4 Search Results for "Schwarz, Christian"


Document
Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form

Authors: Christoph Berkholz, Dietrich Kuske, and Christian Schwarz

Published in: LIPIcs, Volume 289, 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)


Abstract
Is it possible to write significantly smaller formulae, when using more Boolean operators in addition to the De Morgan basis (and, or, not)? For propositional logic a negative answer was given by Pratt: every formula with additional operators can be translated to the De Morgan basis with only polynomial increase in size. Surprisingly, for modal logic the picture is different: we show that adding bi-implication allows to write exponentially smaller formulae. Moreover, we provide a complete classification of finite sets of Boolean operators showing they are either of no help (allow polynomial translations to the De Morgan basis) or can express properties as succinct as modal logic with additional bi-implication. More precisely, these results are shown for the modal logic T (and therefore for K). We complement this result showing that the modal logic S5 behaves as propositional logic: no additional Boolean operators make it possible to write significantly smaller formulae.

Cite as

Christoph Berkholz, Dietrich Kuske, and Christian Schwarz. Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form. In 41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 289, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{berkholz_et_al:LIPIcs.STACS.2024.12,
  author =	{Berkholz, Christoph and Kuske, Dietrich and Schwarz, Christian},
  title =	{{Modal Logic Is More Succinct Iff Bi-Implication Is Available in Some Form}},
  booktitle =	{41st International Symposium on Theoretical Aspects of Computer Science (STACS 2024)},
  pages =	{12:1--12:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-311-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{289},
  editor =	{Beyersdorff, Olaf and Kant\'{e}, Mamadou Moustapha and Kupferman, Orna and Lokshtanov, Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2024.12},
  URN =		{urn:nbn:de:0030-drops-197228},
  doi =		{10.4230/LIPIcs.STACS.2024.12},
  annote =	{Keywords: succinctness, modal logic}
}
Document
Complexity of Counting First-Order Logic for the Subword Order

Authors: Dietrich Kuske and Christian Schwarz

Published in: LIPIcs, Volume 170, 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)


Abstract
This paper considers the structure consisting of the set of all words over a given alphabet together with the subword relation, regular predicates, and constants for every word. We are interested in the counting extension of first-order logic by threshold counting quantifiers. The main result shows that the two-variable fragment of this logic can be decided in two-fold exponential space provided the regular predicates are restricted to piecewise testable ones. This result improves prior insights by Karandikar and Schnoebelen by extending the logic and saving one exponent. Its proof consists of two main parts: First, we provide a quantifier elimination procedure that results in a formula with constants of bounded length (this generalizes the procedure by Karandikar and Schnoebelen for first-order logic). From this, it follows that quantification in formulas can be restricted to words of bounded length, i.e., the second part of the proof is an adaptation of the method by Ferrante and Rackoff to counting logic and deviates significantly from the path of reasoning by Karandikar and Schnoebelen.

Cite as

Dietrich Kuske and Christian Schwarz. Complexity of Counting First-Order Logic for the Subword Order. In 45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 170, pp. 61:1-61:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{kuske_et_al:LIPIcs.MFCS.2020.61,
  author =	{Kuske, Dietrich and Schwarz, Christian},
  title =	{{Complexity of Counting First-Order Logic for the Subword Order}},
  booktitle =	{45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020)},
  pages =	{61:1--61:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-159-7},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{170},
  editor =	{Esparza, Javier and Kr\'{a}l', Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2020.61},
  URN =		{urn:nbn:de:0030-drops-127297},
  doi =		{10.4230/LIPIcs.MFCS.2020.61},
  annote =	{Keywords: Counting logic, piecewise testable languages}
}
Document
Inflection-Tolerant Ontology-Based Named Entity Recognition for Real-Time Applications

Authors: Christian Jilek, Markus Schröder, Rudolf Novik, Sven Schwarz, Heiko Maus, and Andreas Dengel

Published in: OASIcs, Volume 70, 2nd Conference on Language, Data and Knowledge (LDK 2019)


Abstract
A growing number of applications users daily interact with have to operate in (near) real-time: chatbots, digital companions, knowledge work support systems - just to name a few. To perform the services desired by the user, these systems have to analyze user activity logs or explicit user input extremely fast. In particular, text content (e.g. in form of text snippets) needs to be processed in an information extraction task. Regarding the aforementioned temporal requirements, this has to be accomplished in just a few milliseconds, which limits the number of methods that can be applied. Practically, only very fast methods remain, which on the other hand deliver worse results than slower but more sophisticated Natural Language Processing (NLP) pipelines. In this paper, we investigate and propose methods for real-time capable Named Entity Recognition (NER). As a first improvement step, we address word variations induced by inflection, for example present in the German language. Our approach is ontology-based and makes use of several language information sources like Wiktionary. We evaluated it using the German Wikipedia (about 9.4B characters), for which the whole NER process took considerably less than an hour. Since precision and recall are higher than with comparably fast methods, we conclude that the quality gap between high speed methods and sophisticated NLP pipelines can be narrowed a bit more without losing real-time capable runtime performance.

Cite as

Christian Jilek, Markus Schröder, Rudolf Novik, Sven Schwarz, Heiko Maus, and Andreas Dengel. Inflection-Tolerant Ontology-Based Named Entity Recognition for Real-Time Applications. In 2nd Conference on Language, Data and Knowledge (LDK 2019). Open Access Series in Informatics (OASIcs), Volume 70, pp. 11:1-11:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{jilek_et_al:OASIcs.LDK.2019.11,
  author =	{Jilek, Christian and Schr\"{o}der, Markus and Novik, Rudolf and Schwarz, Sven and Maus, Heiko and Dengel, Andreas},
  title =	{{Inflection-Tolerant Ontology-Based Named Entity Recognition for Real-Time Applications}},
  booktitle =	{2nd Conference on Language, Data and Knowledge (LDK 2019)},
  pages =	{11:1--11:14},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-105-4},
  ISSN =	{2190-6807},
  year =	{2019},
  volume =	{70},
  editor =	{Eskevich, Maria and de Melo, Gerard and F\"{a}th, Christian and McCrae, John P. and Buitelaar, Paul and Chiarcos, Christian and Klimek, Bettina and Dojchinovski, Milan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/OASIcs.LDK.2019.11},
  URN =		{urn:nbn:de:0030-drops-103759},
  doi =		{10.4230/OASIcs.LDK.2019.11},
  annote =	{Keywords: Ontology-based information extraction, Named entity recognition, Inflectional languages, Real-time systems}
}
Document
04441 Working Group – Towards a Handbook for User-Centred Mobile Application Design

Authors: Susanne Boll, Martin Breunig, Nigel Davies, Christian S. Jensen, Birgitta König-Ries, Rainer Malaka, Florian Matthes, Christoforos Panayiotou, Simonas Saltenis, and Thomas Schwarz

Published in: Dagstuhl Seminar Proceedings, Volume 4441, Mobile Information Management (2005)


Abstract
Why do we have difficulties designing mobile apps? Is there a "Mobile RUP"?

Cite as

Susanne Boll, Martin Breunig, Nigel Davies, Christian S. Jensen, Birgitta König-Ries, Rainer Malaka, Florian Matthes, Christoforos Panayiotou, Simonas Saltenis, and Thomas Schwarz. 04441 Working Group – Towards a Handbook for User-Centred Mobile Application Design. In Mobile Information Management. Dagstuhl Seminar Proceedings, Volume 4441, pp. 1-8, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2005)


Copy BibTex To Clipboard

@InProceedings{boll_et_al:DagSemProc.04441.8,
  author =	{Boll, Susanne and Breunig, Martin and Davies, Nigel and Jensen, Christian S. and K\"{o}nig-Ries, Birgitta and Malaka, Rainer and Matthes, Florian and Panayiotou, Christoforos and Saltenis, Simonas and Schwarz, Thomas},
  title =	{{04441 Working Group – Towards a Handbook for User-Centred Mobile Application Design}},
  booktitle =	{Mobile Information Management},
  pages =	{1--8},
  series =	{Dagstuhl Seminar Proceedings (DagSemProc)},
  ISSN =	{1862-4405},
  year =	{2005},
  volume =	{4441},
  editor =	{Margaret H. Dunham and Birgitta K\"{o}nig-Ries and Evaggelia Pitoura and Peter Reiher and Can T\"{u}rker},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagSemProc.04441.8},
  URN =		{urn:nbn:de:0030-drops-1662},
  doi =		{10.4230/DagSemProc.04441.8},
  annote =	{Keywords: User-Centred Mobile Application Design}
}
  • Refine by Author
  • 2 Kuske, Dietrich
  • 2 Schwarz, Christian
  • 1 Berkholz, Christoph
  • 1 Boll, Susanne
  • 1 Breunig, Martin
  • Show More...

  • Refine by Classification
  • 1 Computing methodologies → Information extraction
  • 1 Computing methodologies → Semantic networks
  • 1 Theory of computation → Logic
  • 1 Theory of computation → Logic and verification
  • 1 Theory of computation → Regular languages

  • Refine by Keyword
  • 1 Counting logic
  • 1 Inflectional languages
  • 1 Named entity recognition
  • 1 Ontology-based information extraction
  • 1 Real-time systems
  • Show More...

  • Refine by Type
  • 4 document

  • Refine by Publication Year
  • 1 2005
  • 1 2019
  • 1 2020
  • 1 2024

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail