory, Agda, 2-categories}
}
Document
Automatic Goal Clone Detection in Rocq

Authors: Ali Ghanbari

Published in: LIPIcs, Volume 333, 39th European Conference on Object-Oriented Programming (ECOOP 2025)


Abstract
Proof engineering in Rocq is a labor-intensive process, and as proof developments grow in size, redundancy and maintainability become challenges. One such redundancy is goal cloning, i.e., proving α-equivalent goals multiple times, leading to wasted effort and bloated proof scripts. In this paper, we introduce clone-finder, a novel technique for detecting goal clones in Rocq proofs. By leveraging the formal notion of α-equivalence for Gallina terms, clone-finder systematically identifies duplicated proof goals across large Rocq codebases. We evaluate clone-finder on 40 real-world Rocq projects from the CoqGym dataset. Our results reveal that each project contains an average of 27.73 instances of goal clone. We observed that the clones can be categorized as either exact goal duplication, generalization, or α-equivalent goals with different proofs, each signifying varying levels duplicate effort. Our findings highlight significant untapped potential for proof reuse in Rocq-based formal verification projects, paving the way for future improvements in automated proof engineering.

Cite as

Ali Ghanbari. Automatic Goal Clone Detection in Rocq. In 39th European Conference on Object-Oriented Programming (ECOOP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 333, pp. 12:1-12:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{ghanbari:LIPIcs.ECOOP.2025.12,
  author =	{Ghanbari, Ali},
  title =	{{Automatic Goal Clone Detection in Rocq}},
  booktitle =	{39th European Conference on Object-Oriented Programming (ECOOP 2025)},
  pages =	{12:1--12:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-373-7},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{333},
  editor =	{Aldrich, Jonathan and Silva, Alexandra},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2025.12},
  URN =		{urn:nbn:de:0030-drops-233055},
  doi =		{10.4230/LIPIcs.ECOOP.2025.12},
  annote =	{Keywords: Clone Detection, Goal, Proof, Rocq, Gallina}
}
Document
Complete Volume
LIPIcs, Volume 268, ITP 2023, Complete Volume

Authors: Adam Naumowicz and René Thiemann

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
LIPIcs, Volume 268, ITP 2023, Complete Volume

Cite as

14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 1-660, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Proceedings{naumowicz_et_al:LIPIcs.ITP.2023,
  title =	{{LIPIcs, Volume 268, ITP 2023, Complete Volume}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{1--660},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023},
  URN =		{urn:nbn:de:0030-drops-183747},
  doi =		{10.4230/LIPIcs.ITP.2023},
  annote =	{Keywords: LIPIcs, Volume 268, ITP 2023, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Adam Naumowicz and René Thiemann

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 0:i-0:x, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{naumowicz_et_al:LIPIcs.ITP.2023.0,
  author =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{0:i--0:x},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.0},
  URN =		{urn:nbn:de:0030-drops-183755},
  doi =		{10.4230/LIPIcs.ITP.2023.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Invited Talk
Formalisation of Additive Combinatorics in Isabelle/HOL (Invited Talk)

Authors: Angeliki Koutsoukou-Argyraki

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
In this talk, I will present an overview of recent formalisations, in the interactive theorem prover Isabelle/HOL, of significant theorems in additive combinatorics, an area of combinatorial number theory. The formalisations of these theorems were the first in any proof assistant to my knowledge. For each of these theorems, I will discuss selected aspects of the formalisation process, focussing on observations on our treatment of certain mathematical arguments when translated into Isabelle/HOL and our overall formalisation experience with Isabelle/HOL for this area of mathematics.

Cite as

Angeliki Koutsoukou-Argyraki. Formalisation of Additive Combinatorics in Isabelle/HOL (Invited Talk). In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 1:1-1:2, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{koutsoukouargyraki:LIPIcs.ITP.2023.1,
  author =	{Koutsoukou-Argyraki, Angeliki},
  title =	{{Formalisation of Additive Combinatorics in Isabelle/HOL}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{1:1--1:2},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.1},
  URN =		{urn:nbn:de:0030-drops-183760},
  doi =		{10.4230/LIPIcs.ITP.2023.1},
  annote =	{Keywords: Additive combinatorics, additive number theory, combinatorial number theory, formalisation of mathematics, interactive theorem proving, proof assistants, Isabelle/HOL}
}
Document
Invited Talk
Interactive and Automated Proofs in Modal Separation Logic (Invited Talk)

Authors: Robbert Krebbers

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
In program verification, it is common to embed a high-level object logic into the meta logic of a proof assistant to hide low-level aspects of the verification. To verify imperative and concurrent programs, separation logic hides explicit reasoning about heaps and pointer disjointness. To verify programs with cyclic features such as modules or higher-order state, modal logic provides modalities to hide explicit reasoning about step-indices that are used to stratify recursion. The meta logic of proof assistants such as Coq is well suited to embed high-level object logics and prove their soundness. However, proof assistants such as Coq do not have native infrastructure to facilitate proofs in embedded logics - their proof contexts and built-in tactics for interactive and automated proofs are tailored to the connectives of the meta logic, and do not extend to those of the object logic. This results in proofs that are at a too low level of abstraction because they are cluttered with bookkeeping code related to manipulating the object logic. In this talk I will describe our work in the Iris project to address this problem - first for interactive proofs, and then for semi-automated proofs. The Iris Proof Mode provides high-level tactics for interactive proofs in higher-order concurrent separation logic with modalities. Recent work on RefinedC and Diaframe have built on top of the Iris Proof Mode to obtain proof automation for low-level C programs and fine-grained concurrent programs.

Cite as

Robbert Krebbers. Interactive and Automated Proofs in Modal Separation Logic (Invited Talk). In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, p. 2:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{krebbers:LIPIcs.ITP.2023.2,
  author =	{Krebbers, Robbert},
  title =	{{Interactive and Automated Proofs in Modal Separation Logic}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{2:1--2:1},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.2},
  URN =		{urn:nbn:de:0030-drops-183770},
  doi =		{10.4230/LIPIcs.ITP.2023.2},
  annote =	{Keywords: Program Verification, Separation Logic, Step-Indexing, Modal Logic, Interactive Theorem Proving, Proof Automation, Iris, Coq}
}
Document
A Formal Analysis of RANKING

Authors: Mohammad Abdulaziz and Christoph Madlener

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
We describe a formal correctness proof of RANKING, an online algorithm for online bipartite matching. An outcome of our formalisation is that it shows that there is a gap in all combinatorial proofs of the algorithm. Filling that gap constituted the majority of the effort which went into this work. This is despite the algorithm being one of the most studied algorithms and a central result in theoretical computer science. This gap is an example of difficulties in formalising graphical arguments which are ubiquitous in the theory of computing.

Cite as

Mohammad Abdulaziz and Christoph Madlener. A Formal Analysis of RANKING. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 3:1-3:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abdulaziz_et_al:LIPIcs.ITP.2023.3,
  author =	{Abdulaziz, Mohammad and Madlener, Christoph},
  title =	{{A Formal Analysis of RANKING}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{3:1--3:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.3},
  URN =		{urn:nbn:de:0030-drops-183785},
  doi =		{10.4230/LIPIcs.ITP.2023.3},
  annote =	{Keywords: Matching Theory, Formalized Mathematics, Online Algorithms}
}
Document
Fast, Verified Computation for Candle

Authors: Oskar Abrahamsson and Magnus O. Myreen

Published in: LIPIcs, Volume 268, 14th International Conference on Interactive Theorem Proving (ITP 2023)


Abstract
This paper describes how we have added an efficient function for computation to the kernel of the Candle interactive theorem prover. Candle is a CakeML port of HOL Light which we have, in prior work, proved sound w.r.t. the inference rules of the higher-order logic. This paper extends the original implementation and soundness proof with a new kernel function for fast computation. Experiments show that the new computation function is able to speed up certain evaluation proofs by several orders of magnitude.

Cite as

Oskar Abrahamsson and Magnus O. Myreen. Fast, Verified Computation for Candle. In 14th International Conference on Interactive Theorem Proving (ITP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 268, pp. 4:1-4:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{abrahamsson_et_al:LIPIcs.ITP.2023.4,
  author =	{Abrahamsson, Oskar and Myreen, Magnus O.},
  title =	{{Fast, Verified Computation for Candle}},
  booktitle =	{14th International Conference on Interactive Theorem Proving (ITP 2023)},
  pages =	{4:1--4:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-284-6},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{268},
  editor =	{Naumowicz, Adam and Thiemann, Ren\'{e}},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.4},
  URN =		{urn:nbn:de:0030-drops-183797},
  doi =		{10.4230/LIPIcs.ITP.2023.4},
  annote =	{Keywords: Prover soundness, Higher-order logic, Interactive theorem proving}
}
  • Refine by Type
  • 49 Document/PDF
  • 8 Document/HTML
  • 1 Volume

  • Refine by Publication Year
  • 8 2025
  • 41 2023
  • 1 2021

  • Refine by Author
  • 3 Naumowicz, Adam
  • 2 Accattoli, Beniamino
  • 2 Avigad, Jeremy
  • 2 Carneiro, Mario
  • 2 Joram, Philipp
  • Show More...

  • Refine by Series/Journal
  • 49 LIPIcs

  • Refine by Classification
  • 15 Theory of computation → Logic and verification
  • 13 Theory of computation → Type theory
  • 8 Theory of computation → Automated reasoning
  • 5 Software and its engineering → Formal methods
  • 5 Theory of computation → Higher order logic
  • Show More...

  • Refine by Keyword
  • 8 Lean
  • 7 Coq
  • 5 Isabelle/HOL
  • 3 Interactive theorem proving
  • 3 Mizar
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail