27 Search Results for "Puaut, Isabelle"


Document
Multi-Objective Memory Bandwidth Regulation and Cache Partitioning for Multicore Real-Time Systems

Authors: Binqi Sun, Zhihang Wei, Andrea Bastoni, Debayan Roy, Mirco Theile, Tomasz Kloda, Rodolfo Pellizzoni, and Marco Caccamo

Published in: LIPIcs, Volume 335, 37th Euromicro Conference on Real-Time Systems (ECRTS 2025)


Abstract
Memory bandwidth regulation and cache partitioning are widely used techniques for achieving predictable timing in real-time computing systems. Combined with partitioned scheduling, these methods require careful co-allocation of tasks and resources to cores, as task execution times strongly depend on available allocated resources. To address this challenge, this paper presents a 0-1 linear program for task-resource co-allocation, along with a multi-objective heuristic designed to minimize resource usage while guaranteeing schedulability under a preemptive EDF scheduling policy. Our heuristic employs a multi-layer framework, where an outer layer explores resource allocations using Pareto-pruned search, and an inner layer optimizes task allocation by solving a knapsack problem using dynamic programming. To evaluate the performance of the proposed optimization algorithm, we profile real-world benchmarks on an embedded AMD UltraScale+ ZCU102 platform, with fine-grained resource partitioning enabled by the Jailhouse hypervisor, leveraging cache set partitioning and MemGuard for memory bandwidth regulation. Experiments based on the benchmarking results show that the proposed 0-1 linear program outperforms existing mixed-integer programs by finding more optimal solutions within the same time limit. Moreover, the proposed multi-objective multi-layer heuristic performs consistently better than the state-of-the-art multi-resource-task co-allocation algorithm in terms of schedulability, resource usage, number of non-dominated solutions, and computational efficiency.

Cite as

Binqi Sun, Zhihang Wei, Andrea Bastoni, Debayan Roy, Mirco Theile, Tomasz Kloda, Rodolfo Pellizzoni, and Marco Caccamo. Multi-Objective Memory Bandwidth Regulation and Cache Partitioning for Multicore Real-Time Systems. In 37th Euromicro Conference on Real-Time Systems (ECRTS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 335, pp. 2:1-2:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{sun_et_al:LIPIcs.ECRTS.2025.2,
  author =	{Sun, Binqi and Wei, Zhihang and Bastoni, Andrea and Roy, Debayan and Theile, Mirco and Kloda, Tomasz and Pellizzoni, Rodolfo and Caccamo, Marco},
  title =	{{Multi-Objective Memory Bandwidth Regulation and Cache Partitioning for Multicore Real-Time Systems}},
  booktitle =	{37th Euromicro Conference on Real-Time Systems (ECRTS 2025)},
  pages =	{2:1--2:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-377-5},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{335},
  editor =	{Mancuso, Renato},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2025.2},
  URN =		{urn:nbn:de:0030-drops-235807},
  doi =		{10.4230/LIPIcs.ECRTS.2025.2},
  annote =	{Keywords: Multi-objective optimization, memory bandwidth regulation, cache partitioning, partitioned scheduling, real-time systems}
}
Document
System-Level Timing Performance Estimation Based on a Unifying HW/SW Performance Metric

Authors: Vittoriano Muttillo, Vincenzo Stoico, Giacomo Valente, Marco Santic, Luigi Pomante, and Daniele Frigioni

Published in: OASIcs, Volume 127, 16th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 14th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2025)


Abstract
The rapidly increasing complexity of embedded systems and the critical impact of non-functional requirements demand the adoption of an appropriate system-level HW/SW co-design methodology. This methodology tries to satisfy all design requirements by simultaneously considering several alternative HW/SW implementations. In this context, early performance estimation approaches are crucial in reducing the design space, thereby minimizing design time and cost. To address the challenge of system-level performance estimation, this work presents and formalizes a novel approach based on a unifying HW/SW performance metric for early execution time estimation. The proposed approach estimates the execution time of a C function when executed by different HW/SW processor technologies. The approach is validated through an extensive experimental study, demonstrating its effectiveness and efficiency in terms of estimation error (i.e., lower than 10%) and estimation time (close to zero) when compared to existing methods in the literature.

Cite as

Vittoriano Muttillo, Vincenzo Stoico, Giacomo Valente, Marco Santic, Luigi Pomante, and Daniele Frigioni. System-Level Timing Performance Estimation Based on a Unifying HW/SW Performance Metric. In 16th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 14th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2025). Open Access Series in Informatics (OASIcs), Volume 127, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{muttillo_et_al:OASIcs.PARMA-DITAM.2025.3,
  author =	{Muttillo, Vittoriano and Stoico, Vincenzo and Valente, Giacomo and Santic, Marco and Pomante, Luigi and Frigioni, Daniele},
  title =	{{System-Level Timing Performance Estimation Based on a Unifying HW/SW Performance Metric}},
  booktitle =	{16th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 14th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2025)},
  pages =	{3:1--3:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-363-8},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{127},
  editor =	{Cattaneo, Daniele and Fazio, Maria and Kosmidis, Leonidas and Morabito, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2025.3},
  URN =		{urn:nbn:de:0030-drops-229071},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2025.3},
  annote =	{Keywords: embedded systems, hw/sw co-design, performance estimation, lasso, machine learning}
}
Document
Towards Studying the Effect of Compiler Optimizations and Software Randomization on GPU Reliability

Authors: Pau López Castillón, Xavier Caricchio Hernández, and Leonidas Kosmidis

Published in: OASIcs, Volume 127, 16th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 14th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2025)


Abstract
The evolution of Graphics Processing Unit (GPU) compilers has facilitated the support for general-purpose programming languages across various architectures. The NVIDIA CUDA Compiler (NVCC) employs multiple compilation levels prior to generating machine code, implementing intricate optimizations to enhance performance. These optimizations influence the manner in which software is mapped to the underlying hardware, which can also impact GPU reliability. TASA is a source-to-source code randomization tool designed to alter the mapping of software onto the underlying hardware. It achieves this by generating random permutations of variable and function declarations, thereby introducing random padding between declarations of different types and modifying the program memory layout. Since this modifies their location in the memory, it also modifies their cache placement, affecting both their execution time (due to the different conflicts between them, which result in a different amount of cache misses in every execution), as well as their lifetime in the cache. In this work, which is part of the HiPEAC Student Challenge 2025, we first examine the reproducibility of a subset of data presented in the ACM TACO paper "Assessing the Impact of Compiler Optimizations on GPU Reliability" [Santos et al., 2024], and second we extend it by combining it with our proposal of software randomization. The paper indicates that the -O3 optimization flag facilitates an increased workload before failures occur within the application. By employing TASA, we investigate the impact of GPU randomization on reliability and performance metrics. By reproducing the results of the paper on a different GPU platform, we observe the same trend as reported in the original publication. Moreover, our preliminary results with the application of software randomization show in several cases an improved Mean Waiting Before Failure (MWBF) compared to the original source code.

Cite as

Pau López Castillón, Xavier Caricchio Hernández, and Leonidas Kosmidis. Towards Studying the Effect of Compiler Optimizations and Software Randomization on GPU Reliability. In 16th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 14th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2025). Open Access Series in Informatics (OASIcs), Volume 127, pp. 4:1-4:10, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{castillon_et_al:OASIcs.PARMA-DITAM.2025.4,
  author =	{Castill\'{o}n, Pau L\'{o}pez and Hern\'{a}ndez, Xavier Caricchio and Kosmidis, Leonidas},
  title =	{{Towards Studying the Effect of Compiler Optimizations and Software Randomization on GPU Reliability}},
  booktitle =	{16th Workshop on Parallel Programming and Run-Time Management Techniques for Many-Core Architectures and 14th Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2025)},
  pages =	{4:1--4:10},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-363-8},
  ISSN =	{2190-6807},
  year =	{2025},
  volume =	{127},
  editor =	{Cattaneo, Daniele and Fazio, Maria and Kosmidis, Leonidas and Morabito, Gabriele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.PARMA-DITAM.2025.4},
  URN =		{urn:nbn:de:0030-drops-229083},
  doi =		{10.4230/OASIcs.PARMA-DITAM.2025.4},
  annote =	{Keywords: Graphics processing units, reliability, software randomization, error rate}
}
Document
WORTEX: Worst-Case Execution Time and Energy Estimation in Low-Power Microprocessors Using Explainable ML

Authors: Hugo Reymond, Abderaouf Nassim Amalou, and Isabelle Puaut

Published in: OASIcs, Volume 121, 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)


Abstract
Real-time and energy-constrained systems heavily rely on estimates of the worst-case execution time (WCET) and worst-case energy consumption (WCEC) of code snippets to ensure trustworthy operation. Designing architecture-specific analytical models for time and energy is often challenging and time-consuming. In situations where analytical models are unavailable or incomplete, machine learning (ML) techniques emerge as a promising solution to build WCEC/WCET models. This paper introduces WORTEX, a toolkit for WCEC/WCET estimation of basic blocks based on ML techniques. To ensure the real-world applicability of its models, WORTEX extracts large datasets of basic blocks from real programs and precisely measures their energy consumption/execution time on the physical target platform. The dataset is used to train various WCEC/WCET models using different ML techniques. Experimental results on simple and time-predictable hardware show that even the most basic ML techniques provide accurate results, that never underestimate actual values. We also discuss the use of explainability techniques to gain trustworthiness for the models.

Cite as

Hugo Reymond, Abderaouf Nassim Amalou, and Isabelle Puaut. WORTEX: Worst-Case Execution Time and Energy Estimation in Low-Power Microprocessors Using Explainable ML. In 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024). Open Access Series in Informatics (OASIcs), Volume 121, pp. 1:1-1:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{reymond_et_al:OASIcs.WCET.2024.1,
  author =	{Reymond, Hugo and Amalou, Abderaouf Nassim and Puaut, Isabelle},
  title =	{{WORTEX: Worst-Case Execution Time and Energy Estimation in Low-Power Microprocessors Using Explainable ML}},
  booktitle =	{22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)},
  pages =	{1:1--1:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-346-1},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{121},
  editor =	{Carle, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2024.1},
  URN =		{urn:nbn:de:0030-drops-204691},
  doi =		{10.4230/OASIcs.WCET.2024.1},
  annote =	{Keywords: Worst-Case Execution Time (WCET), Worst-Case Energy Consumption (WCEC), Machine Learning, Explainable ML models}
}
Document
Invited Talk
Machine Learning for Timing Analysis: The Good, the Bad and the Ugly (Invited Talk)

Authors: Isabelle Puaut

Published in: OASIcs, Volume 121, 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)


Abstract
The microarchitecture of processors is becoming increasingly complex and less documented, making the design of timing models for WCET calculation increasingly complicated, if not impossible. We have recently experimented with the use of machine learning techniques (ML) to predict the WCET of basic blocks [Amalou et al., 2021; Abderaouf N. Amalou et al., 2022; Amalou et al., 2023; Abderaouf Nassim Amalou, 2023; Abderaouf Nassim Amalou et al., 2024]. Predicted WCETs can then be integrated into static WCET calculation tools, resulting in a hybrid WCET calculation. In this keynote, we present our experience using ML for WCET calculation, across a range of architectures, from very simple ones (MSP430, Cortex M4) to more complex architectures. Rather than presenting only what worked, we also discuss in this keynote the bad, and even very bad, surprises encountered during the process, and how we overcame (most of) them.

Cite as

Isabelle Puaut. Machine Learning for Timing Analysis: The Good, the Bad and the Ugly (Invited Talk). In 22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024). Open Access Series in Informatics (OASIcs), Volume 121, p. 7:1, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{puaut:OASIcs.WCET.2024.7,
  author =	{Puaut, Isabelle},
  title =	{{Machine Learning for Timing Analysis: The Good, the Bad and the Ugly}},
  booktitle =	{22nd International Workshop on Worst-Case Execution Time Analysis (WCET 2024)},
  pages =	{7:1--7:1},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-346-1},
  ISSN =	{2190-6807},
  year =	{2024},
  volume =	{121},
  editor =	{Carle, Thomas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2024.7},
  URN =		{urn:nbn:de:0030-drops-204753},
  doi =		{10.4230/OASIcs.WCET.2024.7},
  annote =	{Keywords: Worst-Case Execution Time (WCET) estimation, Machine Learning, Explainable ML models}
}
Document
CAWET: Context-Aware Worst-Case Execution Time Estimation Using Transformers

Authors: Abderaouf N Amalou, Elisa Fromont, and Isabelle Puaut

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
This paper presents CAWET, a hybrid worst-case program timing estimation technique. CAWET identifies the longest execution path using static techniques, whereas the worst-case execution time (WCET) of basic blocks is predicted using an advanced language processing technique called Transformer-XL. By employing Transformers-XL in CAWET, the execution context formed by previously executed basic blocks is taken into account, allowing for consideration of the micro-architecture of the processor pipeline without explicit modeling. Through a series of experiments on the TacleBench benchmarks, using different target processors (Arm Cortex M4, M7, and A53), our method is demonstrated to never underestimate WCETs and is shown to be less pessimistic than its competitors.

Cite as

Abderaouf N Amalou, Elisa Fromont, and Isabelle Puaut. CAWET: Context-Aware Worst-Case Execution Time Estimation Using Transformers. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 7:1-7:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{amalou_et_al:LIPIcs.ECRTS.2023.7,
  author =	{Amalou, Abderaouf N and Fromont, Elisa and Puaut, Isabelle},
  title =	{{CAWET: Context-Aware Worst-Case Execution Time Estimation Using Transformers}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{7:1--7:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.7},
  URN =		{urn:nbn:de:0030-drops-180367},
  doi =		{10.4230/LIPIcs.ECRTS.2023.7},
  annote =	{Keywords: Worst-case execution time, machine learning, transformers, hybrid technique}
}
Document
StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks

Authors: Théo Degioanni and Isabelle Puaut

Published in: OASIcs, Volume 103, 20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022)


Abstract
Accesses to shared resources in multi-core systems raise predictability issues. The delay in accessing a resource for a task executing on a core depends on concurrent resource sharing from tasks executing on the other cores. In this paper, we present StAMP, a compiler technique that splits the code of tasks into a sequence of code intervals intervals, each with a distinct worst-case memory access profile. The intervals identified by StAMP can serve as inputs to scheduling techniques for a tight calculation of worst-case delays of memory accesses. The provided information can also ease the design of mechanisms that avoid and/or control interference between tasks at run-time. An important feature of StAMP compared to related work lies in its ability to link back time intervals to unique locations in the code of tasks, allowing easy implementation of elaborate run-time decisions related to interference management.

Cite as

Théo Degioanni and Isabelle Puaut. StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks. In 20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022). Open Access Series in Informatics (OASIcs), Volume 103, pp. 1:1-1:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{degioanni_et_al:OASIcs.WCET.2022.1,
  author =	{Degioanni, Th\'{e}o and Puaut, Isabelle},
  title =	{{StAMP: Static Analysis of Memory Access Profiles for Real-Time Tasks}},
  booktitle =	{20th International Workshop on Worst-Case Execution Time Analysis (WCET 2022)},
  pages =	{1:1--1:13},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-244-0},
  ISSN =	{2190-6807},
  year =	{2022},
  volume =	{103},
  editor =	{Ballabriga, Cl\'{e}ment},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2022.1},
  URN =		{urn:nbn:de:0030-drops-166231},
  doi =		{10.4230/OASIcs.WCET.2022.1},
  annote =	{Keywords: Worst-Case Execution Time Estimation, Static Analysis, Multicore, Interference, Implicit Path Enumeration Technique}
}
Document
RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

Authors: Nicolas Bellec, Guillaume Hiet, Simon Rokicki, Frederic Tronel, and Isabelle Puaut

Published in: LIPIcs, Volume 231, 34th Euromicro Conference on Real-Time Systems (ECRTS 2022)


Abstract
The emergence of Real-Time Systems with increased connections to their environment has led to a greater demand in security for these systems. Memory corruption attacks, which modify the memory to trigger unexpected executions, are a significant threat against applications written in low-level languages. Data-Flow Integrity (DFI) is a protection that verifies that only a trusted source has written any loaded data. The overhead of such a security mechanism remains a major issue that limits its adoption. This article presents RT-DFI, a new approach that optimizes Data-Flow Integrity to reduce its overhead on the Worst-Case Execution Time. We model the number and order of the checks and use an Integer Linear Programming solver to optimize the protection on the Worst-Case Execution Path. Our approach protects the program against many memory-corruption attacks, including Return-Oriented Programming and Data-Only attacks. Moreover, our experimental results show that our optimization reduces the overhead by 7% on average compared to a state-of-the-art implementation.

Cite as

Nicolas Bellec, Guillaume Hiet, Simon Rokicki, Frederic Tronel, and Isabelle Puaut. RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems. In 34th Euromicro Conference on Real-Time Systems (ECRTS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 231, pp. 18:1-18:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bellec_et_al:LIPIcs.ECRTS.2022.18,
  author =	{Bellec, Nicolas and Hiet, Guillaume and Rokicki, Simon and Tronel, Frederic and Puaut, Isabelle},
  title =	{{RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems}},
  booktitle =	{34th Euromicro Conference on Real-Time Systems (ECRTS 2022)},
  pages =	{18:1--18:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-239-6},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{231},
  editor =	{Maggio, Martina},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2022.18},
  URN =		{urn:nbn:de:0030-drops-163351},
  doi =		{10.4230/LIPIcs.ECRTS.2022.18},
  annote =	{Keywords: Real-time system, Software security, Data-flow integrity, Worst-case execution time}
}
Document
Attack Detection Through Monitoring of Timing Deviations in Embedded Real-Time Systems

Authors: Nicolas Bellec, Simon Rokicki, and Isabelle Puaut

Published in: LIPIcs, Volume 165, 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)


Abstract
Real-time embedded systems (RTES) are required to interact more and more with their environment, thereby increasing their attack surface. Recent security breaches on car brakes and other critical components have already proven the feasibility of attacks on RTES. Such attacks may change the control-flow of the programs, which may lead to violations of the system’s timing constraints. In this paper, we present a technique to detect attacks in RTES based on timing information. Our technique, designed for single-core processors, is based on a monitor implemented in hardware to preserve the predictability of instrumented programs. The monitor uses timing information (Worst-Case Execution Time - WCET) of code regions to detect attacks. The proposed technique guarantees that attacks that delay the run-time of any region beyond its WCET are detected. Since the number of regions in programs impacts the memory resources consumed by the hardware monitor, our method includes a region selection algorithm that limits the amount of memory consumed by the monitor. An implementation of the hardware monitor and its simulation demonstrates the practicality of our approach. In particular, an experimental study evaluates the attack detection latency.

Cite as

Nicolas Bellec, Simon Rokicki, and Isabelle Puaut. Attack Detection Through Monitoring of Timing Deviations in Embedded Real-Time Systems. In 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 165, pp. 8:1-8:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{bellec_et_al:LIPIcs.ECRTS.2020.8,
  author =	{Bellec, Nicolas and Rokicki, Simon and Puaut, Isabelle},
  title =	{{Attack Detection Through Monitoring of Timing Deviations in Embedded Real-Time Systems}},
  booktitle =	{32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)},
  pages =	{8:1--8:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-152-8},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{165},
  editor =	{V\"{o}lp, Marcus},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2020.8},
  URN =		{urn:nbn:de:0030-drops-123719},
  doi =		{10.4230/LIPIcs.ECRTS.2020.8},
  annote =	{Keywords: Real-time systems, security, attack detection, control flow hijacking, WCET estimation, hardware monitoring}
}
Document
Impact of DM-LRU on WCET: A Static Analysis Approach

Authors: Renato Mancuso, Heechul Yun, and Isabelle Puaut

Published in: LIPIcs, Volume 133, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
Cache memories in modern embedded processors are known to improve average memory access performance. Unfortunately, they are also known to represent a major source of unpredictability for hard real-time workload. One of the main limitations of typical caches is that content selection and replacement is entirely performed in hardware. As such, it is hard to control the cache behavior in software to favor caching of blocks that are known to have an impact on an application’s worst-case execution time (WCET). In this paper, we consider a cache replacement policy, namely DM-LRU, that allows system designers to prioritize caching of memory blocks that are known to have an important impact on an application’s WCET. Considering a single-core, single-level cache hierarchy, we describe an abstract interpretation-based timing analysis for DM-LRU. We implement the proposed analysis in a self-contained toolkit and study its qualitative properties on a set of representative benchmarks. Apart from being useful to compute the WCET when DM-LRU or similar policies are used, the proposed analysis can allow designers to perform WCET impact-aware selection of content to be retained in cache.

Cite as

Renato Mancuso, Heechul Yun, and Isabelle Puaut. Impact of DM-LRU on WCET: A Static Analysis Approach. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 133, pp. 17:1-17:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{mancuso_et_al:LIPIcs.ECRTS.2019.17,
  author =	{Mancuso, Renato and Yun, Heechul and Puaut, Isabelle},
  title =	{{Impact of DM-LRU on WCET: A Static Analysis Approach}},
  booktitle =	{31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
  pages =	{17:1--17:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-110-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{133},
  editor =	{Quinton, Sophie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.17},
  URN =		{urn:nbn:de:0030-drops-107546},
  doi =		{10.4230/LIPIcs.ECRTS.2019.17},
  annote =	{Keywords: real-time, static cache analysis, abstract interpretation, LRU, deterministic memory, static cache locking, dynamic cache locking, cache profiling, WCET analysis}
}
Document
Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures

Authors: Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut

Published in: LIPIcs, Volume 133, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
Multi-core systems using ScratchPad Memories (SPMs) are attractive architectures for executing time-critical embedded applications, because they provide both predictability and performance. In this paper, we propose a scheduling technique that jointly selects SPM contents off-line, in such a way that the cost of SPM loading/unloading is hidden. Communications are fragmented to augment hiding possibilities. Experimental results show the effectiveness of the proposed technique on streaming applications and synthetic task-graphs. The overlapping of communications with computations allows the length of generated schedules to be reduced by 4% on average on streaming applications, with a maximum of 16%, and by 8% on average for synthetic task graphs. We further show on a case study that generated schedules can be implemented with low overhead on a predictable multi-core architecture (Kalray MPPA).

Cite as

Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 133, pp. 25:1-25:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{rouxel_et_al:LIPIcs.ECRTS.2019.25,
  author =	{Rouxel, Benjamin and Skalistis, Stefanos and Derrien, Steven and Puaut, Isabelle},
  title =	{{Hiding Communication Delays in Contention-Free Execution for SPM-Based Multi-Core Architectures}},
  booktitle =	{31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
  pages =	{25:1--25:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-110-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{133},
  editor =	{Quinton, Sophie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.25},
  URN =		{urn:nbn:de:0030-drops-107626},
  doi =		{10.4230/LIPIcs.ECRTS.2019.25},
  annote =	{Keywords: Real-time Systems, Contention-Free Scheduling, SPM multi-core architecture}
}
Document
Improving WCET Evaluation using Linear Relation Analysis

Authors: Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Erwan Jahier, Nicolas Halbwachs, Fabienne Carrier, Mihail Asavoae, and Rémy Boutonnet

Published in: LITES, Volume 6, Issue 1 (2019). Leibniz Transactions on Embedded Systems, Volume 6, Issue 1


Abstract
The precision of a worst case execution time (WCET) evaluation tool on a given program is highly dependent on how the tool is able to detect and discard semantically infeasible executions of the program. In this paper, we propose to use the classical abstract interpretation-based method of linear relation analysis to discover and exploit relations between execution paths. For this purpose, we add auxiliary variables (counters) to the program to trace its execution paths. The results are easily incorporated in the classical workflow of a WCET evaluator, when the evaluator is based on the popular implicit path enumeration technique. We use existing tools - a WCET evaluator and a linear relation analyzer - to build and experiment a prototype implementation of this idea.

Cite as

Pascal Raymond, Claire Maiza, Catherine Parent-Vigouroux, Erwan Jahier, Nicolas Halbwachs, Fabienne Carrier, Mihail Asavoae, and Rémy Boutonnet. Improving WCET Evaluation using Linear Relation Analysis. In LITES, Volume 6, Issue 1 (2019). Leibniz Transactions on Embedded Systems, Volume 6, Issue 1, pp. 02:1-02:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Article{raymond_et_al:LITES-v006-i001-a002,
  author =	{Raymond, Pascal and Maiza, Claire and Parent-Vigouroux, Catherine and Jahier, Erwan and Halbwachs, Nicolas and Carrier, Fabienne and Asavoae, Mihail and Boutonnet, R\'{e}my},
  title =	{{Improving WCET Evaluation using Linear Relation Analysis}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{02:1--02:28},
  ISSN =	{2199-2002},
  year =	{2019},
  volume =	{6},
  number =	{1},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v006-i001-a002},
  URN =		{urn:nbn:de:0030-drops-192784},
  doi =		{10.4230/LITES-v006-i001-a002},
  annote =	{Keywords: Worst Case Execution Time estimation, Infeasible Execution Paths, Abstract Interpretation}
}
Document
Fine-Grain Iterative Compilation for WCET Estimation

Authors: Isabelle Puaut, Mickaël Dardaillon, Christoph Cullmann, Gernot Gebhard, and Steven Derrien

Published in: OASIcs, Volume 63, 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)


Abstract
Compiler optimizations, although reducing the execution times of programs, raise issues in static WCET estimation techniques and tools. Flow facts, such as loop bounds, may not be automatically found by static WCET analysis tools after aggressive code optimizations. In this paper, we explore the use of iterative compilation (WCET-directed program optimization to explore the optimization space), with the objective to (i) allow flow facts to be automatically found and (ii) select optimizations that result in the lowest WCET estimates. We also explore to which extent code outlining helps, by allowing the selection of different optimization options for different code snippets of the application.

Cite as

Isabelle Puaut, Mickaël Dardaillon, Christoph Cullmann, Gernot Gebhard, and Steven Derrien. Fine-Grain Iterative Compilation for WCET Estimation. In 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018). Open Access Series in Informatics (OASIcs), Volume 63, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{puaut_et_al:OASIcs.WCET.2018.9,
  author =	{Puaut, Isabelle and Dardaillon, Micka\"{e}l and Cullmann, Christoph and Gebhard, Gernot and Derrien, Steven},
  title =	{{Fine-Grain Iterative Compilation for WCET Estimation}},
  booktitle =	{18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018)},
  pages =	{9:1--9:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-073-6},
  ISSN =	{2190-6807},
  year =	{2018},
  volume =	{63},
  editor =	{Brandner, Florian},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2018.9},
  URN =		{urn:nbn:de:0030-drops-97556},
  doi =		{10.4230/OASIcs.WCET.2018.9},
  annote =	{Keywords: Worst-Case Execution Time Estimation, Compiler optimizations, Iterative Compilation, Flow fact extraction, Outlining}
}
Document
EMSBench: Benchmark and Testbed for Reactive Real-Time Systems

Authors: Florian Kluge, Christine Rochange, and Theo Ungerer

Published in: LITES, Volume 4, Issue 2 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 2


Abstract
Benchmark suites for real-time embedded systems (RTES) usually contain only pure computations that are often used in this domain. They allow to evaluate computing performance, but do not reproduce the complexity and behaviour that is typical for such systems. Actual RTES have to interact with the physical environment, which is often reflected by code that is executed concurrently. In this article, we present the software package EMSBench that mimics such complex behaviour, and highlight some of its use cases. The benchmark code ems of EMSBench is based on the open-source engine management system (EMS) FreeEMS. Additionally, EMSBench contains a trace generator (tg) that provides input signals for ems and enables to execute ems close to reality. We provide detailed descriptions of the ems's execution behaviour and of trace generation. EMSBench can be used as test or benchmark program to compare different hardware platforms, e.g. in terms of schedulability. Also, we use EMSBench as a benchmark for static worst-case execution time (WCET) analysis and compare these results to measurements performed on existing hardware. Our results based on the OTAWA WCET estimation tool show WCET overestimations by the static analysis from 11.9% to 41.1% depending on the complexity of the analysed functions.

Cite as

Florian Kluge, Christine Rochange, and Theo Ungerer. EMSBench: Benchmark and Testbed for Reactive Real-Time Systems. In LITES, Volume 4, Issue 2 (2017). Leibniz Transactions on Embedded Systems, Volume 4, Issue 2, pp. 02:1-02:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@Article{kluge_et_al:LITES-v004-i002-a002,
  author =	{Kluge, Florian and Rochange, Christine and Ungerer, Theo},
  title =	{{EMSBench: Benchmark and Testbed for Reactive Real-Time Systems}},
  journal =	{Leibniz Transactions on Embedded Systems},
  pages =	{02:1--02:23},
  ISSN =	{2199-2002},
  year =	{2017},
  volume =	{4},
  number =	{2},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LITES-v004-i002-a002},
  URN =		{urn:nbn:de:0030-drops-192698},
  doi =		{10.4230/LITES-v004-i002-a002},
  annote =	{Keywords: Real-time benchmark, WCET Analysis, Engine Management System}
}
Document
STR2RTS: Refactored StreamIT Benchmarks into Statically Analyzable Parallel Benchmarks for WCET Estimation & Real-Time Scheduling

Authors: Benjamin Rouxel and Isabelle Puaut

Published in: OASIcs, Volume 57, 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017)


Abstract
We all had quite a time to find non-proprietary architecture-independent exploitable parallel benchmarks for Worst-Case Execution Time (WCET) estimation and real-time scheduling. However, there is no consensus on a parallel benchmark suite, when compared to the single-core era and the Mälardalen benchmark suite. This document bridges part of this gap, by presenting a collection of benchmarks with the following good properties: (i) easily analyzable by static WCET estimation tools (written in structured C language, in particular neither goto nor dynamic memory allocation, containing flow information such as loop bounds); (ii) independent from any particular run-time system (MPI, OpenMP) or real-time operating system. Each benchmark is composed of the C source code of its tasks, and an XML description describing the structure of the application (tasks and amount of data exchanged between them when applicable). Each benchmark can be integrated in a full end-to-end empirical method validation protocol on multi-core architecture. This proposed collection of benchmarks is derived from the well known StreamIT [Thies et al., Comp. Constr., 2002] benchmark suite and will be integrated in the TACleBench suite [Falk et al., WCET, 2016] in a near future. All these benchmarks are available at https://gitlab.inria.fr/brouxel/STR2RTS.

Cite as

Benjamin Rouxel and Isabelle Puaut. STR2RTS: Refactored StreamIT Benchmarks into Statically Analyzable Parallel Benchmarks for WCET Estimation & Real-Time Scheduling. In 17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017). Open Access Series in Informatics (OASIcs), Volume 57, pp. 1:1-1:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{rouxel_et_al:OASIcs.WCET.2017.1,
  author =	{Rouxel, Benjamin and Puaut, Isabelle},
  title =	{{STR2RTS: Refactored StreamIT Benchmarks into Statically Analyzable Parallel Benchmarks for WCET Estimation \& Real-Time Scheduling}},
  booktitle =	{17th International Workshop on Worst-Case Execution Time Analysis (WCET 2017)},
  pages =	{1:1--1:12},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-057-6},
  ISSN =	{2190-6807},
  year =	{2017},
  volume =	{57},
  editor =	{Reineke, Jan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.WCET.2017.1},
  URN =		{urn:nbn:de:0030-drops-73047},
  doi =		{10.4230/OASIcs.WCET.2017.1},
  annote =	{Keywords: Parallel benchmarks, Tasks scheduling, Worst-Case Execution Time estimation}
}
  • Refine by Type
  • 27 Document/PDF
  • 3 Document/HTML

  • Refine by Publication Year
  • 3 2025
  • 2 2024
  • 1 2023
  • 2 2022
  • 1 2020
  • Show More...

  • Refine by Author
  • 17 Puaut, Isabelle
  • 3 Hardy, Damien
  • 3 Rouxel, Benjamin
  • 2 Bellec, Nicolas
  • 2 Carrier, Fabienne
  • Show More...

  • Refine by Series/Journal
  • 7 LIPIcs
  • 13 OASIcs
  • 7 LITES

  • Refine by Classification
  • 8 Computer systems organization → Real-time systems
  • 3 Computer systems organization → Embedded systems
  • 3 Computer systems organization → Real-time system architecture
  • 3 Software and its engineering → Real-time systems software
  • 2 Computer systems organization → Embedded and cyber-physical systems
  • Show More...

  • Refine by Keyword
  • 3 Real-time systems
  • 3 WCET analysis
  • 3 Worst-Case Execution Time Estimation
  • 3 Worst-case execution time
  • 2 Explainable ML models
  • Show More...

Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail