99 Search Results for "Svensson, Ola"


Volume

LIPIcs, Volume 144

27th Annual European Symposium on Algorithms (ESA 2019)

ESA 2019, September 9-11, 2019, Munich/Garching, Germany

Editors: Michael A. Bender, Ola Svensson, and Grzegorz Herman

Document
Scheduling (Dagstuhl Seminar 23061)

Authors: Nicole Megow, Benjamin J. Moseley, David Shmoys, Ola Svensson, Sergei Vassilvitskii, and Jens Schlöter

Published in: Dagstuhl Reports, Volume 13, Issue 2 (2023)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23061 "Scheduling". The seminar focused on the emerging models for beyond-worst case algorithm design, in particular, recent approaches that incorporate learning. This includes models for the integration of learning into algorithm design that have been proposed recently and that have already demonstrated advances in the state-of-art for various scheduling applications: (i) scheduling with error-prone learned predictions, (ii) data-driven algorithm design, and (iii) stochastic and Bayesian learning in scheduling.

Cite as

Nicole Megow, Benjamin J. Moseley, David Shmoys, Ola Svensson, Sergei Vassilvitskii, and Jens Schlöter. Scheduling (Dagstuhl Seminar 23061). In Dagstuhl Reports, Volume 13, Issue 2, pp. 1-19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@Article{megow_et_al:DagRep.13.2.1,
  author =	{Megow, Nicole and Moseley, Benjamin J. and Shmoys, David and Svensson, Ola and Vassilvitskii, Sergei and Schl\"{o}ter, Jens},
  title =	{{Scheduling (Dagstuhl Seminar 23061)}},
  pages =	{1--19},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2023},
  volume =	{13},
  number =	{2},
  editor =	{Megow, Nicole and Moseley, Benjamin J. and Shmoys, David and Svensson, Ola and Vassilvitskii, Sergei and Schl\"{o}ter, Jens},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.13.2.1},
  URN =		{urn:nbn:de:0030-drops-191789},
  doi =		{10.4230/DagRep.13.2.1},
  annote =	{Keywords: scheduling, mathematical optimization, approximation algorithms, learning methods, uncertainty}
}
Document
Exact Matching: Algorithms and Related Problems

Authors: Nicolas El Maalouly

Published in: LIPIcs, Volume 254, 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)


Abstract
In 1982, Papadimitriou and Yannakakis introduced the Exact Matching (EM) problem where given an edge colored graph, with colors red and blue, and an integer k, the goal is to decide whether or not the graph contains a perfect matching with exactly k red edges. Although they conjectured it to be NP-complete, soon after it was shown to be solvable in randomized polynomial time in the seminal work of Mulmuley et al., placing it in the complexity class RP. Since then, all attempts at finding a deterministic algorithm for EM have failed, thus leaving it as one of the few natural combinatorial problems in RP but not known to be contained in P, and making it an interesting instance for testing the hypothesis RP = P. Progress has been lacking even on very restrictive classes of graphs despite the problem being quite well known as evidenced by the number of works citing it. In this paper we aim to gain more insight into EM by studying a new optimization problem we call Top-k Perfect Matching (TkPM) which we show to be polynomially equivalent to EM. By virtue of being an optimization problem, it is more natural to approximate TkPM so we provide approximation algorithms for it. Some of the approximation algorithms rely on a relaxation of EM on bipartite graphs where the output is required to be a perfect matching with a number of red edges differing from k by at most k/2, which is of independent interest and generalizes to the Exact Weight Perfect Matching (EWPM) problem. We also consider parameterized algorithms and show that TkPM can be solved in FPT time parameterized by k and the independence number of the graph. This result again relies on new tools developed for EM which are also of independent interest.

Cite as

Nicolas El Maalouly. Exact Matching: Algorithms and Related Problems. In 40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 254, pp. 29:1-29:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{elmaalouly:LIPIcs.STACS.2023.29,
  author =	{El Maalouly, Nicolas},
  title =	{{Exact Matching: Algorithms and Related Problems}},
  booktitle =	{40th International Symposium on Theoretical Aspects of Computer Science (STACS 2023)},
  pages =	{29:1--29:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-266-2},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{254},
  editor =	{Berenbrink, Petra and Bouyer, Patricia and Dawar, Anuj and Kant\'{e}, Mamadou Moustapha},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2023.29},
  URN =		{urn:nbn:de:0030-drops-176811},
  doi =		{10.4230/LIPIcs.STACS.2023.29},
  annote =	{Keywords: Perfect Matching, Exact Matching, Approximation algorithms, Independence number, Parameterized complexity}
}
Document
Submodular Maximization Subject to Matroid Intersection on the Fly

Authors: Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen

Published in: LIPIcs, Volume 244, 30th Annual European Symposium on Algorithms (ESA 2022)


Abstract
Despite a surge of interest in submodular maximization in the data stream model, there remain significant gaps in our knowledge about what can be achieved in this setting, especially when dealing with multiple constraints. In this work, we nearly close several basic gaps in submodular maximization subject to k matroid constraints in the data stream model. We present a new hardness result showing that super polynomial memory in k is needed to obtain an o(k/(log k))-approximation. This implies near optimality of prior algorithms. For the same setting, we show that one can nevertheless obtain a constant-factor approximation by maintaining a set of elements whose size is independent of the stream size. Finally, for bipartite matching constraints, a well-known special case of matroid intersection, we present a new technique to obtain hardness bounds that are significantly stronger than those obtained with prior approaches. Prior results left it open whether a 2-approximation may exist in this setting, and only a complexity-theoretic hardness of 1.91 was known. We prove an unconditional hardness of 2.69.

Cite as

Moran Feldman, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. Submodular Maximization Subject to Matroid Intersection on the Fly. In 30th Annual European Symposium on Algorithms (ESA 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 244, pp. 52:1-52:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{feldman_et_al:LIPIcs.ESA.2022.52,
  author =	{Feldman, Moran and Norouzi-Fard, Ashkan and Svensson, Ola and Zenklusen, Rico},
  title =	{{Submodular Maximization Subject to Matroid Intersection on the Fly}},
  booktitle =	{30th Annual European Symposium on Algorithms (ESA 2022)},
  pages =	{52:1--52:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-247-1},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{244},
  editor =	{Chechik, Shiri and Navarro, Gonzalo and Rotenberg, Eva and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2022.52},
  URN =		{urn:nbn:de:0030-drops-169902},
  doi =		{10.4230/LIPIcs.ESA.2022.52},
  annote =	{Keywords: Submodular Maximization, Matroid Intersection, Streaming Algorithms}
}
Document
Track A: Algorithms, Complexity and Games
Streaming Submodular Maximization Under Matroid Constraints

Authors: Moran Feldman, Paul Liu, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen

Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)


Abstract
Recent progress in (semi-)streaming algorithms for monotone submodular function maximization has led to tight results for a simple cardinality constraint. However, current techniques fail to give a similar understanding for natural generalizations, including matroid constraints. This paper aims at closing this gap. For a single matroid of rank k (i.e., any solution has cardinality at most k), our main results are: - A single-pass streaming algorithm that uses Õ(k) memory and achieves an approximation guarantee of 0.3178. - A multi-pass streaming algorithm that uses Õ(k) memory and achieves an approximation guarantee of (1-1/e - ε) by taking a constant (depending on ε) number of passes over the stream. This improves on the previously best approximation guarantees of 1/4 and 1/2 for single-pass and multi-pass streaming algorithms, respectively. In fact, our multi-pass streaming algorithm is tight in that any algorithm with a better guarantee than 1/2 must make several passes through the stream and any algorithm that beats our guarantee of 1-1/e must make linearly many passes (as well as an exponential number of value oracle queries). Moreover, we show how the approach we use for multi-pass streaming can be further strengthened if the elements of the stream arrive in uniformly random order, implying an improved result for p-matchoid constraints.

Cite as

Moran Feldman, Paul Liu, Ashkan Norouzi-Fard, Ola Svensson, and Rico Zenklusen. Streaming Submodular Maximization Under Matroid Constraints. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 59:1-59:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{feldman_et_al:LIPIcs.ICALP.2022.59,
  author =	{Feldman, Moran and Liu, Paul and Norouzi-Fard, Ashkan and Svensson, Ola and Zenklusen, Rico},
  title =	{{Streaming Submodular Maximization Under Matroid Constraints}},
  booktitle =	{49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)},
  pages =	{59:1--59:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-235-8},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{229},
  editor =	{Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.59},
  URN =		{urn:nbn:de:0030-drops-164007},
  doi =		{10.4230/LIPIcs.ICALP.2022.59},
  annote =	{Keywords: Submodular maximization, streaming, matroid, random order}
}
Document
Track A: Algorithms, Complexity and Games
The Submodular Santa Claus Problem in the Restricted Assignment Case

Authors: Etienne Bamas, Paritosh Garg, and Lars Rohwedder

Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)


Abstract
The submodular Santa Claus problem was introduced in a seminal work by Goemans, Harvey, Iwata, and Mirrokni (SODA'09) as an application of their structural result. In the mentioned problem n unsplittable resources have to be assigned to m players, each with a monotone submodular utility function f_i. The goal is to maximize min_i f_i(S_i) where S₁,...,S_m is a partition of the resources. The result by Goemans et al. implies a polynomial time O(n^{1/2 +ε})-approximation algorithm. Since then progress on this problem was limited to the linear case, that is, all f_i are linear functions. In particular, a line of research has shown that there is a polynomial time constant approximation algorithm for linear valuation functions in the restricted assignment case. This is the special case where each player is given a set of desired resources Γ_i and the individual valuation functions are defined as f_i(S) = f(S ∩ Γ_i) for a global linear function f. This can also be interpreted as maximizing min_i f(S_i) with additional assignment restrictions, i.e., resources can only be assigned to certain players. In this paper we make comparable progress for the submodular variant: If f is a monotone submodular function, we can in polynomial time compute an O(log log(n))-approximate solution.

Cite as

Etienne Bamas, Paritosh Garg, and Lars Rohwedder. The Submodular Santa Claus Problem in the Restricted Assignment Case. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 22:1-22:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{bamas_et_al:LIPIcs.ICALP.2021.22,
  author =	{Bamas, Etienne and Garg, Paritosh and Rohwedder, Lars},
  title =	{{The Submodular Santa Claus Problem in the Restricted Assignment Case}},
  booktitle =	{48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
  pages =	{22:1--22:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-195-5},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{198},
  editor =	{Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.22},
  URN =		{urn:nbn:de:0030-drops-140912},
  doi =		{10.4230/LIPIcs.ICALP.2021.22},
  annote =	{Keywords: Scheduling, submodularity, approximation algorithm, hypergraph matching}
}
Document
Scheduling (Dagstuhl Seminar 20081)

Authors: Nicole Megow, David Shmoys, and Ola Svensson

Published in: Dagstuhl Reports, Volume 10, Issue 2 (2020)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 20081 "Scheduling". The seminar focused on the interplay between scheduling problems and problems that arise in the management of transportation and traffic. Important aspects at the intersection of these two research directions include data-driven approaches in dynamic decision-making, scheduling in combination with routing, shared mobility, and coordination versus competition.

Cite as

Nicole Megow, David Shmoys, and Ola Svensson. Scheduling (Dagstuhl Seminar 20081). In Dagstuhl Reports, Volume 10, Issue 2, pp. 50-75, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Article{megow_et_al:DagRep.10.2.50,
  author =	{Megow, Nicole and Shmoys, David and Svensson, Ola},
  title =	{{Scheduling (Dagstuhl Seminar 20081)}},
  pages =	{50--75},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2020},
  volume =	{10},
  number =	{2},
  editor =	{Megow, Nicole and Shmoys, David and Svensson, Ola},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/DagRep.10.2.50},
  URN =		{urn:nbn:de:0030-drops-130590},
  doi =		{10.4230/DagRep.10.2.50},
  annote =	{Keywords: scheduling, optimization, approximation algorithms, routing, transportation, mechanism design}
}
Document
APPROX
Approximating Star Cover Problems

Authors: Buddhima Gamlath and Vadim Grinberg

Published in: LIPIcs, Volume 176, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)


Abstract
Given a metric space (F ∪ C, d), we consider star covers of C with balanced loads. A star is a pair (i, C_i) where i ∈ F and C_i ⊆ C, and the load of a star is ∑_{j ∈ C_i} d(i, j). In minimum load k-star cover problem (MLkSC), one tries to cover the set of clients C using k stars that minimize the maximum load of a star, and in minimum size star cover (MSSC) one aims to find the minimum number of stars of load at most T needed to cover C, where T is a given parameter. We obtain new bicriteria approximations for the two problems using novel rounding algorithms for their standard LP relaxations. For MLkSC, we find a star cover with (1+O(ε))k stars and O(1/ε²)OPT_MLk load where OPT_MLk is the optimum load. For MSSC, we find a star cover with O(1/ε²) OPT_MS stars of load at most (2 + O(ε)) T where OPT_MS is the optimal number of stars for the problem. Previously, non-trivial bicriteria approximations were known only when F = C.

Cite as

Buddhima Gamlath and Vadim Grinberg. Approximating Star Cover Problems. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 176, pp. 57:1-57:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{gamlath_et_al:LIPIcs.APPROX/RANDOM.2020.57,
  author =	{Gamlath, Buddhima and Grinberg, Vadim},
  title =	{{Approximating Star Cover Problems}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)},
  pages =	{57:1--57:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-164-1},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{176},
  editor =	{Byrka, Jaros{\l}aw and Meka, Raghu},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2020.57},
  URN =		{urn:nbn:de:0030-drops-126609},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2020.57},
  annote =	{Keywords: star cover, approximation algorithms, lp rounding}
}
Document
Track A: Algorithms, Complexity and Games
Robust Algorithms Under Adversarial Injections

Authors: Paritosh Garg, Sagar Kale, Lars Rohwedder, and Ola Svensson

Published in: LIPIcs, Volume 168, 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)


Abstract
In this paper, we study streaming and online algorithms in the context of randomness in the input. For several problems, a random order of the input sequence - as opposed to the worst-case order - appears to be a necessary evil in order to prove satisfying guarantees. However, algorithmic techniques that work under this assumption tend to be vulnerable to even small changes in the distribution. For this reason, we propose a new adversarial injections model, in which the input is ordered randomly, but an adversary may inject misleading elements at arbitrary positions. We believe that studying algorithms under this much weaker assumption can lead to new insights and, in particular, more robust algorithms. We investigate two classical combinatorial-optimization problems in this model: Maximum matching and cardinality constrained monotone submodular function maximization. Our main technical contribution is a novel streaming algorithm for the latter that computes a 0.55-approximation. While the algorithm itself is clean and simple, an involved analysis shows that it emulates a subdivision of the input stream which can be used to greatly limit the power of the adversary.

Cite as

Paritosh Garg, Sagar Kale, Lars Rohwedder, and Ola Svensson. Robust Algorithms Under Adversarial Injections. In 47th International Colloquium on Automata, Languages, and Programming (ICALP 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 168, pp. 56:1-56:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{garg_et_al:LIPIcs.ICALP.2020.56,
  author =	{Garg, Paritosh and Kale, Sagar and Rohwedder, Lars and Svensson, Ola},
  title =	{{Robust Algorithms Under Adversarial Injections}},
  booktitle =	{47th International Colloquium on Automata, Languages, and Programming (ICALP 2020)},
  pages =	{56:1--56:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-138-2},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{168},
  editor =	{Czumaj, Artur and Dawar, Anuj and Merelli, Emanuela},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2020.56},
  URN =		{urn:nbn:de:0030-drops-124632},
  doi =		{10.4230/LIPIcs.ICALP.2020.56},
  annote =	{Keywords: Streaming algorithm, adversary, submodular maximization, matching}
}
Document
Complete Volume
LIPIcs, Volume 144, ESA'19, Complete Volume

Authors: Michael A. Bender, Ola Svensson, and Grzegorz Herman

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
LIPIcs, Volume 144, ESA'19, Complete Volume

Cite as

27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Proceedings{bender_et_al:LIPIcs.ESA.2019,
  title =	{{LIPIcs, Volume 144, ESA'19, Complete Volume}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019},
  URN =		{urn:nbn:de:0030-drops-113004},
  doi =		{10.4230/LIPIcs.ESA.2019},
  annote =	{Keywords: Applied computing, Transportation; Computing methodologies, Algebraic algorithms; Hardware, External storage; Human-centered computing, Graph drawings}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Michael A. Bender, Ola Svensson, and Grzegorz Herman

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 0:i-0:xx, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bender_et_al:LIPIcs.ESA.2019.0,
  author =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{0:i--0:xx},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.0},
  URN =		{urn:nbn:de:0030-drops-111215},
  doi =		{10.4230/LIPIcs.ESA.2019.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Constant-Factor FPT Approximation for Capacitated k-Median

Authors: Marek Adamczyk, Jarosław Byrka, Jan Marcinkowski, Syed M. Meesum, and Michał Włodarczyk

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Capacitated k-median is one of the few outstanding optimization problems for which the existence of a polynomial time constant factor approximation algorithm remains an open problem. In a series of recent papers algorithms producing solutions violating either the number of facilities or the capacity by a multiplicative factor were obtained. However, to produce solutions without violations appears to be hard and potentially requires different algorithmic techniques. Notably, if parameterized by the number of facilities k, the problem is also W[2] hard, making the existence of an exact FPT algorithm unlikely. In this work we provide an FPT-time constant factor approximation algorithm preserving both cardinality and capacity of the facilities. The algorithm runs in time 2^O(k log k) n^O(1) and achieves an approximation ratio of 7+epsilon.

Cite as

Marek Adamczyk, Jarosław Byrka, Jan Marcinkowski, Syed M. Meesum, and Michał Włodarczyk. Constant-Factor FPT Approximation for Capacitated k-Median. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 1:1-1:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{adamczyk_et_al:LIPIcs.ESA.2019.1,
  author =	{Adamczyk, Marek and Byrka, Jaros{\l}aw and Marcinkowski, Jan and Meesum, Syed M. and W{\l}odarczyk, Micha{\l}},
  title =	{{Constant-Factor FPT Approximation for Capacitated k-Median}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{1:1--1:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.1},
  URN =		{urn:nbn:de:0030-drops-111225},
  doi =		{10.4230/LIPIcs.ESA.2019.1},
  annote =	{Keywords: K-median, Clustering, Approximation Algorithms, Fixed Parameter Tractability}
}
Document
Fragile Complexity of Comparison-Based Algorithms

Authors: Peyman Afshani, Rolf Fagerberg, David Hammer, Riko Jacob, Irina Kostitsyna, Ulrich Meyer, Manuel Penschuck, and Nodari Sitchinava

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We initiate a study of algorithms with a focus on the computational complexity of individual elements, and introduce the fragile complexity of comparison-based algorithms as the maximal number of comparisons any individual element takes part in. We give a number of upper and lower bounds on the fragile complexity for fundamental problems, including Minimum, Selection, Sorting and Heap Construction. The results include both deterministic and randomized upper and lower bounds, and demonstrate a separation between the two settings for a number of problems. The depth of a comparator network is a straight-forward upper bound on the worst case fragile complexity of the corresponding fragile algorithm. We prove that fragile complexity is a different and strictly easier property than the depth of comparator networks, in the sense that for some problems a fragile complexity equal to the best network depth can be achieved with less total work and that with randomization, even a lower fragile complexity is possible.

Cite as

Peyman Afshani, Rolf Fagerberg, David Hammer, Riko Jacob, Irina Kostitsyna, Ulrich Meyer, Manuel Penschuck, and Nodari Sitchinava. Fragile Complexity of Comparison-Based Algorithms. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 2:1-2:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{afshani_et_al:LIPIcs.ESA.2019.2,
  author =	{Afshani, Peyman and Fagerberg, Rolf and Hammer, David and Jacob, Riko and Kostitsyna, Irina and Meyer, Ulrich and Penschuck, Manuel and Sitchinava, Nodari},
  title =	{{Fragile Complexity of Comparison-Based Algorithms}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{2:1--2:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.2},
  URN =		{urn:nbn:de:0030-drops-111235},
  doi =		{10.4230/LIPIcs.ESA.2019.2},
  annote =	{Keywords: Algorithms, comparison based algorithms, lower bounds}
}
Document
Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers

Authors: Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
We present the first universal reconfiguration algorithm for transforming a modular robot between any two facet-connected square-grid configurations using pivot moves. More precisely, we show that five extra "helper" modules ("musketeers") suffice to reconfigure the remaining n modules between any two given configurations. Our algorithm uses O(n^2) pivot moves, which is worst-case optimal. Previous reconfiguration algorithms either require less restrictive "sliding" moves, do not preserve facet-connectivity, or for the setting we consider, could only handle a small subset of configurations defined by a local forbidden pattern. Configurations with the forbidden pattern do have disconnected reconfiguration graphs (discrete configuration spaces), and indeed we show that they can have an exponential number of connected components. But forbidding the local pattern throughout the configuration is far from necessary, as we show that just a constant number of added modules (placed to be freely reconfigurable) suffice for universal reconfigurability. We also classify three different models of natural pivot moves that preserve facet-connectivity, and show separations between these models.

Cite as

Hugo A. Akitaya, Esther M. Arkin, Mirela Damian, Erik D. Demaine, Vida Dujmović, Robin Flatland, Matias Korman, Belen Palop, Irene Parada, André van Renssen, and Vera Sacristán. Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 3:1-3:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{akitaya_et_al:LIPIcs.ESA.2019.3,
  author =	{Akitaya, Hugo A. and Arkin, Esther M. and Damian, Mirela and Demaine, Erik D. and Dujmovi\'{c}, Vida and Flatland, Robin and Korman, Matias and Palop, Belen and Parada, Irene and van Renssen, Andr\'{e} and Sacrist\'{a}n, Vera},
  title =	{{Universal Reconfiguration of Facet-Connected Modular Robots by Pivots: The O(1) Musketeers}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{3:1--3:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.3},
  URN =		{urn:nbn:de:0030-drops-111247},
  doi =		{10.4230/LIPIcs.ESA.2019.3},
  annote =	{Keywords: Reconfiguration, geometric algorithm, pivoting squares, modular robots}
}
Document
Constructing Light Spanners Deterministically in Near-Linear Time

Authors: Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Graph spanners are well-studied and widely used both in theory and practice. In a recent breakthrough, Chechik and Wulff-Nilsen [Shiri Chechik and Christian Wulff-Nilsen, 2018] improved the state-of-the-art for light spanners by constructing a (2k-1)(1+epsilon)-spanner with O(n^(1+1/k)) edges and O_epsilon(n^(1/k)) lightness. Soon after, Filtser and Solomon [Arnold Filtser and Shay Solomon, 2016] showed that the classic greedy spanner construction achieves the same bounds. The major drawback of the greedy spanner is its running time of O(mn^(1+1/k)) (which is faster than [Shiri Chechik and Christian Wulff-Nilsen, 2018]). This makes the construction impractical even for graphs of moderate size. Much faster spanner constructions do exist but they only achieve lightness Omega_epsilon(kn^(1/k)), even when randomization is used. The contribution of this paper is deterministic spanner constructions that are fast, and achieve similar bounds as the state-of-the-art slower constructions. Our first result is an O_epsilon(n^(2+1/k+epsilon')) time spanner construction which achieves the state-of-the-art bounds. Our second result is an O_epsilon(m + n log n) time construction of a spanner with (2k-1)(1+epsilon) stretch, O(log k * n^(1+1/k) edges and O_epsilon(log k * n^(1/k)) lightness. This is an exponential improvement in the dependence on k compared to the previous result with such running time. Finally, for the important special case where k=log n, for every constant epsilon>0, we provide an O(m+n^(1+epsilon)) time construction that produces an O(log n)-spanner with O(n) edges and O(1) lightness which is asymptotically optimal. This is the first known sub-quadratic construction of such a spanner for any k = omega(1). To achieve our constructions, we show a novel deterministic incremental approximate distance oracle. Our new oracle is crucial in our construction, as known randomized dynamic oracles require the assumption of a non-adaptive adversary. This is a strong assumption, which has seen recent attention in prolific venues. Our new oracle allows the order of the edge insertions to not be fixed in advance, which is critical as our spanner algorithm chooses which edges to insert based on the answers to distance queries. We believe our new oracle is of independent interest.

Cite as

Stephen Alstrup, Søren Dahlgaard, Arnold Filtser, Morten Stöckel, and Christian Wulff-Nilsen. Constructing Light Spanners Deterministically in Near-Linear Time. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 4:1-4:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{alstrup_et_al:LIPIcs.ESA.2019.4,
  author =	{Alstrup, Stephen and Dahlgaard, S{\o}ren and Filtser, Arnold and St\"{o}ckel, Morten and Wulff-Nilsen, Christian},
  title =	{{Constructing Light Spanners Deterministically in Near-Linear Time}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{4:1--4:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.4},
  URN =		{urn:nbn:de:0030-drops-111255},
  doi =		{10.4230/LIPIcs.ESA.2019.4},
  annote =	{Keywords: Spanners, Light Spanners, Efficient Construction, Deterministic Dynamic Distance Oracle}
}
  • Refine by Author
  • 11 Svensson, Ola
  • 3 Penschuck, Manuel
  • 3 Pilipczuk, Marcin
  • 3 Rohwedder, Lars
  • 3 Wagner, Dorothea
  • Show More...

  • Refine by Classification
  • 15 Theory of computation → Design and analysis of algorithms
  • 14 Mathematics of computing → Graph algorithms
  • 13 Theory of computation → Approximation algorithms analysis
  • 11 Theory of computation → Computational geometry
  • 10 Theory of computation → Graph algorithms analysis
  • Show More...

  • Refine by Keyword
  • 7 approximation algorithms
  • 6 Approximation Algorithms
  • 4 Clustering
  • 3 Algorithms
  • 3 Approximation algorithms
  • Show More...

  • Refine by Type
  • 98 document
  • 1 volume

  • Refine by Publication Year
  • 88 2019
  • 3 2020
  • 2 2018
  • 2 2022
  • 2 2023
  • Show More...

Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail